

Encyclopedia of Electronic Components

Power Sources & Conversion

Resistors - Capacitors - Inductors Switches - Encoders - Relays - Transistors

O'REILLY®

Encyclopedia of Electronic Components Volume 1

Charles Platt

O'REILLY® Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Encyclopedia of Electronic Components Volume 1

by Charles Platt

Copyright © 2013 Helpful Corporation. All rights reserved. Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (*http://my.safaribooksonline.com*). For more information, contact our corporate/institutional sales department: 800-998-9938 or *corporate@oreilly.com*.

Editor: Brian Jepson Production Editor: Melanie Yarbrough Proofreader: Melanie Yarbrough Indexer: Judy McConville Cover Designer: Mark Paglietti Interior Designer: Edie Freedman and Nellie McKesson Illustrator: Charles Platt Photographer: Charles Platt Cover Production: Randy Comer

October 2012: First Edition

Revision History for the First Edition:

2012-10-03 First release

2012-12-04 Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449333898 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. *Encyclopedia of Electronic Components Volume 1*, the cover images, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-33389-8 [TI] To Mark Frauenfelder, who reacquainted me with the pleasures of Making.

Table of Contents

Pı	Preface xix		
1.	How to Use This Book	1	
	Reference vs. Tutorial		
	Theory and Practice	1	
	Organization		
	Subject Paths	2	
	Inclusions and Exclusions	2	
	Typographical Conventions	3	
	Volume Contents		
	Safari [®] Books Online	3	
	How to Contact Us	4	

> POWER

> > SOURCE

2.	Battery
	What It Does
	How It Works
	Electrode Terminology 7
	Variants
	Disposable Batteries8
	Rechargeable Batteries 9
	Values
	Amperage 11
	Capacity
	Voltage
	How To Use It

What Can Go Wrong 15
Short Circuits: Overheating And Fire
Diminished Performance Caused By Improper Recharging 15
Complete Discharge Of Lead-Acid Battery
Inadequate Current 15
Incorrect Polarity 15
Reverse Charging 16
Sulfurization 16
High Current Flow Between Parallel Batteries

> > CONNECTION

3. Jumper 17
What It Does
How It Works 17
Variants
Values
How To Use It
What Can Go Wrong 19
4 . Fuse
What It Does
How It Works 21
Values
Variants
Small Cartridge Fuses 23
Automotive Fuses 23
Strip Fuses 24
Through-Hole Fuses
Resettable Fuses 24
Surface Mount Fuses 26
How To Use It
What Can Go Wrong 27
Repeated Failure
Soldering Damage
Placement
5. Pushbutton
What It Does
How It Works 29
Variants
Poles And Throws 30
On-Off Behavior 30
Slider 31
Styles
Termination And Contact Plating 32
Mounting Style
Sealed Or Unsealed 32

	Latching	33
	Foot Pedal	33
	Keypad	33
	Tactile Switch	34
	Membrane Pad	34
	Radio Buttons	35
	Snap-Action Switches	35
	Emergency Switch	35
	Values	35
	How To Use It	35
	What Can Go Wrong	35
	No Button	35
	Mounting Problems	35
	LED Issues	36
	Other Problems	36
δ.	Switch	37
	What It Does	
	How It Works	
	Variants	
	Terminology	
	Poles And Throws	
	On-Off Behavior	
	Snap-Action	
	Rocker	
	Slider	
	Toggle	
	DIP	
	SIP	
	Paddle	
	Vandal Resistant Switch	
	Tactile Switch	
	Mounting Options	
	Termination	
	Contact Plating Options	
	Values	
	How To Use It	46
	Power Switches	
	Limit Switches	46
	Logic Circuits	47
	Alternatives	
	What Can Go Wrong	47
	Arcing	
	Dry Joints	
	Short Circuits	
	Contact Contamination	
	Wrong Terminal Type	
	Contact Bounce	

