What's a Microcontroller?

Student Guide

VERSION 3.0

Page 2 - What's a Microcontroller?

WARRANTY

Parallax warrants its products against defects in materials and workmanship for a period of 90 days from receipt of
product. If you discover a defect, Parallax will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax will refund the purchase price of the product, excluding shipping/handling costs. This guarantee
is void if the product has been atered or damaged. See the Warranty section above for instructions on returning a
product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is Copyright 2003-2009 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressy prohibited by
Parallax Inc. Duplication for educational use, in whole or in part, is permitted subject to the following conditions: the
material isto be used solely in conjunction with Parallax products, and the user may recover from the student only the
cost of duplication. Check with Parallax for approval prior to duplicating any of our documentation in part or whole
for any other use.

BASIC Stamp, Board of Education, Boe-Bot, Stamps in Class, and SumoBot are registered trademarks of Parallax
Inc. HomeWork Board, PING))), Parallax, the Parallax logo, Propeller, and Spin are trademarks of Parallax Inc. If
you decide to use any of these words on your electronic or printed material, you must state that “(trademark) is a
(registered) trademark of Parallax Inc.” upon the first use of the trademark name. Other brand and product names
herein are trademarks or registered trademarks of their respective holders.

ISBN 9781928982524
3.0.0-09.12.09-HKTP

DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax is also not responsible for any personal damage, including that to life and health, resulting
from use of any of our products. Y ou take full responsibility for your BASIC Stamp application, no matter how life-
threatening it may be.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. Occasionally an errata sheet with
a list of known errors and corrections for a given text will be posted on the related product page at
www.parallax.com. If you find an error, please send an email to editor@parallax.com.

Table of Contents

[(=7 = (ot =P EP PP UOTTPPRRTTN 7
ADOUL VEISION 3.0 .. s 7
AUGIEICE ...ttt et et e e e et e e et e e e e sa b et e e s aab et e e st be e e e et et e e e aneeas 8
SUPPOIT FOTUMS ...ttt ettt e e e e seeeeeeseseesseessennnnennnnrnnnnnnne 8
RESOUICES fOr EQUCALOISvviiiiiiiiie ettt 9
Foreign TranSIatioNSccoooe i 10
ADOUL thE AULNOT ...ttt e e e enbeeeeeae 10
Special CoNIIBULOISeiiiiii e e 10

Chapter 1: Getting Started.......ccccvviiiiiie e 11
How Many Microcontrollers Did YOU USE TOUAY?ccueeeiiiiiiiiiiieeeeiiiiiiiiieee e e s 11
The BASIC Stamp 2 — Your New Microcontroller Moduleccoceeiiiiiiiiincenen. 11
Amazing Inventions with BASIC Stamp Microcontrollersccccccvvvvveeeeiiiiiiiiieneeennn 12
Hardware and SOftWare ..., 15
Activity #1 : Getting the SOfWEAIE...........uviiiii i 15
Activity #2 : Using the Help File for Hardware Setup..........cccccviiviinine e 21
YU] 0] 1= 1 YA P PP PPPPPPPPPPPPPPPPIN 23

Chapter 2 : Lights On — Lights Off ..o 27
1o [To7= 1o] G IR | | £ 27
Making a Light-Emitting Diode (LED) Emit Lightcccooiiiiiiiiiiiiee e 27
Activity #1 : Building and Testing the LED CirCuUit............ccuviieiiiiiiiiiiiieeee e 28
Activity #2 : On/Off Control with the BASIC Stamp.........ccooiiieiiiiieieiieeceieee e 37
Activity #3 : Counting and REPEALING.......ccceuiiiiiiiiiiiee et 43
Activity #4 : Building and Testing a Second LED CirCUuitcccceeviiieeenniieeeiniieeenns 46
Activity #5 : Using Current Direction to Control a Bicolor LEDcccoocveeeniiieeenee. 50
SUIMIMAIY . iiiiiiieeee ettt ettt ettt ettt ettt ettt ettt et e e e e e st e te e e s e e e s e e e e e s s sseeseeesesnnnnnsnnnnnnnns 57

Chapter 3 : Digital Input — PUShBULtONSovviiiiiiiiii e 61
Found on Calculators, Handheld Games, and ApplicancCesccccoveeviiieiniieeeeas 61
Receiving vs. Sending High and LOW Signalscccceeviiiiiiiiienie e 61
Activity #1 : Testing a Pushbutton with an LED Circuit..........ccccccoviiuiiiienienniiiiiieeeeeennn 61
Activity #2 : Reading a Pushbutton with the BASIC Stampcccocccvvvvveeeeeiiiciiieeeee e, 65
Activity #3 : Pushbutton Control of an LED CirCUItccvvviviieiiniiiiiiiiiee e 70
Activity #4 : Two Pushbuttons Controlling Two LED CirCUitS..........ccccvvveeeeeiiiciiieeeeeeenn, 73
Activity #5 : Reaction TimMer TeST.....ccuuiiiiiiie it 79
SUIMIMAIY . iiiiiieeeee ettt ettt ettt ettt ettt ettt ettt eee e e e e st et e e e s e e e se e s e e s s s seeseeesesnnnnnnnnnnnnnns 87

Chapter 4 : Controlling MOTIONuuiiiiiie e 93
MiICroCONErOlEd MOTION.coiiiiii ettt e s e e 93
On/Off Signals and MOtOr MOTIONccociiiiiiiieee et e e e e e e e e e ennes 93

INtrOdUCING ThE SEIVO....cciiiiiiiiiee e e e 93

Page 4 - What's a Microcontroller?

Activity #1 : Connecting and Testing the SErvo.........cccvvvee e 95
Activity #2 : Servo Control TeSt Program.........ccccuuiiiiiiieeeeiiniiiiiiiee e e sssiireeee e e e e 102
Activity #3 : Control Servo Hold TiMecuuviiiiie e 112
Activity #4 : Controlling Position with your COMPULETccuviiieieeiiniiiiiieee e 118
Activity #5 : Converting PoSition t0 MOLIONcoiiiiiiiiiiee e 126
Activity #6 : Pushbutton-Controlled SErvocccovvuviiiiiiiiiiiiiiceee e 129
S0]] = Y/ 134
Chapter 5: Measuring ROTATIONcoiuiiiiiiiiiee e 139
Adjusting Dials and Monitoring Machines............ooocuuiiiiiiiiiiiiiiiiee e 139
The Variable Resistor Under the Dial — a Potentiometer............cccccooveiiiiieeenieen. 139
Activity #1 : Building and Testing the Potentiometer CirCuit..........cccccoovvuviieereeeeninnns 141
Activity #2 : Measuring Resistance by Measuring Timeccccccveeeeeiiiiiiieeee e 143
Activity #3 : Reading the Dial with the BASIC Stampccccvviiireeiiiiiiiiiieee e 150
Activity #4 : Controlling a Servo with a Potentiometer............cccvvvveeeeeiiiciiiieee e 156
SUIMIMABIY Lottt e as 164
Chapter 6 : Digital DiSPIAY........uueieiiiiiiiiiie e 169
The Everyday Digital DiSPlaYcccccoiiiiiiiiiiiee i 169
What's @ 7-Segment DISPIAY?uuviiiiiiiiiiiieiieee it 169
Activity #1 : Building and Testing the 7-Segment LED Displayccccccvveeeeiinnnen. 171
Activity #2 : Controlling the 7-Segment LED DiSplay...........ccccvvieireeiiiiiiiiiieeee e 175
Activity #3 : DISPlaying DigitS.......c.uuueeiiiiiiiiiiiiiee et 178
Activity #4 : Displaying the Position of a Dial............ccccveeiiiiiiiiiiii e 185
SUMMAIY ...ttt e e e e e ettt e e e et et et b e e e e e e eatba e e e e e eeatana e eaeeeeeennnaaeas 191
Chapter 7 : Measuring Light........ooiiii e 195
Devices that Contain Light SENSOISc..ooiiiiiiiiiiieee e 195
Introducing the PhOtOtranSISTON.uiciiiiiiiiieie e e e e e e e nnes 198
Activity #1 : Building and Testing the Light Meter..........cccccvviiiiiiiii e 199
Activity #2 : Tracking LIGht EVENES........covviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 202
Activity #3 : Graphing Light Measurements (Optional)ccccvveeeeeeiiiiiieeee e 211
Activity #4 : SImple LIGht MELETooiiiiiieee e 214
Activity #5 : On/Off PhototransiStor OULPUL..........coviiiviiiiiiee et 225
Activity #6 : For Fun—Measure Outdoor Light with an LEDccccooiiiiiieeeeinnnnnns 235
SUIMIMABIY Lottt e as 239
Chapter 8 : Frequency and SOUNuuuiiiiiiiiiiiiiiie e 245
Your Day and EIeCtroniC BEEPS........ccoo i 245
Microcontrollers, Speakers, and On/Off SIgNalS.........ccccvviviiiiiiiiiiiee e 245
Activity #1 : Building and Testing the Speakercveiiiiiii e 246
ACLIVItY #2 : ACHON SOUNUS ...ccoiiiiiiiiiie ettt e e e e e s s s e ee e e e s s annnes 248
Activity #3 : Musical Notes and SIimple SONGS........oocuvviiiiieiiiiiee e 253

Activity #4 : MICroCONTIOHEr MUSICceieeiiiiiiiiiieee et e e 258

Activity #5 : RINgtones With RTTTL......uuuiiiiiiiiiiiiiiiiiee e 271

SUIMIMABIY ittt ettt ettt ettt ettt et e e e e e ettt s et s ettt et st e e st e ee st e eeeenennnnnnnes 283
Chapter 9 : Electronic Building BIOCKSccccevvieeiiiiiiiiieece e 287
Those Little BIACK ChiPSuuuiiiiiiiiiiiiiiiieee ettt e e e e e e raneaaa e 287
Expand your Projects with Peripheral Integrated CirCUItS..........cccccovviiiviieeeeenniiiiiieen. 288
Activity #1 : Control Current Flow with @ Transistor...........ccccvveeee i, 289
Activity #2 : Introducing the Digital Potentiometerccccuvveeiieiiiiiiiiieeee e, 292
SUIMIMIBIY <.ttt ettt e e e e oo et et e e e e e e s sk b bbbt et e e e e s s aan bbb e et e e e e s aannbbbneeeaeeeaannns 302
Chapter 10 : Prototyping Your OWn INVENLtIONSccoviiiieiiiiiieciiece e 307
Apply what You Know to Other Parts and COMPONENtScceevviiiiiiiiieeeeiiiiiiiieeeenn. 307
Prototyping a MiICro SECUNtY SYSIEMuuiiiiieiiiiiiiiiee et 308
Activity #1 : From Idea to Proof of CONCEPL.......c.euviiiiiiiiiiiiiiiieee e 308
Activity #2 : Build and Test Each Circuit Individuallycccccceeiiiiiiiiiieiee i, 311
Activity #3 : Organize Coding Tasks Into Small Pieces..........ccccccvviiiiiiieiieiniiiiiieenn. 313
Activity #4 : DOcUmMENt YOUI COUE!.......uuviiiiiieiiiiieiee e 317
Activity #5 : Give Your App Amazing New Functionality..........ccccccoovviviiiereeniniiiiineenn. 319
Activity #6 : How to Jump Over Design HUrdIEScooviiiiiiiiiie e 320
ACHIVILY #7 - WHAUS NEXE? o e 327
Y0]] = LY PRSPPI 331
CoMPIEte Kit OPIONSvviiiiiiiiiiiiiie et e e e e s s bbb ree e e e e s s aaanes 334
Bonus Activity: Ohm’s Law, Voltage, and Current...........ccccoeeeieeeeeee 336

Page 6 - What's a Microcontroller?

Preface - Page 7

Preface

This text answers the question “What's a microcontroller?’ by showing students how
they can design their own customized, intelligent inventions with Parallax Inc.’s BASIC
Stamp® microcontroller module. The activities in this text incorporate a variety of fun
and interesting experiments designed to appeal to a student’s imagination by using
motion, light, sound, and tactile feedback to explore new concepts. These activities
introduce students to a variety of basic principlesin the fields of computer programming,
electricity and electronics, mathematics, and physics. Many of the activities facilitate
hands-on presentation of design practices used by engineers and technicians in the
creation of modern machines and appliances, while using common inexpensive parts.

What's a Microcontroller? is the gateway text in to the Stamps in Class program. To see
the full series, which includes such titles as Robotics with the Boe-Bot, Smart Sensors and
Applications, Process Control, and more, visit www.parallax.com/Education.

ABOUT VERSION 3.0

Thisisthefirst revision of thistitle since 2004. The major changesinclude:

e Replacement of the cadmium sulfide photoresistor with an RoHS-compliant light
sensor of atype that will be more common in product design going forward. This
required rewrites of Chapters 7 and 10, and adjustments in other chapters.

e Improved activities and illustrations of servo control in Chapter 4.

e Moving the “Setup and Testing” portion of Chapter 1 and the Hardware and
Troubleshooting appendices to the Help file. This was done to support both
serial and USB hardware connections, and other programming connections as
our products and technologies continue to expand. This aso allows for the
dynamic maintenance of the Hardware and Troubleshooting material.

e Remova of references to the Parallax CD, which has been removed from our
kits, reducing waste and ensuring that customers download the most recent
BASIC Stamp Editor software and USB drivers available for their operating
systems.

In addition, small errata items noted in the previous version (2.2) have been corrected.
The material still aims for the same goals, and al of the same programming concepts and
commands are covered, along with a few new ones. Finaly, page numbers have been
changed so the PDF page and the physical page numbers are the same, for ease of use.

Page 8 - What's a Microcontroller?

AUDIENCE

This text is designed to be an entry point to technology literacy, and an easy learning
curve for embedded programming and device design. The text is organized so that it can
be used by the widest possible variety of students as well as independent learners.
Middle-school students can try the examples in this text in a guided tour fashion by
simply following the check-marked instructions with instructor supervision. At the other
end of the spectrum, pre-engineering students’ comprehension and problem-solving skills
can be tested with the questions, exercises and projects (with solutions) in each chapter
summary. The independent learner can work at his or her own pace, and obtain
assistance through the Stamps in Class forum cited below.

SUPPORT FORUMS

Parallax maintains free, moderated forums for our customers, covering a variety of
subjects:

e Propeller Chip: for dl discussions related to the multicore Propeller
microcontroller and development tools product line.

o BASIC Stamp: Project ideas, support, and related topics for all of the Parallax
BASIC Stamp models.

e SX Microcontrollers: Technical assistance for all SX chip products, including
the SX/B Compiler, and SX-Key Tool.

e Sensors. Discussion relating to Parallax’s wide array of sensors, and interfacing
sensors with Parallax microcontrollers.

e Stampsin Class. Students, teachers, and customers discuss Parallax’s education
materials and school projects here.

e Robotics: For al Parallax robots and custom robots built with Parallax
processors and sensors.

e The Sandbox: Topics related to the use of Parallax products but not specific to
the other forums.

o Completed Projects: Post your completed projects here, made from Parallax
products.

e HYDRA System and Propeller Game Development: Discussion and technical
assistance for the HYDRA Game Development Kit and related Propeller
microcontroller programming.

Preface - Page 9

RESOURCES FOR EDUCATORS

We have avariety of resources for this text designed to support educators.

Stamps in Class “Mini Projects”

To supplement our texts, we provide a bank of projects for the classroom. Designed to
engage students, each “Mini Project” contains full source code, “How it Works’
explanations, schematics, and wiring diagrams or photos for a device a student might like
to use. Many projects feature an introductory video, to promote self-study in those
students most interested in electronics and programming. Just follow the Stamps in Class
“Mini Projects’ link at www.parallax.com/Education.

Educators Courses

These hands-on, intensive 1 or 2 day courses for instructors are taught by Parallax
engineers or experienced teachers who are using Parallax educational materials in their
classrooms. Visit www.parallax.com/Education — Educators Courses for details.

Parallax Educator’'s Forum

In this free, private forum, educators can ask questions and share their experiences with
using Parallax products in their classrooms. Supplemental Education Materials are also
posted here. To enroll, email education@parallax.com for instructions; proof of status as
an educator will be required.

Supplemental Educational Materials

Select Parallax educational texts have an unpublished set of questions and solutions
posted in our Parallax Educators Forum; we invite educators to copy and modify this
material at will for the quick preparation of homework, quizzes, and tests. PowerPoint
presentations and test materials prepared by other educators may be posted here as well.

Copyright Permissions for Educational Use

No site license is required for the download, duplication and installation of Parallax
software for educational use with Parallax products on as many school or home
computers as needed. Our Stamps in Class texts and BASIC Stamp Manual are al
available as free PDF downloads, and may be duplicated as long as it is for educational
use exclusively with Parallax products and the student is charged no more than the cost of
duplication. The PDF files are not locked, enabling selection of texts and images to
prepare handouts, transparencies, or PowerPoint presentations.

Page 10 - What's a Microcontroller?

FOREIGN TRANSLATIONS

Many of our Stamps in Class texts have been translated into other languages; these texts
are free downloads and subject to the same Copyright Permissions for Educational Use as
our original versions. To see the full list, click on the Tutorials & Trandations link at
www.parallax.com/Education. These were prepared in coordination with the Parallax
Volunteer Trandator program. If you are interested in participating in our Volunteer
Translator program, email trand ations@parallax.com.

ABOUT THE AUTHOR

Andy Lindsay joined Parallax Inc. in 1999, and has since authored eight books and
numerous articles and product documents for the company. The last three versions of
What's a Microcontroller? were designed and updated based on observations and
educator feedback that Andy collected while traveling the nation and abroad teaching
Parallax Educator Courses and events. Andy studied Electrical and Electronic
Engineering at California State University, Sacramento, and is a contributing author to
several papers that address the topic of microcontrollers in pre-engineering curricula.
When he's not writing educational material, Andy does product and application
engineering for Parallax.

SPECIAL CONTRIBUTORS

The Parallax team assembled to prepare this edition includes. excellent department
leadership by Aristides Alvarez, lesson design and technical writing by Andy Lindsay;
cover art by Jen Jacobs; graphic illustrations by Rich Allred and Andy Lindsay; technical
review by Jessica Uelmen; technical nitpicking, editing, and layout by Stephanie Lindsay.
Special thanks go to Ken Gracey, founder of the Stamps in Class program, and to Tracy
Allen and Phil Pilgrim for consulting in the selection of the light sensor used in this
version to replace the cadmium-sulfide photoresistor.