	Mechanical Wear	48
	Mounting Problems	48
	Cryptic Schematics	
76	otary Switch	51
/. r	-	
	What It Does	
	How It Works	
		52
		52
	Rotary DIP	
	Gray Code	
	PC Board Rotary Switch	
	Mechanical Encoder	
	Pushwheel And Thumbwheel	55
	Keylock	
	Values	56
	How To Use It	56
	What Can Go Wrong	57
	Vulnerable Contacts	57
	Contact Overload	57
	Misalignment	57
	Misidentified Shorting Switch	
	User Abuse	
	Wrong Shaft, Wrong Knobs, Nuts That Get Lost, Too Big To Fit	57
8. F	Otational Encoder	59
8. F	What It Does	59 59
8. F	What It Does	59 59 60
8. F	What It Does How It Works Variants	59 59 60 61
8. F	What It Does	59 59 60 61 61
8. F	What It Does How It Works Variants Pulses And Detents Format	59 59 60 61 61 61
8. F	What It Does How It Works Variants Pulses And Detents Format Output	59 59 60 61 61 61 61
8. F	What It Does . How It Works . Variants . Pulses And Detents . Format . Output . Rotational Resistance .	59 59 60 61 61 61 61 61
8. F	What It Does . How It Works . Variants . Pulses And Detents . Format . Output . Rotational Resistance .	59 59 60 61 61 61 61 61
8. F	What It Does . How It Works . Variants . Pulses And Detents . Format . Output . Rotational Resistance . Values . Contact Bounce .	59 59 60 61 61 61 61 61 61 62
8. F	What It Does How It Works Variants Pulses And Detents Format Output Rotational Resistance Values Contact Bounce Sliding Noise How To Use It	59 59 60 61 61 61 61 61 61 62 62
8. F	What It Does . How It Works . Variants . Pulses And Detents . Format . Output . Rotational Resistance . Values . Contact Bounce . Sliding Noise .	59 59 60 61 61 61 61 61 61 62 62 62
8. F	What It Does How It Works How It Works How It Works Variants Pulses And Detents Pulses And Detents How It Works Format How To Use It What Can Go Wrong How To Use It	59 59 60 61 61 61 61 61 61 62 62 62 62
8. F	What It Does How It Works Variants Pulses And Detents Format Output Rotational Resistance Values Contact Bounce Sliding Noise How To Use It What Can Go Wrong Switch Bounce	59 59 60 61 61 61 61 61 61 62 62 62 62
	What It Does How It Works Variants Pulses And Detents Format Output Rotational Resistance Values Contact Bounce Sliding Noise How To Use It What Can Go Wrong Switch Bounce Contact Burnout	59 59 60 61 61 61 61 61 62 62 62 62 63
	What It Does How It Works Variants Pulses And Detents Format Output Rotational Resistance Values Contact Bounce Sliding Noise How To Use It What Can Go Wrong Switch Bounce Contact Burnout	59 59 60 61 61 61 61 61 62 62 62 62 63 55
	What It Does How It Works Variants Pulses And Detents Format Output Rotational Resistance Values Contact Bounce Sliding Noise How To Use It What Can Go Wrong Switch Bounce Contact Burnout	59 59 60 61 61 61 61 61 61 62 62 62 63 63 65
	What It Does How It Works Variants Pulses And Detents Format Output Rotational Resistance Values Contact Bounce Sliding Noise How To Use It What Can Go Wrong Switch Bounce Contact Burnout	59 59 60 61 61 61 61 61 62 62 62 63 65 65 65
	What It Does How It Works Variants Pulses And Detents Format Output Rotational Resistance Values Contact Bounce Sliding Noise How To Use It What Can Go Wrong Switch Bounce Contact Burnout	59 59 60 61 61 61 61 61 62 62 62 63 65 65 66 67
	What It Does How It Works Variants Pulses And Detents Format Output Rotational Resistance Values Contact Bounce Sliding Noise How To Use It What Can Go Wrong Switch Bounce Contact Burnout	59 59 60 61 61 61 61 61 62 62 62 63 65 65 66 67 67
	What It Does How It Works Variants Pulses And Detents Format Output Rotational Resistance Values Contact Bounce Sliding Noise How To Use It What Can Go Wrong Switch Bounce Contact Burnout	59 59 60 61 61 61 61 61 62 62 62 63 65 65 66 67 67 67

Reed Relay	68
Small Signal Relay	68
Automotive Relays	69
General Purpose/Industrial	69
Time Delay Relay	
Contactor	
Values	
How To Use It	
What Can Go Wrong	
Wrong Pinouts	72
Wrong Orientation	
Wrong Type	
Wrong Polarity	
AC And DC	
Chatter	72
Relay Coil Voltage Spike	72
Arcing	72
Magnetic Fields	72
Environmental Hazards	73

> > MODERATION

10 .	Resistor
	What It Does
	How It Works
	Variants
	Resistor Array 77
	Values
	Tolerance
	Value Coding81
	Stability 82
	Materials 82
	How To Use It
	In Series With LED 84
	Current Limiting With A Transistor
	Pullup And Pulldown Resistors
	Audio Tone Control85
	RC Network 85
	Voltage Divider 86
	Resistors In Series 86
	Resistors In Parallel 86
	What Can Go Wrong 87
	Heat
	Noise
	Inductance
	Inaccuracy