Many people contributed to the development of What's a Microcontroller? and assisted
with previous editions, to whom we are still grateful. Parallax wishes to again thank
Robert Ang for his thorough review and detailed input, and the late veteran engineer and
esteemed customer Sid Weaver for hisinsightful review. Thanks also to Stamps in Class
authors Tracy Allen (Applied Sensors) and Martin Hebel (Process Control) for their
review and recommendations. Andy Lindsay wishes to thank his father Marshall and
brother-in-law Kubilay for their expert musical advice and suggestions.

Getting Started - Page 11

Chapter 1: Getting Started

HOW MANY MICROCONTROLLERS DID YOU USE TODAY?

A microcontroller is a kind of miniature computer that you can find in al kinds of
devices. Some examples of common, every-day products that have microcontrollers
built-in are shown in Figure 1-1. If it has buttons and a digital display, chances are it also
has a programmable microcontroller brain.

Figure 1-1

Everyday Examples of
Devices that Contain
Microcontrollers

Try making a list and counting how many devices with microcontrollers you use in a
typical day. Here are some examples: if your clock radio goes off, and you hit the snooze
button a few times in the morning, the first thing you do in your day is interact with a
microcontroller. Heating up some food in the microwave oven and making a call on a
cell phone aso involve interacting with microcontrollers. That's just the beginning.
Here are afew more examples: turning on the television with a handheld remote, playing
a handheld game, and using a calculator. All those devices have microcontrollers inside
them that interact with you.

THE BASIC STAMP 2 — YOUR NEW MICROCONTROLLER MODULE

Parallax Inc.'s BASIC Stamp® 2 module shown in Figure 1-2 has a microcontroller built
onto it; it is the largest black chip. The rest of the components on the BASIC Stamp
module are also found in consumer appliances you use every day. All together, they are
correctly called an embedded computer system. This name is almost always shortened to
just “embedded system.” Frequently, such modules are commonly just called
“microcontrollers.”

The activities in this text will guide you through building circuits similar to the ones
found in consumer appliances and high-tech gadgets. You will also write computer
programs that the BASIC Stamp module will run. These programs will make the BASIC
Stamp module monitor and control these circuits so that they perform useful functions.

Page 12 - What's a Microcontroller?

Figure 1-2
BASIC Stamp 2
Microcontroller
Module

In this text, “BASIC Stamp” refers to the BASIC Stamp® 2 microcontroller module.
Designed and manufactured by Parallax Incorporated, this module’s name is commonly
abbreviated BS2, and it's the first in the series of modules shown in Figure 1-3. Each of the
other modules is slightly different, featuring higher speed, more memory, additional
functionality, or some combination of these extra features. To learn more, follow the
“Compare BASIC Stamp Modules” link at www.parallax.com/basicstamp.

o = T = T P T gagigEy omoemn Figure 1-3
MR EMREE e HEMgae) mme; BASIC Stamp 2
SRS GHIGEE DGR R G B!\ dols [eft to
Dl HLGJEEH ol O e ; :

WY (L W N .. right: BS2, BS2e,
E r 3 5 AhwmEs BS2

S e B sx, BS2p24,

BS2p40, BS2pe,
BS2px

AMAZING INVENTIONS WITH BASIC STAMP MICROCONTROLLERS

Consumer appliances aren’t the only things that contain microcontrollers. Robots,
machinery, aerospace designs and other high-tech devices are aso built with
microcontrollers. Let's take a look at some examples that were created with BASIC
Stamp modules.

Robots have been designed to do everything from helping students learn more about
microcontrollers, to mowing the lawn, to solving complex mechanical problems. Figure
1-4 shows two example robots. On each of these robots, students use the BASIC Stamp 2
to read sensors, control motors, and communicate with other computers. The robot on
the left is Parallax Inc.’s Boe-Bot® robot. The projects in the Robotics with the Boe-Bot
text can be tackled using the Boe-Bot after you've worked through the activities in this
text. The one on theright is called an underwater ROV (remotely operated vehicle) and
it was constructed and tested at a MATE (Marine Advanced Technology Education)

Getting Started - Page 13

Summer Teachers Institute. Operators view a TV displaying what the ROV sees through
a video camera and control it with a combination of hand controls and a laptop. Its
BASIC Stamp measures depth and temperature, controls the vertical thrust motor, and
exchanges information with the laptop. MATE coordinates regional and internationa
ROV competitions for students at levels ranging from middle school to university.

Figure 1-4
Educational Robots

Boe-Bot robot (left)
ROV at MATE Summer
Teachers Institute (right,
www.marinetech.org)

Other robots solve complex problems, such as the autonomous remote flight robot shown
at the left of Figure 1-5. This robot was built and tested by mechanical engineering
students at the University of California, Irvine. They used a BASIC Stamp module to
help it communicate with a satellite global positioning system (GPS) so that the robot
could know its position and atitude. The BASIC Stamp also read level sensors and
controlled the motor settings to keep the robot flying properly. The mechanical millipede
robot on the right of Figure 1-5 was developed by a professor at Nanyang Technical
University, Singapore. It has more than 50 BASIC Stamp modules on board, and they all
communicate with each other in an elaborate network that help control and orchestrate
the motion of each set of legs. Robots like this not only help us better understand designs
in nature, but they may eventually be used to explore remote locations, or even other
planets.

Figure 1-5
Research Robots that
Contain Microcontrollers

Autonomous flying robot
at UC Irvine (left) and
Millipede Project at
Nanyang University
(right)

Page 14 - What's a Microcontroller?

With the help of microcontrollers, robots can also take on day-to-day tasks, such as
mowing the lawn. The BASIC Stamp module inside the robotic lawn mower shown in
Figure 1-6 helps it stay inside the boundaries of the lawn, and it aso reads sensors that
detect obstacles and controls the motors that make it move.

Figure 1-6
BASIC Stamp 2
Microcontroller Module

Microcontrollers are also used in scientific, high technology, and aerospace projects.
The weather station shown on the left of Figure 1-7 is used to collect environmenta data
related to cora reef decay. The BASIC Stamp module inside it gathers this data from a
variety of sensors and stores it for later retrieval by scientists. The submarine in the
center is an undersea exploration vehicle, and its thrusters, cameras and lights are all
controlled by BASIC Stamp microcontrollers. The rocket shown on the right was part of
a competition to launch a privately owned rocket into space. Nobody won the
competition, but this rocket almost made it! The BASIC Stamp controlled just about
every aspect of the launch sequence.

Figure 1-7
Environmental and Aerospace
Microcontroller Examples

Ecological data collection by
EME Systems (left), undersea
research by Harbor Branch
Institute (center), and JP
Aerospace test launch (right)

From common household appliances all the way through scientific and aerospace
applications, the microcontroller basics you will need to get started on projects like these
are introduced here. By working through the activities in this book, you will get to

Getting Started - Page 15

experiment with and learn how to use a variety of building blocks found in all these high-
tech inventions. You will build circuits for displays, sensors, and motion controllers.
You will learn how to connect these circuits to the BASIC Stamp 2 module, and then
write computer programs that make it control displays, collect data from the sensors, and
control motion. Along the way, you will learn many important electronic and computer
programming concepts and techniques. By the time you' re done, you might find yourself
well on the way to inventing a device of your own design.

HARDWARE AND SOFTWARE

Getting started with BASIC Stamp microcontroller modules is similar to getting started
with abrand-new PC or laptop. The first things that most people have to do is take it out
of the box, plug it in, install and test some software, and maybe even write some software
of their own using a programming language. If this is your first time using a BASIC
Stamp module, you will be doing all these same activities. If you are in a class, your
hardware may aready be all set up for you. If this is the case, your teacher may have
other instructions. If not, this chapter will take you through al the steps of getting your
new BASIC Stamp microcontroller up and running.

ACTIVITY #1: GETTING THE SOFTWARE

The BASIC Stamp Editor (version 2.5 or higher) is the software you will use in most of
the activities and projects in this text. Y ou will use this software to write programs that
the BASIC Stamp module will run. You can also use this software to display messages
sent by the BASIC Stamp that help you understand what it senses.

Computer System Requirements

You will need a personal computer to run the BASIC Stamp Editor software. Your
computer will need to have the following features:

e Microsoft Windows 2000 or newer operating system
e Anavailable serial or USB port
e Internet access and an Internet browser program

Downloading the Software from the Internet

It is important to always use the latest version of the BASIC Stamp Editor software if
possible. Thefirst step isto go to the Parallax web site and download the software.

Page 16 - What's a Microcontroller?

v Using aweb browser, go to www.parallax.com/basi cstampsoftware (Figure 1-8).

Figure 1-8

The BASIC Stamp Editor
software page at
www.parallax.com/
basicstampsoftware

This is the place to
download the latest
version of the software.

v" Click on the Click Here to Download button to download the latest version of the
BASIC Stamp Windows Editor software (Figure 1-9).

Figure 1-9

The Download button on
the BASIC Stamp Editor
Software page.

Click on the button to
start the download.

Getting Started - Page 17

v A File Download window will open, asking you if you want to run or to save this
file (Figure 1-10). Click on the Save button.

Figure 1-10
File Download Window

Click Save, then save the
file to your computer.

v" Usethe Save in field to choose a place on your computer to save the installer file,
then click the Save button (Figure 1-11).

Figure 1-11
Save As Window

Choose a place to save
the software installer on
your computer, then click
Save.

Page 18 - What's a Microcontroller?

v" When you see “Download Complete,” click the Run button (Figure 1-12.)

v" Follow the prompts that appear. You may see messages from your operating
system asking you to verify that you wish to continue with installation. Always
agree that you want to continue.

Figure 1-12
Download Complete
Message

Click Run.
If prompted, always

confirm you want to
continue.

v' The BASIC Stamp Editor Installer window will open (Figure 1-13). Click Next
and follow the prompts, accepting all defaults.

Figure 1-13
BASIC Stamp Editor
Installer Window

Click Next.

Getting Started - Page 19

v" IMPORTANT: When the “Install USB Driver" message appears (Figure 1-14),
leave the checkmark in place for the Automatically install/lupdate driver
(recommended) box, and then click Next.

Figure 1-14
Install USB Driver
Message

Leave the box
checked, and click
Next.

v' When the “Ready to Install the Program” message appears (Figure 1-15), click
the Install button. A progress bar may appear, and this could take a few minutes.

Figure 1-15

Ready to Install the
Program

Click Install to
continue.

Page 20 - What's a Microcontroller?

At this point, an additional window may appear behind the current window while the
USB drivers are updating. This window will eventually close on its own when the driver
installation is complete. If you don't see this window, it does not indicate a problem.

About USB drivers. The USB drivers that install with the BASIC Stamp Windows Editor
installer by default are necessary to use any Parallax hardware connected to your
computer's USB port. VCP stands for Virtual COM Port, and it will allow your computer’s
USB port to look and be treated as a standard RS232 serial port by Parallax hardware.

USB Drivers for Different Operating Systems The USB VCP drivers included in the
BASIC Stamp Windows Editor software are for certain Windows operating systems only. For
more information, visit www.parallax.com/usbdrivers.

v" When the window tells you that installation has been successfully completed,
click Finish (Figure 1-16).

Figure 1-16

BASIC Stamp
Editor Installation
Completed

Click Finish.

Getting Started - Page 21

ACTIVITY #2: USING THE HELP FILE FOR HARDWARE SETUP

In this section you will run the BASIC Stamp Editor’ s Help file. Within the Help file, you
will learn about the different BASIC Stamp programming boards available for the Stamps
in Class program, and determine which one you are using. Then, you will follow the steps
in the Help to connect your hardware to your computer and test your BASIC Stamp
programming system.

Running the BASIC Stamp Editor for the first time

v If you see the BASIC Stamp Editor icon on your computer desktop, double-click
it (Figure 1-17).

v' Or, click on your computer's Start menu, then choose All Programs »
Parallax Inc » BASIC Stamp Editor 2.5 » BASIC Stamp Editor 2.5.

Figure 1-17
BASIC Stamp Editor
Desktop Icon

Double-click to launch
the program.

v" On the BASIC Stamp Editor’s toolbar, click Help on the toolbar (Figure 1-18)
and then select BASIC Stamp Help... from the drop-down menu.

Figure 1-18
Opening the Help Menu

Click Help, then choose
BASIC Stamp Help from
the drop-down menu.

Page 22 - What's a Microcontroller?

Figure 1-19: BASIC Stamp Editor Help

v Click on the Getting Started with Stamps in Class link on the bottom of the
Welcome page, as shown in the lower right corner of Figure 1-19.

Getting Started - Page 23

Following the Directions in the Help File

From here, you will follow the directionsin the Help file to compl ete these tasks:

| dentify which BASIC Stamp development board you are using
Connect your development board to your computer

Test your programming connection

Troubleshoot your programming connection, if necessary
Write your first PBASIC program for your BASIC Stamp
Power down your hardware when you are done

When you have completed the activities in the Help file, return to this book and continue
with the Summary below before moving on to Chapter 2.

What do I do if | get stuck?
If you run into problems while following the directions in this book or in the Help file, you
have many options to obtain free Technical Support:
D . Forums: sign up and post a message in our free, moderated Stamps in Class
\é/’ forum at forums.parallax.com.
. Email: send an email to support@parallax.com.
e Telephone: In the Continental United States, call toll-free to 888-99-STAMP
(888-997-8267). All others call (916) 624-8333.
. More resources: Visit www.parallax.com/support.
SUMMARY

This chapter guided you through the following:

An introduction to some devices that contain microcontrollers

An introduction to the BASIC Stamp module

A tour of some interesting inventions made with BASIC Stamp modules

Where to get the free BASIC Stamp Editor software you will usein just about all
of the experimentsin this text

How to install the BASIC Stamp Editor software

How to use the BASIC Stamp Editor’ s Help and the BASIC Stamp Manual

An introduction to the BASIC Stamp module, Board of Education, and
HomeWork Board

How to set up your BASIC Stamp hardware

How to test your software and hardware

Page 24 - What's a Microcontroller?

e How to writeand run aPBASIC program

e Using the DEBUG and END commands

e Using the CR control character and DEC formatter

e A brief introduction to ASCII code

¢ How to disconnect the power to your Board of Education or HomeWork Board
when you're done

Questions

1. What isamicrocontroller?

2. Isthe BASIC Stamp module a microcontroller, or doesit contain one?

3. What clues would you look for to figure out whether or not an appliance like a
clock radio or a cell phone contains a microcontroller?

4. What does an apostrophe at the beginning of a line of PBASIC program code
signify?

5. What PBASIC commands did you learn in this chapter?

6. Let's say you want to take a break from your BASIC Stamp project to go get a
snack, or maybe you want to take a longer break and return to the project in a
couple days. What should you always do before you take your break?

Exercises
1. Explain what the asterisk does in this command:
DEBUG DEC 7 * 11
2. Guesswhat the Debug Termina would display if you ran this command:
DEBUG DEC 7 + 11
3. There is a problem with these two commands. When you run the code, the

numbers they display are stuck together so that it looks like one large number
instead of two small ones. Modify these two commands so that the answers
appear on different linesin the Debug Terminal.

DEBUG DEC 7 * 11
DEBUG DEC 7 + 11

Getting Started - Page 25

Projects

1. UseDEBUGto display the solution to the math problem: 1 +2 + 3 + 4.

2. Save FirstProgramY ourTurn.bs2 under another name. If you were to place the
DEBUG command shown below on the line just before the END command in the
program, what other lines could you delete and still have it work the same?
Modify the copy of the program to test your hypothesis (your prediction of what
will happen).

DEBUG "What's 7 X 11?", CR, "The answer is: ", DEC 7 * 11
Solutions

Q1. A microcontroller is akind of miniature computer found in electronic products.

Q2. The BASIC Stamp module contains a microcontroller chip.

Q3. If the appliance has buttons and a digital display, these are good clues that it has
amicrocontroller inside.

Q4. A comment.

Q5. DEBUG and END

Q6. Disconnect the power from the BASIC Stamp project.

E1. It multiplies the two operands 7 and 11, resulting in a product of 77. The asterisk
isthe multiply operator.

E2. The Debug Terminal would display: 18

E3. To fix the problem, add a carriage return using the CR control character and a
comma.

DEBUG DEC 7 * 11
DEBUG CR, DEC 7 + 11
P1. Hereisaprogram to display a solution to the math problem: 1+2+3+4.

' What's a Mcrocontroller - ChO1Prj0l1_Add1234. bs2
' {$STAMP BS2}
' {$PBASI C 2. 5}

DEBUG "What's 1+2+3+4°?"
DEBUG CR, "The answer is: "
DEBUG DEC 1+2+3+4

END

Page 26 - What's a Microcontroller?

P2. The last three DEBUG lines can be deleted. An additional CR is needed after the
"Hello" message.

What's a Mcrocontroller - ChO1Prj02_ FirstProgramyour Turn. bs2
' BASIC Stanp sends nessage to Debug Term nal .

{ $STAVP BS2}
{$PBASI C 2. 5}

DEBUG "Hello, it's ne, your BASIC Stamp!", CR
DEBUG "What's 7 X 11?", CR, "The answer is: ", DEC 7 * 11

END

The output from the Debug Terminal is:

Hello, it's me, your BASIC Stanp!
What's 7 X 117
The answer is: 77

This output is the same as it was with the previous code. Thisis an example of
using commas to output a lot of information, using only one DEBUG command
with multiple elementsinit.

Lights On — Lights Off - Page 27

Chapter 2: Lights On — Lights Off

INDICATOR LIGHTS

Indicator lights are so common that most people tend not to give them much thought.
Figure 2-1 shows three indicator lights on a laser printer. Depending on which light is
on, the person using the printer knows if it is running properly or needs attention. Here
are just a few examples of devices with indicator lights: car stereos, televisions, DVD
players, disk drives, printers, and alarm system control panels.

Figure 2-1
Indicator Lights

Indicator lights are
common on many
everyday devices.

Turning an indicator light on and off is a simple matter of connecting and disconnecting
it from a power source. In some cases, the indicator light is connected directly to the
battery or power supply, like the power indicator light on the Board of Education. Other
indicator lights are switched on and off by a microcontroller inside the device. These are
usually statusindicator lights that tell you what the device is up to.

MAKING A LIGHT-EMITTING DIODE (LED) EMIT LIGHT

Most of the indicator lights you see on devices are called light emitting diodes. Y ou will
often see a light emitting diode referred to in books and circuit diagrams by the letters
LED. The name is usually pronounced as three letters: “L-E-D.” You can build an LED
circuit and connect power to it, and the LED emits light. Y ou can disconnect the power
from an LED circuit, and the LED stops emitting light.