	Wrong Values	88
11	Potentiometer	80
	What It Does	
	How It Works	
	Variants	
	Linear And Log Taper	
	Classic-Style Potentiometer	
	Multiple-Turn Potentiometer	
	Ganged Potentiometer	
	Switched Potentiometer	
	Slider Potentiometer	93
	Trimmer Potentiometer	93
	How To Use It	94
	What Can Go Wrong	95
	Wear And Tear	
	Knobs That Don't Fit	
	Nuts That Get Lost	
	A Shaft That Isn't Long Enough	
	Sliders With No Finger Grip	
	Too Big To Fit	
	Overheating	
	The Wrong Taper	
12	Capacitor	97
12.	Capacitor	
12.	What It Does	97
12.	What It Does	97 97
12.	What It Does . How It Works . Variants .	97 97 99
12.	What It Does How It Works Variants Format	97 97 99 99
12.	What It Does . How It Works . Variants .	97 97 99 99 101
12.	What It Does . How It Works . Variants . Format . Principal Types .	97 97 99 99 101 103
12.	What It Does . How It Works . Variants . Format . Principal Types . Dielectrics	97 97 99 99 101 103 104
12.	What It Does . How It Works . Variants . Format . Principal Types . Dielectrics . Values .	97 97 99 99 101 103 103 104 104
12.	What It Does . How It Works . Variants . Format . Principal Types . Dielectrics . Values . Farads .	97 97 99 99 101 101 103 104 104 104
12.	What It Does How It Works Variants Format Principal Types Dielectrics Values Farads Commonly Used Values	97 97 99 99 101 101 103 104 104 104 104 105
12.	What It Does How It Works Variants Format Principal Types Dielectrics Values Farads Commonly Used Values Dielectric Constant The Time Constant Multiple Capacitors	97 97 99 99 101 103 104 104 104 104 105 105 105 106
12.	What It Does How It Works Variants Format Principal Types Dielectrics Values Farads Commonly Used Values Dielectric Constant The Time Constant Multiple Capacitors Alternating Current And Capacitive Reactance	97 97 99 101 103 104 104 104 105 105 106 106
12.	What It DoesHow It WorksVariantsFormatPrincipal TypesDielectricsValuesFaradsCommonly Used ValuesDielectric ConstantThe Time ConstantMultiple CapacitorsAlternating Current And Capacitive ReactanceEquivalent Series Resistance	97 99 99 99 101 103 103 104 104 104 105 105 105 106 106 106
12.	What It Does How It Works Variants Format Principal Types Dielectrics Values Farads Commonly Used Values Dielectric Constant The Time Constant Multiple Capacitors Alternating Current And Capacitive Reactance Equivalent Series Resistance How To Use It	97 99 99 99 101 103 104 104 104 104 105 105 105 106 106 106 107
12.	What It DoesHow It WorksVariantsFormatPrincipal TypesDielectricsValuesFaradsCommonly Used ValuesDielectric ConstantThe Time ConstantMultiple CapacitorsAlternating Current And Capacitive ReactanceEquivalent Series ResistanceHow To Use ItBypass Capacitor	97 99 99 99 101 103 104 104 104 105 105 105 106 106 106 107 107
12.	What It DoesHow It WorksVariantsFormatPrincipal TypesDielectricsValuesFaradsCommonly Used ValuesDielectric ConstantThe Time ConstantMultiple CapacitorsAlternating Current And Capacitive ReactanceEquivalent Series ResistanceHow To Use ItBypass CapacitorCoupling Capacitor	97 99 99 99 101 101 103 104 104 104 105 105 105 106 106 106 107 107 107
12.	What It DoesHow It WorksVariantsFormatPrincipal TypesDielectricsValuesFaradsCommonly Used ValuesDielectric ConstantThe Time ConstantMultiple CapacitorsAlternating Current And Capacitive ReactanceEquivalent Series ResistanceHow To Use ItBypass CapacitorCoupling CapacitorHigh-Pass Filter	97 99 99 99 101 101 103 104 104 104 104 105 105 105 106 106 107 107 107 107 107
12.	What It DoesHow It WorksVariantsFormatPrincipal TypesDielectricsValuesFaradsCommonly Used ValuesDielectric ConstantThe Time ConstantMultiple CapacitorsAlternating Current And Capacitive ReactanceEquivalent Series ResistanceHow To Use ItBypass CapacitorCoupling CapacitorHigh-Pass FilterLow-Pass Filter	97 97 99 99 101 103 104 104 104 105 105 106 106 107 107 107 107 107
12.	What It DoesHow It WorksVariantsFormatPrincipal TypesDielectricsValuesFaradsCommonly Used ValuesDielectric ConstantThe Time ConstantMultiple CapacitorsAlternating Current And Capacitive ReactanceEquivalent Series ResistanceHow To Use ItBypass CapacitorCoupling CapacitorHigh-Pass FilterLow-Pass FilterSmoothing Capacitor	97 97 99 99 101 103 104 104 104 104 105 105 106 106 107 107 107 107 107 108
12.	What It DoesHow It WorksVariantsFormatPrincipal TypesDielectricsValuesFaradsCommonly Used ValuesDielectric ConstantThe Time ConstantMultiple CapacitorsAlternating Current And Capacitive ReactanceEquivalent Series ResistanceHow To Use ItBypass CapacitorCoupling CapacitorHigh-Pass FilterLow-Pass FilterSmoothing CapacitorSnubber	
12.	What It DoesHow It WorksVariantsFormatPrincipal TypesDielectricsValuesFaradsCommonly Used ValuesDielectric ConstantThe Time ConstantMultiple CapacitorsAlternating Current And Capacitive ReactanceEquivalent Series ResistanceHow To Use ItBypass CapacitorCoupling CapacitorHigh-Pass FilterLow-Pass FilterSmoothing Capacitor	97 97 99 99 101 103 104 104 104 104 105 105 106 106 106 107 107 107 107 107 107 107 108 108 109