Page 28 - What's a Microcontroller?

An LED circuit can be connected to the BASIC Stamp, and the BASIC Stamp can be
programmed to connect and disconnect the LED circuit's power. This is much easier
than manually changing the circuit’s wiring or connecting and disconnecting the battery.
The BASIC Stamp can also be programmed to do the following:

Turn an LED circuit on and off at different rates

Turn an LED circuit on and off a certain number of times
Control more than one LED circuit

Control the color of abicolor (two color) LED circuit

ACTIVITY #1: BUILDING AND TESTING THE LED CIRCUIT

It's important to test components individually before building them into a larger system.
This activity focuses on building and testing two different LED circuits. The first circuit
is the one that makes the LED emit light. The second circuit is the one that makes it not
emit light. In the activity that comes after this one, you will build the LED circuit into a
larger system by connecting it to the BASIC Stamp. You will then write programs that
make the BASIC Stamp cause the LED to emit light, then not emit light. By first testing
each LED circuit to make sure it works, you can be more confident that it will work when
you connect it to aBASIC Stamp.

Introducing the Resistor

A resistor is a component that “resists’ the flow of electricity. This flow of electricity is
called current. Each resistor has a value that tells how strongly it resists current flow.
This resistance value is called the ohm, and the sign for the ohm is the Greek letter
omega: Q. Later in this book you will see the symbol kQ, meaning kilo-ohm, or one
thousand ohms. The resistor you will be working with in this activity is the 470 Q resistor
shown in Figure 2-2. The resistor has two wires (called leads and pronounced “leeds”),
one coming out of each end. Thereis a ceramic case between the two leads, and it's the
part that resists current flow. Most circuit diagrams that show resistors use the jagged
line symbol on the left to tell the person building the circuit that he or she must use a 470
Q resistor. Thisis called a schematic symbol. The drawing on the right is a part drawing
used in some beginner level Stampsin Class texts to help you identify the resistor in your
kit, and where to place it when you build the circuit.

—AM—
470 Q

Violet

Lights On — Lights Off - Page 29

Gold

v Silver Figure 2-2

OCI’:{\ Bk 470 Q Resistor Part Drawing

Brown Schematic symbol (left) and Part
Drawing (right)

Resistors like the ones we are using in this activity have colored stripes that tell you what
their resistance values are. There is a different color combination for each resistance
value. For example, the color code for the 470 Q resistor is yellow-violet-brown.

There may be afourth stripe that indicates the resistor’ s tolerance. Tolerance is measured
in percent, and it tells how far off the part’s true resistance might be from the labeled
resistance. The fourth stripe could be gold (5%), silver (10%) or no stripe (20%). For the
activitiesin this book, aresistor’s tolerance does not matter, but its value does.

Each color bar that tells you the resistor’s value corresponds to a digit, and these
colorg/digits are listed in Table 2-1. Figure 2-3 shows how to use each color bar with the
table to determine the value of aresistor.

Table 2-1

Resistor Color
Code Values

Digit

Color

o

Black

Brown

Red

Orange

Yellow

Green

Blue

Violet

Gray

© (0[N || |W|IN |-

White

Tolerance
¢_Code
Figure 2-3
/ \ Resitor Color
First Digit Number of Zeros ~ Codes

Second Digit

Page 30 - What's a Microcontroller?

Here is an example that shows how Table 2-1 and Figure 2-3 can be used to figure out a
resistor value by proving that yellow-violet-brown isreally 470 Q:

o Thefirst stripeis yellow, which means the leftmost digit isa 4.

e The second stripeis violet, which means the next digitisa7.

e Thethird stripe is brown. Since brownis 1, it means add one zero to the right of
the first two digits.

Yellow-Violet-Brown = 4-7-0 = 470 Q.

Introducing the LED

A diode is a one-way current valve, and a light emitting diode (LED) emits light when
current passes through it. Unlike the color codes on a resistor, the color of the LED
usualy just tells you what color it will glow when current passes through it. The
important markings on an LED are contained in its shape. Since it is a one-way current
valve, make sure to connect it the right way in your circuit or it won’t work as intended.

Figure 2-4 shows an LED’s schematic symbol and part drawing. An LED has two
terminals. One is called the anode, and the other is called the cathode. In this activity,
you will have to build the LED into a circuit, paying attention to make sure the leads
connected to the anode and cathode are connected to the circuit properly. On the part
drawing, the anode lead is labeled with the plus-sign (+). On the schematic symbol, the
anode is the wide part of the triangle. In the part drawing, the cathode lead is the
unlabeled pin, and on the schematic symbol, the cathode is the line across the point of the
triangle.

Figure 2-4
LED Part Drawing and Schematic
Symbol

Part Drawing (above) and schematic
symbol (below).

+‘ The LED'’s part drawings in later
pictures will have a + next to the
—N— anode leg.

AN

LED

Lights On — Lights Off - Page 31

When you start building your circuit, make sure to check it against the schematic symbol
and part drawing. For the part drawing, note that the LED’s leads are different lengths.
The longer lead is connected to the LED’s anode, and the shorter lead is connected to its
cathode. Also, if you look closely at the LED’ s plastic case, it's mostly round, but there
is a small flat spot right near the shorter lead that that tells you it's the cathode. This
really comesin handy if the leads have been clipped to the same length.

LED Test Circuit Parts

(1) LED — Green
(1) Resistor —470 Q (yellow-violet-brown)

Identifying the parts: In addition to the part drawings in Figure 2-2 and Figure 2-4, you can
use the photo on the last page of the book to help identify the parts in the kit needed for this
and all other activities.

Building the LED Test Circuit

You will build a circuit by plugging the LED and resistor leads into small holes called
sockets on the prototyping area shown in Figure 2-5. This prototyping area has black
sockets along the top and aong the left. The black sockets along the top have labels
above them: Vdd (+5 V), Vin (the unregulated voltage straight from your battery or
power supply), and Vss (0 V, aso called ground). These are called the power terminals,
and they will be used to supply your circuits with electricity. The black sockets on the
left have labels like PO, P1, up through P15. These are sockets that you can use to
connect your circuit to the BASIC Stamp modul €’ s input/output pins.

vdd Vin Vss
X3

pisf] | OO0 OO
pLaf | CFOFOO0 OO0
piaf | COOOO[| OO0 Fi 25
piof | DOC00| (OO0 lgure =~

pufy| GO0 OO Prototyping Area
P10

P9 ;
ps [| B0 | OO Power terminals (black sockets along
Eg O] | e O top), I/O pir_1 access (black sockets

P5 OOo00| (OO0 along the side), and solderless

P4 B | | | oo breadboard (white sockets)

P2
Pl | OO0 CHOHOROO

Page 32 - What's a Microcontroller?

Input/output pins are usually called 1/O pins, and after connecting your circuit to one or
more of these I/O pins, you can program your BASIC Stamp to monitor the circuit (input) or
send on or off signals to the circuit (output). You will try this in the next activity.

The white board with lots of holesin it is called a solderless breadboard. Y ou will use
this breadboard to connect components to each other and build circuits. This breadboard
has 17 rows of sockets. In each row, there are two five-socket groups separated by a
trench in the middle. All the sockets in a 5-socket group are connected together. So, if
you plug two wires into the same 5-socket group, they will make electrical contact. Two
wires in the same row but on opposite sides of the center trench will not be connected.
Many devices are designed to be plugged in over this trench, such as the pushbutton we
will use in Chapter 3.

More about breadboarding: To learn about the history of breaboards, how modern
breadboards are constructed, and how to use them, see the video resources at
www.parallax.com/go/WAM.

Figure 2-6 shows a circuit schematic, and a picture of how that circuit will look wheniitis
built on the prototyping area. Each 5-socket group can connect up to five leads, or wires,
to each other. For this circuit, the resistor and the LED are connected because each one
has a lead plugged into the same 5-socket group. Note that one lead of the resistor is
plugged into Vdd (+5 V) so the circuit can draw power. The other resistor lead connects
to the LED’s anode lead. The LED’s cathode lead is connected to Vss (0 V, ground)
completing the circuit.

You are now ready to build the circuit shown in Figure 2-6 (below) by plugging the LED
and resistor leads into sockets on the prototyping area. Follow these steps:

v Disconnect power from your Board of Education or HomeWork Board.

v" Use Figure 2-4 to decide which lead is connected to the LED’s cathode. Look
for the shorter lead and the flat spot on the plastic part of the LED.

v" Plug the LED’s cathode into one of the black sockets labeled Vss on the
prototyping area.

v" Plug the LED’s anode (the other, longer lead) into the socket shown on the
breadboard portion of the prototyping area.

v" Plug one of the resistor’s leads into the same 5-socket group as the LED’ s anode.
Thiswill connect those two |eads together.

v Plug the resistor’s other lead into one of the sockets labeled Vdd.

Lights On — Lights Off - Page 33

Direction does matter for the LED, but not for the resistor. If you plug the LED in
backward, the LED will not emit light when you connect power. The resistor just resists the
flow of current. There is no backwards or forwards for a resistor.

Reconnect power to your Board of Education or HomeWork Board.
Check to make sure your green LED is emitting light. It should glow green.

NN

<
o
o

Vin

T
0

Figure 2-6

vdd X3 . .
LED On, wired directly to power
P15
P14
4700 o
P11
P10|
P9

3 LED i

P6
P5
P4

4

DDDDDDDDDDDDDDD@D
OOooOoooooooooooonoo

Schematic (left) and Wiring Diagram
(right).

Note that one resistor lead and the
green LED’s anode lead are
plugged into the same 5-socket
group. This electrically connects the
two components.

Vss P2
P1
PO

X2

OOooOoooooooooooooo
OOooOoooooooooooooo
OOooOoooooooooooooo
OO00O0o00ooooooooog

OO00O0o00ooooooooog

O00000000000000 =t
OOooOoooooooooooogoo
Joooooooooooooonoo

If your green LED does not emit light when you connect power to the board:

v' Some LEDs are brightest when viewed from above. Try looking straight down
onto the dome part of the LED’ s plastic case from above.

v If theroom is bright, try turning off some of the lights, or use your hands to cast
a shadow on the LED.

If you still do not see any green glow, try these steps:

v" Double check to make sure the LED’s cathode and anode are connected
properly. If not, simply remove the LED, give it a half-turn, and plug it back in.
It will not hurt the LED if you plug it in backwards, it just doesn’'t emit light.
When you have it plugged in the right direction, it should emit light.

v" Double check to make sure you built your circuit exactly as shown in Figure 2-6.

Page 34 -

What's a Microcontroller?

If you are using a What's a Microcontroller kit that somebody used before you,

the LED may be damaged, so try a different one.

If you arein alab class, check with your instructor.

Still stuck? Try these free online resources:

Visit the Stamps In Class moderated forums: If you don’t have an instructor or friend who
can help, you can always check with the Stamps in Class forum at
http://forums.parallax.com. If you don't get your questions answered there, you can contact
Parallax Technical Support department by following the Support link at www.parallax.com.

How the LED Test Circuit Works

The Vdd and Vss terminals supply electrical pressure in the same way that a battery
would. The Vdd sockets are like the battery’s positive terminal, and the Vss sockets are
like the battery’ s negative terminal. Figure 2-7 shows how applying electrical pressure to
a circuit using a battery causes electrons to flow through it. This flow of electrons is
called electric current, or often just current. Electric current is limited by the resistor.
This current iswhat causes the diode to emit light.

Figure 2-7
LED On Circuit Electron Flow

The minus signs with the circles
around them are used to show
electrons flowing from the battery’s
negative terminal to its positive
terminal.

Lights On — Lights Off - Page 35

Chemical reactions inside the battery supply the circuit with current. The battery’s negative
terminal contains a compound that has molecules with extra electrons (shown Figure 2-7 by
minus-signs). The battery’s positive terminal has a chemical compound with molecules that
are missing electrons (shown by plus-signs). When an electron leaves a molecule in the
negative terminal and travels through the wire, it is called a free electron (also shown by
minus-signs). The molecule that lost that extra electron no longer has an extra negative
charge; it is now called neutral (shown by an N). When an electron gets to the positive
terminal, it joins a molecule that was missing an electron, and now that molecule is neutral
too.

Figure 2-8 shows how the flow of electricity through the LED circuit is described using
schematic notation. The electrical pressure across the circuit is called voltage. The + and
— signs are used to show the voltage applied to a circuit. The arrow shows the current
flowing through the circuit. This arrow is almost always shown pointing the opposite
direction of the actual flow of electrons. Benjamin Franklin is credited with not having
been aware of electrons when he decided to represent current flow as charge passing from
the positive to negative terminal of a circuit. By the time physicists discovered the true
nature of electric current, the convention was aready well established.

Voltage -+ vdd

Figure 2-8
) LED-On Circuit Schematic Showing
Resistance Conventional Voltage and Current

l Flow
Current
\\: LED The + and — signs show voltage
applied to the circuit, and the arrow
shows current flow through the
— circuit.

Voltage - Vss

A schematic drawing (like Figure 2-8) is a picture that explains how one or more circuits
are connected. Schematics are used by students, electronics hobbyists, electricians,
engineers, and just about everybody else who works with circuits.

Appendix B: More about Electricity contains some glossary terms and an activity you can
try to get more familiar with measurements of voltage, current and resistance.

Page 36 - What's a Microcontroller?

Your Turn — Modifying the LED Test Circuit

In the next activity, you will program the BASIC Stamp to turn the LED on, then off,
then on again. The BASIC Stamp will do this by switching the LED circuit between two
different connections, Vdd and Vss. You just finished working with the circuit where the
resistor is connected to Vdd, and the LED emits light. Make the changes shown in Figure
2-9 to verify that the LED will turn off (not emit light) when the resistor’'s lead is
disconnected from Vdd and connected to Vss.

v Disconnect power from your Board of Education or HomeWork Board.

v" Unplug the resistor lead that's plugged into the Vdd socket, and plug it into a
socket labeled Vss as shown in Figure 2-9.

Reconnect power to your Board of Education or HomeWork Board.

Check to make sure your green LED is not emitting light. It should not glow
green.

AN

~™. Why does the LED not glow? Since both ends of the circuit are connected to the same
(?) voltage (Vss), there isn't any electrical pressure across the circuit. So, no current flows
@’ through the circuit, and the LED stays off.

vdd Vin /lss
X3
pisf| 00000 oobhoo
o1l 0 Y aOosoo)
pafl| OOOODO ooooo Figure 2-9
ooooo ooooo L
Eﬁ oooog ooooo LED Off Circuit
. prof| O O ooooo
ooooo ooooo .
Wy P9 ooooo Schematic (left) and
P8
470 O i ooooo ooooo wiring diagram (right).
Y LED . ooooo ooooo
or ooooo
o ooooo
L L ba ooooo
- = ooooo ooooo
Vss Vss P2 O ooooo
o M| coooo — ooooo
x| 00000 ooooo

Lights On — Lights Off - Page 37

ACTIVITY #2: ON/OFF CONTROL WITH THE BASIC STAMP

In Activity #1, two different circuits were built and tested. One circuit made the LED
emit light while the other did not. Figure 2-10 shows how the BASIC Stamp can do the
same thing if you connect an LED circuit to one if its I/O pins. In this activity, you will
connect the LED circuit to the BASIC Stamp and program it to turn the LED on and off.
You will also experiment with programs that make the BASIC Stamp do this at different
speeds.

Figure 2-10

BASIC Stamp
Switching

The BASIC
Stamp can be
programmed to
internally
connect the
LED circuit's
input to Vdd or
Vss.

There are two big differences between changing the connection manually and having the
BASIC Stamp do it. First, the BASIC Stamp doesn’'t have to cut the power to the
development board when it changes the LED circuit’s supply from Vdd to Vss. Second,
while a human can make that change several times a minute, the BASIC Stamp can do it
thousands of times per second!

LED Test Circuit Parts
Same as Activity #1.

Connecting the LED Circuit to the BASIC Stamp

The LED circuit shown in Figure 2-11 is wired amost the same as the circuit in the
previous exercise. The difference is that the resistor’s lead that was manually switched
between Vdd and Vssis now connected to aBASIC Stamp 1/0 pin.

v Disconnect power from your Board of Education or HomeWork Board.
v' Madify the circuit you were working with in Activity #1 so that it matches
Figure 2-11.

Page 38 - What's a Microcontroller?

A

P14

Figure 2-11
BASIC Stamp
Controlled LED Circuit

470 Q

N

P13
P12
= P11
Vss P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
PO

ooo

The LED circuit’s
input is now
connected to a BASIC
Stamp I/O pin instead
of Vdd or Vss.

Oooooooooooooo
Ooo0oooooooooo
Oooooooooooooo

Oo00o00oOoooooooooonN
Ooo00ooooooooogood

Oo00o0ooooooooooooo
Ooo0ooooooooooooo
00000000ooooooooo

Ooo00ooooooooooosa
Ooooooooooooooo

X2 0og

Resistors are essential. Always remember to use a resistor. Without it, too much current
will flow through the circuit, and it could damage any number of parts in your circuit, BASIC
Stamp, or Board of Education or HomeWork Board.

Turning the LED On/Off with a Program

The example program makes the LED blink on and off one time per second. It
introduces several new programming techniques at once. After running it, you will
experiment with different parts of the program to better understand how it works.

Example Program: LedOnOff.bs2

Enter the LedOnOff.bs2 code into the BASIC Stamp Editor.
Reconnect power to your Board of Education or HomeWork Board.
Run the program.

Verify that the LED flashes on and off once per second.

Disconnect power when you are done with the program.

ANANENENAN

Lights On — Lights Off - Page 39

"What's a Mcrocontroller - LedOnOf. bs2
"Turn an LED on and off. Repeat 1 tine per second indefinitely.

' {$STAVP BS2}
' {$PBASI C 2. 5}

DEBUG "The LED connected to P14 is blinking!"
DO

H GH 14
PAUSE 500
LOW 14
PAUSE 500

LOoP

How LedOnOff.bs2 Works

The command DEBUG "The LED connected to P14 is blinking!" makes this
statement appear in the Debug Terminal. The command HI GH 14 causes the BASIC
Stamp to internally connect 1/0O pin P14 to Vdd. Thisturnsthe LED on.

The command PAUSE 500 causes the BASIC Stamp to do nothing for ¥2 a second while
the LED stays on. The number 500 tells the PAUSE command to wait for 500/1000 of a
second. The number that follows PAUSE is called an argument. Arguments give PBASIC
commands the information that they need to execute. |f you look up PAUSE in the BASIC
Stamp Manual, you will discover that it calls this number the Duration argument. The
name Duration Was chosen for this argument to show that the PAUSE command pauses for
acertain “duration” of time, in milliseconds.