	Wrong Polarity	. 110
	Voltage Overload	110
	Leakage	110
	Dielectric Memory	110
	Specific Electrolytic Issues	. 110
	Heat	. 110
	Vibration	110
	Misleading Nomenclature	. 111
13	Variable Capacitor	113
10.	What It Does	
	How It Works	
	Variants	
	Values	
	Formats	
	How To Use It	
	What Can Go Wrong	
	Failure To Ground Trimmer Capacitor While Adjusting It	
	Application Of Overcoat Material Or "Lock Paint"	
	Lack Of Shielding	117
14.	Inductor	119
	What It Does	119
	How It Works	. 120
	DC Through A Coil	121
	Magnetic Core	
	EMF And Back-EMF	
	Electrical And Magnetic Polarity	
	Variants	
	Magnetic Cores	124
	Nonmagnetic Cores	
	Variable Inductors	
	Ferrite Beads	
	Toroidal Cores	
	Gyrator	
	Values	
	Calculating Inductance	
	Calculating Reactance	
	Calculating Reluctance	
	Datasheet Terminology	
	Series And Parallel Configurations	
	Time Constant	
	How To Use It	
	Core Choices	
	Miniaturization	
	What Can Go Wrong	
	Real-World Defects	
	Saturation	152

RF Problems	133
-------------	-----

> > CONVERSION

15. AC-AC Transformer	135
What It Does	. 135
How It Works	136
The Core	137
Taps	137
Variants	138
Core Shapes	. 138
Power Transformer	138
Plug-In Transformer	139
Isolation Transformer	
Autotransformer	140
Variable Transformer	
Audio Transformer	
Split-Bobbin Transformer	
Surface-Mount Transformer	
Values	
How To Use It	
What Can Go Wrong	
Reversal Of Input And Output	
Shock Hazard From Common Ground	
Accidental DC Input	
Overload	
Incorrect AC Frequency	. 142
10 AO DO Dower Swanks	1 4 3
16 . AC-DC Power Supply	
What It Does	
Variants	
Linear Regulated Power Supply	
Switching Power Supply	
Unregulated Power Supply	
Adjustable Power Supply	
Voltage Multiplier	
Formats	
How To Use It	
What Can Go Wrong	
High Voltage Shock	
Capacitor Failure Electrical Noise	
Peak Inrush	
	147
17. DC-DC Converter	149
What It Does	
How It Works	• • • • • •
Variants	
valiants	150

Buck Converter	150
Boost Converter	151
Flyback Converter With Inductor	151
Flyback Converter With Transformer	151
Formats	
Values	152
Nominal Input Voltage And Frequency	152
Output Voltage	153
Input Current And Output Current	153
Load Regulation	153
Efficiency	153
Ripple And Noise	154
Isolated Or Non-Isolated	154
How To Use It	154
What Can Go Wrong	
Electrical Noise In Output	155
Excess Heat With No Load	155
Inaccurate Voltage Output With Low Load	155
18. DC-AC Inverter	157
What It Does	157
How It Works	
Variants	158
Values	
How To Use It	
What Can Go Wrong	160
> > REGULATION	
19 . Voltage Regulator	161

Voltage Regulator 1	61
What It Does	161
How It Works	161
Variants	163
Packaging	163
Popular Varieties	163
Adjustable Regulators	163
Negative And Positive Regulators	164
Low-Dropout Linear Regulators	164
Quasi-Low-Dropout Linear Regulators	165
Additional Pin Functions	165
Values	165
How To Use It	165
What Can Go Wrong	166
Inadequate Heat Management	166
Transient Response	166
Misidentified Parts	166
Misidentified Pins	167
Dropout Caused By Low Battery	167

Inaccurate Delivered Voltage 167

> ELECTROMAGNETISM

> > LINEAR

20 .	Electromagnet	169
	What It Does	169
	How It Works	169
	Variants	170
	Values	171
	How To Use It	. 171
	What Can Go Wrong	172