9 What’'s a Millisecond? A millisecond is 1/1000 of a second. It is abbreviated as ms. It

e @ /
- takes 1000 ms to equal one second.

The command LOW 14 causes the BASIC Stamp to internally connect 1/0O pin P14 to Vss.
Thisturnsthe LED off. Since LOw 14 isfollowed by another PAUSE 500, the LED stays
off for half a second.

The reason the code repeats itself over and over again is because it is nested between the
PBASIC keywords DO and LOOP. Figure 2-12 shows how a DO..LOOP works. By placing
the code segment that turns the LED on and off with pauses between DO and LOOP, it tells
the BASIC Stamp to execute those four commands over and over again. The result is

Page 40 - What's a Microcontroller?

that the LED flashes on and off, over and over again. It will keep flashing until you
disconnect power, press and hold the Reset button, or until the battery runs out. Code
that repeats a set of commands indefinitely is called an infinite loop.

DO
HGH 14 Figure 2-12
PAUSE 250 DO...LOOP
LOW 14

The code between the keywords DO
PAUSE 250 and LOOP gets executed over and

over endlessly.
LOOP

A Diagnostic Test for your Computer

Although it's not common, there are some computer systems, such as certain laptops and
docking stations, that will halt the PBASIC program after the first time through a
DO. . . LOOP. These computers have a non-standard serial port design. By placing a DEBUG
command in the program LedOnOff.bs2, the open Debug Termina prevents this from
possibly happening. You will next re-run this program without the DEBUG command to
see if your computer has this non-standard serial port problem. It is not likely, but it
would be important for you to know.

v" Open LedOnOff.bs2.
v Déelete the entire DEBUG command.
v Run the modified program while you observe your LED.

If the LED blinks on and off continuoudly, just as it did when you ran the origina
program with the DEBUG command, your computer will not have this problem.

If the LED blinked on and off only once and then stopped, you have a computer with a
non-standard serial port design. If you disconnect the serial cable from your board and
press the Reset button, the BASIC Stamp will run the program properly without freezing.
In programs you write yourself, you will always need to add a single DEBUG command,
such as:

DEBUG " Program Runni ng! "

Lights On — Lights Off - Page 41

...right after the compiler directives. It will open the Debug Terminal and keep the COM
port open. This will prevent your programs from freezing after one pass through the
DO. . . LOOP, or any of the other looping commands you will be learning in later chapters.
You will see this command in some of the example programs that would not otherwise
need a DEBUG instruction. So, you should be able to run all of the remaining programs in
this book even if your computer failed the diagnostic test, but in that case be sure to add a
short DEBUG command when you start writing your own programs.

Your Turn — Timing and Repetitions

By changing the PAUSE command’'s Duration argument you can change the amount of
time the LED stays on and off. For example, by changing both the Duration arguments to
250, it will cause the LED to flash on and off twice per second. The DO..LOCOP in your
program will now look like this:

DO

H GH 14
PAUSE 250
LOW 14
PAUSE 250

LOCP

v" Open LedOnOff.bs2 and save a copy of it as LedOnOffY ourTurn.bs2.
v Change both of the PAUSE commands’ Duration arguments from 500 to 250, and
re-run the program.

If you want to make the LED blink on and off once every three seconds, with the low
time twice as long as the high time, you can program the PAUSE command after the
H GH 14 command so that it takes one second using PAUSE 1000. The PAUSE command
after the LOw 14 command will have to be PAUSE 2000.

DO
H GH 14
PAUSE 1000
LOW 14
PAUSE 2000

LOCP

v" Modify and re-run the program using the code snippet above.

Page 42 - What's a Microcontroller?

A fun experiment is to see how short you can make the pauses and still see that the LED
is flashing. When the LED is flashing very fast, but it looks like it's just on, it's called
persistence of vision.

Here is how to test to see what your persistence of vision threshold is:

v

v
v
v

Try modifying both of your PAUSE command's Duration arguments so that they
are 100.

Re-run your program and check for flicker.

Reduce both Duration arguments by 5 and try again.

Keep reducing the Duration arguments until the LED appears to be on all the
time with no flicker. It will be dimmer than normal, but it should not appear to
flicker.

One last thing to try is to create a one-shot LED flasher. When the program runs, the
LED flashes only once. Thisisaway to look at the functionality of the DO..LOOP. You
can temporarily remove the DO..LOOP from the program by placing an apostrophe to the
left of both the DO and LOOP keywords as shown below.

v
v

DO

H GH 14
PAUSE 1000
LOW 14
PAUSE 2000

LOoP

Modify and re-run the program using the code snippet above.
Explain what happened, why did the LED only flash once?

Commenting a line of code: Placing an apostrophe to the left of a command changes it
into a comment. This is a useful tool because you don't actually have to delete the
command to see what happens if you remove it from the program. It is much easier to add
and remove an apostrophe than it is to delete and re-type the commands.

Lights On — Lights Off - Page 43

ACTIVITY #3: COUNTING AND REPEATING

In the previous activity, the LED circuit either flashed on and off all the time, or it
flashed once and then stopped. What if you want the LED to flash on and off ten times?
Computers (including the BASIC Stamp) are great at keeping running totals of how many
times something happens. Computers can also be programmed to make decisions based
on a variety of conditions. In this activity, you will program the BASIC Stamp to stop
flashing the LED on and off after ten repetitions.

Counting Parts and Test Circuit

Use the exampl e circuit shown in Figure 2-11 on page 38.

How Many Times?

There are many ways to make the LED blink on and off ten times. The simplest way isto
use aFOR. .. NEXT loop. The FOR. .. NEXT loop is similar to the DO. . . LOOP. Although
either loop can be used to repeat commands a fixed number of times, FOR .. NEXT is
easier to use. Thisis sometimes called a counted or finite loop.

The FOR .. NEXT loop depends on a variable to track how many times the LED has
blinked on and off. A variable is aword of your choosing that is used to store a value.
The next example program chooses the word count er to “count” how many times the
LED has been turned on and off.

Picking words for variable names has several rules:

1. The name cannot be a word that is already used by PBASIC. These words are
called reserved words, and some examples that you should already be familiar with
are DEBUG, PAUSE, HI GH, LOW DO, and LOOP. You can see the full Reserved Word
List in the BASIC Stamp Manual.

2. The name cannot contain a space.

3. Even though the name can contain letters, numbers, or underscores, it must begin
with a letter.

4. The name must be less than 33 characters long.

Example Program: LedOnOffTenTimes.bs2

The program LedOnOffTenTimes.bs2 demonstrates how to use a FOR. . . NEXT loop to
blink an LED on and off ten times.

v" Your test circuit from Activity #2 should be built (or rebuilt) and ready to use.

Page 44 - What's a Microcontroller?

Enter the LedOnOff TenTimes.bs2 code into the BASIC Stamp Editor.

Connect power to your Board of Education or HomeWork Board.

Run the program.

Verify that the LED flashes on and off ten times.

Run the program a second time, and verify that the value of count er shown in
the Debug Terminal accurately tracks how many times the LED blinked. Hint:
instead of clicking Run a second time, you can press and release the Reset button
on your Board of Education or HomeWork Board.

SNENENENEN

' What's a Mcrocontroller - LedOnOf TenTi mes. bs2
" Turn an LED on and off. Repeat 10 tines.

' {$STAMP BS2}
' {$PBASI C 2. 5}

counter VAR Byte
FOR counter = 1 TO 10
DEBUG ? count er
H GH 14
PAUSE 500
LOW 14
PAUSE 500
NEXT
DEBUG "Al | done!"

END

How LedOnOffTenTimes.bs2 Works
This PBASIC statement:

counter VAR Byte

...tells the BASIC Stamp Editor that your program will use the word counter as a
variable that can store a byte' s worth of information.

Lights On — Lights Off - Page 45

What's a Byte? A byte is enough memory to store a number between 0 and 255. The
BASIC Stamp has four different types of variables, and each can store a different range of

numbers:
— Table 2-2: Variable Types and Values they can Store
(: ?) Variable type Range of Values
- Bit Otol
Nib 0to 15
Bvte 0 to 255
Word 0 to 65535

A DEBUG instruction can include formatters that determine how information should be
displayed in the Debug Termina. Placing the “?”question mark formatter before a
variable in a DEBUG command tells the Debug Terminal to display the name of the
variable and itsvalue. Thisis how the command:

DEBUG ? counter

...displays both the name and the value of the count er variable in the Debug Terminal.

The FOR. . . NEXT loop and all the commands inside it are shown below. The statement
FOR counter = 1 to 10 tellsthe BASIC Stamp that it will have to set the count er
variable to 1, then keep executing commands until it gets to the NEXT statement. When
the BASIC Stamp gets to the NEXT statement, it jumps back to the FOR statement. The
FOR statement adds one to the value of counter. Then, it checks to see if counter is
greater than ten yet. If not, it repeats the process. When the value of counter finally
reaches eleven, the program skips the commands between the FOR and NEXT statements
and moves on to the command that comes after the NEXT statement.

FOR counter = 1 to 10
DEBUG ? counter
H & 14
PAUSE 500
LOW 14
PAUSE 500

NEXT

Page 46 - What's a Microcontroller?

The command that comes after the NEXT statement is:

DEBUG "Al | done!"