21. Solenoid

Solenoid 173
What It Does 173
How It Works 174
Variants
Low Profile
Latching 176
Rotary
Hinged Clapper 176
Values
Coil Size Vs. Power 177
How To Use It
What Can Go Wrong 177
Heat 177
AC Inrush 177
Unwanted EMF 177
Loose Plunger 177

> > ROTATIONAL

2. DC Motor 17	9
What It Does 17	9
How It Works 17	9
Variants	1
Coil Configurations 18	1
Gearhead Motor 18	1
Brushless DC Motor 18	3
Linear Actuator 18	4
Values	4
How To Use It	5
Speed Control 18	6
Direction Control 18	6
Limit Switches 18	7
What Can Go Wrong 18	7

	Brushes And Commutator	
	Electrical Noise	187
	Heat Effects	
	Ambient Conditions	
	Wrong Shaft Type Or Diameter	188
	Incompatible Motor Mounts	
	Backlash	188
	Bearings	188
	Audible Noise	
23.	AC Motor	
	What It Does	
	How It Works	
	Stator Design	
	Rotor Design	192
	Variants	
	Single-Phase Induction Motor	195
	Three-Phase Induction Motor	196
	Synchronous Motor	196
	Reluctance Motor	197
	Variable Frequency Drive	
	Wound-Rotor AC Induction Motor	198
	Universal Motor	198
	Inverted AC Motors	199
	Values	
	How To Use It	
	What Can Go Wrong	200
	Premature Restart	200
	Frequent Restart	200
	Undervoltage Or Voltage Imbalance	
	Stalled Motor	
	Protective Relays	200
	Excess Torque	
	Internal Breakage	
24.	Servo Motor	
	What It Does	
	How It Works	201
	Variants	203
	Values	204
	How To Use It	
	Modification For Continuous Rotation	206
	What Can Go Wrong	206
	Incorrect Wiring	206
	Shaft/Horn Mismatch	206
	Unrealistically Rapid Software Commands	207
	Jitter	207
	Motor Overload	207

Unrealistic Duty Cycle	207
Electrical Noise	. 207
25. Stepper Motor	209
What It Does	
How It Works	
Reluctance Stepper Motors	
Permanent Magnet Stepper Motors	
Bipolar Stepper Motors	
Unipolar Motors	
Variants .	
High Phase Count	
Hybrid	
Bifilar	216
Multiphase	. 216
Microstepping	. 217
Sensing And Feedback	217
Voltage Control	. 217
Values	218
How To Use It	218
Protection Diodes	218
Positional Control	219
What Can Go Wrong	219
Incorrect Wiring	219
Step Loss	. 219
Excessive Torque	219
Hysteresis	220
Resonance	220
Hunting	. 220
Saturation	. 220
Rotor Demagnetization	. 220

> DISCRETE SEMICONDUCTOR

> > SINGLE JUNCTION

26 . Diode	221
What It Does	221
How It Works	223
Variants	224
Packaging	224
Signal Diodes	224
Rectifier Diodes	224
Zener Diode	224
Transient Voltage Suppressor (TVS)	225
Schottky Diode	225
Varactor Diode	225

Tunnel Diode, Gunn Diode, PIN Diode Diode Array	
Bridge Rectifier	
Values	
How To Use It	
Rectification	227
Back-EMF Suppression	228
Voltage Selection	229
Voltage Clamping	
Logic Gate	
DC Voltage Regulation And Noise Suppression	
AC Voltage Control And Signal Clipping	
Voltage Sensing	
What Can Go Wrong	
Overload	
Reversed Polarity	233
Wrong Type Of Diode	

Unijunction Transistor	235
What It Does	
How It Works	236
Variants	238
Values	
How To Use It	239
What Can Go Wrong	239
Name Confusion	239
Incorrect Bias	239
Overload	240

> > MULTI-JUNCTION

27.

28 . Bipolar Transistor	 241
What It Does	 . 241
How It Works	 . 241
Current Gain	 . 244
Terminology	 . 245
Variants	 . 245
Packaging	 . 245
Connections	 . 246
How To Use It	 246
Darlington Pairs	 248
Amplifiers	 . 250
What Can Go Wrong	 . 251
Wrong Connections On A Bipolar Transistor	 251
Wrong Connections On A Darlington Pair Chip	 . 251
Soldering Damage	 . 252
Excessive Current Or Voltage	 . 252

Excessive Leakage	252
29. Field Effect Transistor	
What It Does	
How It Works	
JFETs	
JFET Behavior	
MOSFETs	
The Substrate Connection	
Variants	
MESFET	
V-Channel MOSFET	
Trench MOS	
Values	
How To Use It	
P-Channel Disadvantage	
Bipolar Substitution	
Amplifier Front Ends	
Voltage-Controlled Resistor	
Compatibility With Digital Devices	
What Can Go Wrong	
Static Electricity	
Heat	
Wrong Bias	
Appendix A. Schematic Symbols	
······································	
Index	269

Preface

At a time when information is widely and freely available in greater quantities than ever before, the reader may wonder whether *The Encyclopedia of Electronic Components* is really necessary. Surely, anything you want to know can be found online?

Well, yes and no. Let's consider the available resources.

1. Datasheets

Datasheets are indispensable, but they have limitations. Some are detailed; others are skimpy. Some show you sample schematics as a guide to using a component; many don't. None of them tells you much about how a component works, because that's not their purpose. Often they don't mention other components that must be added. Some datasheets for DC-DC converters, for instance, say nothing at all about bypass capacitors, even though the capacitors may be essential. A datasheet for an optocoupler says nothing about the pullup resistor required by the open-collector output.

Datasheets don't facilitate comparison shopping. A datasheet from one manufacturer will not compare its products with those from another manufacturer, and may not even provide much guidance about alternatives that are available from the same manufacturer. For example, a datasheet for a linear voltage regulator won't suggest that you might do better to use a DC-DC converter in an application where high efficiency is important.

Most of all, datasheets don't tell you how to avoid common mistakes. What actually happens if you connect that tantalum capacitor the wrong way around? A datasheet gives you the customary list of absolute maximum values, and after that, you are on your own, burning things out, encountering mysterious electronic behavior, and discovering limitations that are so well known, the datasheet didn't bother to mention them. In my experience, relying on datasheets creates a significant risk of reinventing the wheel.

2. Wikipedia

Wikipedia's coverage of electronics is impressive but inconsistent. Some entries are elementary, while others are extremely technical. Some are shallow, while others are deep. Some are well organized, while others run off into obscure topics that may have interested one of the contributors but are of little practical value to most readers. Many topics are distributed over multiple entries, forcing you to hunt through several URLs. Overall, Wikipedia tends to be good if you want theory, but not-so-good if you want hands-on practicality.

3. Manufacturers' Tutorials

A few helpful and enlightened manufacturers have compiled highly authoritative, instructional overviews of the components that they sell. Littelfuse, for instance, publishes an excellent series of documents telling you everything you could possibly want to know about fuses. But now you encounter a different problem: There is so much information, you'll need a couple of hours to dig through it all. Also, because the tutorials tend not to receive high page rankings on Google, they can be hard to find. And if a manufacturer has gaps in its product line, its tutorial is unlikely to mention them. Consequently, you won't know what's missing.

4. Personal Guides

It is a well-known attribute of the Web that many individuals feel the impulse to share everything they know (or think they know) about a particular topic. These personal guides can present surprisingly thorough online coverage of relatively obscure issues, such as the types of capacitors most suitable for loudspeaker crossover circuits, or the correct derivation of amp-hour numbers for lead-acid batteries. Unfortunately, on some sites you can also find errors, unsubstantiated opinions, plagiarism, and eccentricity. My general rule is that three or more guides generally have to agree with each other before their statements can be trusted—and even then, I have a small residue of doubt. The search-inspect-and-verify process can take a while.

So—yes, the information that you want usually does exist somewhere online, but no, it may not be easy to find. The vastness of the Web is not organized like an encyclopedia.

What about books? Generally speaking, they tend to be entry-level, or they specialize in narrow areas. A few broad-ranging books are truly excellent, but they are primarily educational, organized in an instructional sequence. They are not reference books.

The Encyclopedic Solution

Scarcity or inaccessibility of information ceased to be a problem many years ago. Its vast quantity, inconsistency, and dispersal have become the new barriers to acquiring knowledge. If you have to go hunting among datasheets, Wikipedia, manufacturers' tutorials (which may or may not exist), personal guides (which may have unrevealed bias), and multiple educational books, the process will be inconvenient and timeconsuming. If you plan to revisit the topic in the future, you'll have to remember which URLs were useful and which ones weren't—and you may find that many of them are not even there anymore.

When I considered these issues during my own work as an electronics columnist for *Make* magazine, I saw a real need for a fact-checked, crossreferenced encyclopedia that would compile the basic information about components concisely, in an organized, consistent format, with informative photographs, schematics, and diagrams. It might save many people a lot of search time if it could summarize how components work, how to use them, what the alternatives are, and what the common errors and problems may be.

That is the modest ambition of *The Encyclopedia* of *Electronic Components*.

The Audience

Like any reference work, this one hopes to serve two categories of readers: The informed and the not-yet-informed.

Perhaps you are learning electronics, and you see a part listed in a catalog. It looks interesting, but the catalog doesn't tell you exactly what the part does or how it is commonly used. You need to look it up either by function or by name, but you're not sure where to start. An encyclopedic reference can simplify the fact-finding process, can save you from ordering a part that may be inappropriate, and can tell you how it should be used. Perhaps, instead, you are an electronics engineer or hobbyist, thinking about a new circuit. You remember using a component three or four years ago, but your recollection may not be reliable. You need to refresh your memory with a quick summary—and so, you open the encyclopedia, just to make sure.

Completeness

Obviously, this book cannot include every component that exists. Mouser Electronics claims to have more than 2 million products listed in its online database. *The Encyclopedia of Electronic Components* only has room for a fraction of that number—but still, it can refer you to the primary types. The electronic edition of this book should allow easy insertions and updates. My hope is that it can become an ever-expanding resource.

Acknowledgments

Any reference work draws inspiration from many sources, and this one is no exception. Three were of special importance:

Practical Electronics for Inventors by Paul Scherz (second edition) McGraw-Hill, 2007

Electronic Devices and Circuit Theory by Robert L. Boylestad and Louis Nashelsky (ninth edition) Pearson Education Inc., 2006

The Art of Electronics by Paul Horowitz and Winfield Hill (second edition) Cambridge University Press, 2006 I also made extensive use of information gleaned through Mouser Electronics and Jameco Electronics. And where would any of us be without *Getting Started in Electronics* by Forrest M. Mims III, or *The TTL Cookbook* by Don Lancaster?

In addition, there were individuals who provided special assistance. My editor, Brian Jepson, was immensely helpful in the development of the project. Michael Butler contributed greatly to the early concept and its structure. Josh Gates did resourceful research. My publishers, O'Reilly Media, demonstrated their faith in my work. Kevin Kelly unwittingly influenced me with his legendary interest in "access to tools."

Primary fact checkers were Eric Moberg, Chris Lirakis, Jason George, Roy Rabey, Emre Tuncer, and Patrick Fagg. I am indebted to them for their help. Any remaining errors are, of course, my responsibility.

Lastly I should mention my school friends from decades ago: Hugh Levinson, Patrick Fagg, Graham Rogers, William Edmondson, and John Witty, who helped me to feel that it was okay to be a nerdy kid building my own audio equipment, long before the word "nerd" existed.

-Charles Platt, 2012

1

How to Use This Book

To avoid misunderstandings regarding the purpose and method of this book, here is a quick guide regarding the way in which it has been conceived and organized.

Reference vs. Tutorial

As its title suggests, this is a reference book, not a tutorial. In other words, it does not begin with elementary concepts and build sequentially toward concepts that are more advanced.

You should be able to dip into the text at any point, locate the topic that interests you, learn what you need to know, and then put the book aside. If you choose to read it straight through from beginning to end, you will not find concepts being introduced in a sequential, cumulative manner.

My book *Make:Electronics* follows the tutorial approach. Its range, however, is more circumscribed than that of this encyclopedia, because a tutorial inevitably allocates a lot of space to stepby-step explanations and instructions.

Theory and Practice

This book is oriented toward practicality rather than theory. I am assuming that the reader mostly wants to know how to use electronic components, rather than why they work the way they do. Consequently I have not included any proofs of formulae, any definitions rooted in electrical theory, or any historical background. Units are defined only to the extent that is necessary to avoid confusion.

Many books on electronics theory already exist, if theory is of interest to you.

Organization

The encyclopedia is divided into entries, each entry being devoted to one broad type of component. Two rules determine whether a component has an entry all to itself, or is subsumed into another entry:

- A component merits its own entry if it is (a) widely used or (b) not-so-widely used but has a unique identity and maybe some historical status. A widely used component would be a **bipolar transistor**, while a notso-widely-used component with a unique identity would be a **unijunction transistor**.
- 2. A component does not merit its own entry if it is (a) seldom used or (b) very similar in function to another component that is more widely used. For example, the *rheostat* is sub-

sumed into the **potentiometer** section, while *silicon diode*, *Zener diode*, and *germanium diode* are combined together in the **diode** entry.

Inevitably, these guidelines required judgment calls that in some cases may seem arbitrary. My ultimate decision was based on where I would expect to find a component if I was looking for it myself.

Subject Paths

Entries are not organized alphabetically. Instead they are grouped by subject, in much the same way that books in the nonfiction section of a library are organized by the Dewey Decimal System. This is convenient if you don't know exactly what you are looking for, or if you don't know all the options that may be available to perform a task that you have in mind.

Each primary category is divided into subcategories, and the subcategories are divided into component types. This hierarchy is shown in Figure 1-1. It is also apparent when you look at the top of the first page of each entry, where you will find the path that leads to it. The **capacitor** entry, for instance, is headed with this path:

power > moderation > capacitor

Any classification scheme tends to run into exceptions. You can buy a chip containing a *resistor array*, for instance. Technically, this is an *analog integrated circuit*, but should it really be included with solid-state relays and comparators? A decision was made to put it in the **resistor** section, because this seemed more useful.

Some components have hybrid functions. In Volume 2, in the *integrated circuit* subcategory, we will distinguish between those that are *analog* and those that are *digital*. So where should an **analog-digital converter** be listed? It will be found under *analog*, because that category seems better associated with its primary function, and people may be more likely to look for it there.

Primary Category	Secondary Category	Component Type
power	source	battery
	connection	jumper
		fuse
		pushbutton
		switch
		rotary switch
		rotational encoder
	moderation	relay
		resistor
		potentiometer
		capacitor
		variable capacitor
	conversion	inductor
		AC-AC transformer
		AC-DC power supply
		DC-DC converter
		DC-AC inverter
	regulation	voltage regulator
electro- magnetism	linear output	electromagnet
		solenoid
	rotational output	DC motor
		AC motor
		servo motor
		stepper motor
discrete semi- conductor	single junction	diode
		unijunction transistor
	multi- junction	bipolar transistor
		field-effect transistor

Figure 1-1. The subject-oriented organization of categories and entries in this encyclopedia.

Inclusions and Exclusions

There is also the question of what is, and what is not, a component. Is wire a component? Not for

the purposes of this encyclopedia. How about a **DC-DC converter**? Because converters are now sold in small packages by component suppliers, they have been included as components.

Many similar decisions had to be made on a caseby-case basis. Undoubtedly, some readers will disagree with the outcome, but reconciling all the disagreements would have been impossible. Speaking personally, the best I could do was create a book that is organized in the way that would suit me best if I were using it myself.

Typographical Conventions

Throughout this encyclopedia, the names of components that have their own entries are presented in **bold type.** Other important electronics terms or component names are presented in *italics* where they first appear in any one section.

The names of components, and the categories to which they belong, are all set in lower-case type, except where a term is normally capitalized because it is an acronym or a trademark. *Trimpot*, for instance, is trademarked by Bourns, but *trimmer* is not. **LED** is an acronym, but *cap* (abbreviation for **capacitor**) is not.

Where formulae are used, they are expressed in a format that will be familiar to computer programmers but may be unfamiliar to others. The * (asterisk) symbol is used in place of a multiplication sign, while the / (slash symbol) is used to indicate division. Where pairs of parentheses are nested, the most deeply nested pair identifies the operations that should be performed first.

Volume Contents

Practical considerations relating to book length influenced the decision to divide *The Encyclopedia of Electronic Components* into three volumes. Each volume deals with broad subject areas as follows.

Volume 1

Power, electromagnetism, and discrete semiconductors.

The *power* category includes sources of power and methods to distribute, store, interrupt, and modify power. The *electromagnetism* category includes devices that exert force linearly, and others that create a turning force. *Discrete semiconductors* include the main types of diodes and transistors.

Volume 2

Integrated circuits, light sources, sound sources, heat sources, and high-frequency sources.

Integrated circuits are divided into analog and digital components. Light sources range from incandescent bulbs to LEDs and small display screens; some reflective components, such as liquid-crystal displays and eink, are also included. Sound sources are primarily electromagnetic.

Volume 3

Sensing devices.

The field of sensors has become so extensive, they easily merit a volume to themselves. *Sensing devices* include those that detect light, sound, heat, motion, pressure, gas, humidity, orientation, electricity, proximity, force, and radiation.

At the time of writing, volumes 2 and 3 are still in preparation, but their contents are expected to be as described above.

Safari[®] Books Online

Safari Books Online is an on-demand digital library that lets you easily search over 7,500 technology and creative reference books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online. Read books on your cell phone and mobile devices. Access new titles before they are available for print, and get exclusive access to manuscripts in development and post feedback for the authors.

How to Contact Us

Copy and paste code samples, organize your favorites, download chapters, bookmark key sections, create notes, print out pages, and benefit from tons of other time-saving features.

O'Reilly Media has uploaded this book to the Safari Books Online service. To have full digital access to this book and others on similar topics from O'Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

MAKE 1005 Gravenstein Highway North Sebastopol, CA 95472 800-998-9938 (in the United States or Canada) 707-829-0515 (international or local) 707-829-0104 (fax)

MAKE unites, inspires, informs, and entertains a growing community of resourceful people who undertake amazing projects in their backyards, basements, and garages. MAKE celebrates your right to tweak, hack, and bend any technology to your will. The MAKE audience continues to be a growing culture and community that believes in bettering ourselves, our environment, our educational system—our entire world. This is much more than an audience, it's a worldwide movement that Make is leading—we call it the Maker Movement.

For more information about MAKE, visit us online:

MAKE magazine: http://makezine.com/maga zine/ Maker Faire: http://makerfaire.com

Makezine.com: http://makezine.com/ Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at:

http://oreil.ly/encyc_electronic_comp_v1

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website at *http://www.oreilly.com*.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: *http://twitter.com/oreillyme dia*

Watch us on YouTube: http://www.youtube.com/ oreillymedia