This command is included just to show what the program does after ten times through the
FOR. .. NEXT loop. It moves on to the command that comes after the NEXT statement.

Your Turn — Other Ways to Count
v Inthe program LedOnOff TenTimes.bs2, replace the statement:
FOR counter =1 to 10 with this: FOR counter =1 to 20

v" Rerun the program. What did the program do differently, and was this
expected?

v" Try asecond modification to the FOR statement. Thistime, changeit to:

FOR counter = 20 to 120 STEP 10

How many times did the LED flash? What vaues displayed in the Debug Terminal ?

ACTIVITY #4: BUILDING AND TESTING A SECOND LED CIRCUIT

Indicator LEDs can be used to tell the machine's user many things. Many devices need
two, three, or more LEDSs to tell the user if the machine is ready or not, if there is a
malfunction, if it's done with atask, and so on.

In this activity, you will repeat the LED circuit test in Activity #1 for a second LED
circuit. Then you will adjust the example program from Activity #2 to make sure the
LED circuit is properly connected to the BASIC Stamp. After that, you will modify the
example program from Activity #2 to make the LEDs operate in tandem.

Extra Parts Required

In addition to the parts you used in Activities 1 and 2, you will need these parts:

(1) LED —yellow
(1) Resistor —470 Q (yellow-violet-brown)

Lights On — Lights Off - Page 47

Building and Testing the Second LED Circuit

In Activity #1, you manually tested the first LED circuit to make sure it worked before
connecting it to the BASIC Stamp. Before connecting the second LED circuit to the
BASIC Stamp, it'simportant to test it too.

v Disconnect power from your Board of Education or HomeWork Board.

v" Construct the second LED circuit as shown in Figure 2-13.

v Reconnect power to your Board of Education or HomeWork Board.

v" Did the LED circuit you just added turn on? If yes, then continue. If no,
Activity #1 has some trouble-shooting suggestions that you can repeat for this
circuit.

Vdd (f(qQ H
l-l-lu'l..
u 100
vdd 0Joooo . NOomon
oooog oooog .
ooooo| |ooooo Figure 2-13
oooog oooog
4700 ooooo| |ooooo Manual Test
oooog oooog Circuit for
oooog oooog
P14 oooog oooog Second LED
P6 oooog oooog
470 Q N oo ooooo ooooo
Ny N pa oooog oooog
X LED p3 oooog oooog
LED P2 oooog oooog
. p1 OO0ooo| joooog
r—y - PO oooog oooog
Vss Vss xo| 000dno ooooo

v" Disconnect power to your Board of Education or HomeWork Board.
v" Modify the second LED circuit you just tested by connecting the LED circuit’'s
resistor lead (input) to P15 as shown in Figure 2-14.

Page 48 - What's a Microcontroller?

Figure 2-14
Connecting
the Second
P15 D MW LED to the
470 Q BASIC Stamp
P14
470 Q Schematic
Y Y left) and
X X b6 ooooo| |ooood \(Nirir)l
LED LED .. OoOoooO| |ooooo Irng
— — ba ooooo| |ooood diagram
P - ooooo| |ooood i
Vss Vss Eg oooool! |ooooo (right).
o1 0oooo| joooog
00 ooooo ooood
| 00000 00000

Using a Program to Test the Second LED Circuit

In Activity #2, you used an example program and the HI GH and LOwcommands to control
the LED circuit connected to P14. These commands will have to be modified to control
the LED circuit connected to P15. Instead of using H GH 14 and LOW 14, you will use
Hl GH 15 and LOW 15.

Example Program: TestSecondLed.bs2

Enter TestSecondL ed.bs2 into the BASIC Stamp Editor.

Connect power to your Board of Education or HomeWork Board.

Run TestSecondLED.bs2.

Make sure the LED circuit connected to P15 is flashing. If the LED connected
to P15 flashes, move on to the next example (Controlling Both LEDs). If the
LED circuit connected to P15 is not flashing, check your circuit for wiring errors
and your program for typing errors and try again.

ANANENRN

What's a Mcrocontroll er - Test SecondLed. bs2
Turn LED connected to P15 on and of f.
Repeat 1 tine per second indefinitely.

{ $STAMP BS2}
{ $PBASI C 2. 5}

DEBUG " Progr am Runni ng! "

Lights On — Lights Off - Page 49

DO
H GH 15
PAUSE 500
LOW 15
PAUSE 500

LOOP

Controlling Both LEDs

Yes, you can flash both LEDs at once. One way you can do this is to use two H GH
commands before the first PAUSE command. One HI GH command sets P14 high, and the
next HI GH command sets P15 high. You will aso need two LOwcommands to turn both
LEDs off. It's true that both LEDs will not turn on and off at exactly the same time
because one is turned on or off after the other. However, there is no more than a
millisecond’ s difference between the two changes, and the human eye will not detect it.

Example Program: FlashBothLeds.bs2

v Enter the FlashBothL eds.bs2 code into the BASIC Stamp Editor.
v" Run the program.
v Verify that both LEDs appear to flash on and off at the same time.

' What's a Mcrocontroll er - FlashBot hLeds. bs2
' Turn LEDs connected to P14 and P15 on and off.

' {$STAWP BS2}
' {$PBASI C 2.5}

DEBUG " Pr ogr am Runni ng! "
DO

H GH 14
H GH 15
PAUSE 500
LOW 14
LOW 15
PAUSE 500

LOOP

Page 50 - What's a Microcontroller?

Your Turn — Alternate LEDs

You can cause the LEDs to dternate by swapping the H GH and LOW commands that
control one of the I/O pins. This means that while one LED is on, the other will be off.

v" Modify FlashBothLeds.bs2 so that the commands between the DO and LOOP
keywords look likethis:

H GH 14
LOW 15
PAUSE 500
LOW 14

H GH 15
PAUSE 500

v" Run the modified version of FlashBothLeds.bs2 and verify that the LEDs flash
aternately on and off.

ACTIVITY #5: USING CURRENT DIRECTION TO CONTROL A BICOLOR
LED

The device shown in Figure 2-15 is a security monitor for electronic keys. When an
electronic key with the right code is used, the LED changes color, and adoor opens. This
kind of LED iscalled abicolor LED. This activity answers two questions:

1. How doesthe LED change color?
2. How can you run one with the BASIC Stamp?

Lights On — Lights Off - Page 51

Figure 2-15

Bicolor LED in a Security
Device

When the door is locked,
this bicolor LED glows
red. When the door is
unlocked by an electronic
key with the right code,
the LED turns green.

Introducing the Bicolor LED

The bicolor LED’ s schematic symbol and part drawing are shown in Figure 2-16.

1 Q
_ Flat

Spot Figure 2-16
z % LED- Bicolor LED
Green Red bicolor 1 2
Schematic symbol (left)
and part drawing (right).
2 Long
Pin

The bicolor LED is readly just two LEDs in one package. Figure 2-17 shows how you
can apply voltage in one direction and the LED will glow green. By disconnecting the
LED and plugging it back in reversed, the LED will then glow red. As with the other
LEDs, if you connect both terminals of the circuit to Vss, the LED will not emit light.

Page 52 -

LED-
Green

What's a Microcontroller?

Vdd Vdd
§ e ‘é 7o Figure 2-17
Bicolor LED and
1 2 Applied Voltage
7 z % Green (left), red
LED- (center) and no
2 Red 1 light (right)
Vss Vss Vss Vss

Bicolor LED Circuit Parts

(1) LED —hicolor
(1) Resistor —470 Q (yellow-violet-brown)
(2) Jumper wire

Building and Testing the Bicolor LED Circuit

Figure 2-18 shows the manual test for the bicolor LED.

AN N N N U NN

Disconnect power from your Board of Education or HomeWork Board.
Build the circuit shown on the left side of Figure 2-18.

Reconnect power and verify that the bicolor LED is emitting green light.
Disconnect power again.

Modify your circuit so that it matches the right side of Figure 2-18.
Reconnect power.

Verify that the bicolor LED is now emitting red light.

Disconnect power.

®

What if my bicolor LED’s colors are reversed? Bicolor LEDs are manufactured like the
one in Figure 2-16 as well as with the colors reversed. If your bicolor LED glows red when
it's connected in the circuit that should make it glow green and vice-versa, your LED’s colors
are reversed. If that's the case, always plug pin 1 in where the diagrams show pin 2, and
pin 2 where the diagrams show pin 1.

vad L in\2 vss

X
psEAD000] Yoooo
PeMwoooof kooog
friE N s=oo ooe?
P%W| coooo| |ooooo
P’W boooo| |ooooo
PuMl ocoooo| |ooooo
PIHl| boooo| |ooooo
P M| ooooo| |ooooo
P8 Wl coooo| |ooooo
P’ M| coooo| |ooooo
P M| coooo| |ooooo
P> H| coooo| |ooooo
P M| coooo| |ooooo
P M| coooo| |ooooo
P2 W ooooo| |ooooo
Pl Wl DODOO 0OOOO

S 0oooo ooooo

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
PO

<
0
%]

X2

vdd 2
00000
ooood
Ss00
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo

O

(]
&

g

OOo00ooooooooooogoo
OOo00ooooooooooogoo
Oooooooooooooao
Oooooooooooooao

Oooooooooooooao

Lights On — Lights Off - Page 53

Figure 2-18
Manual bicolor LED Test

Bicolor LED green (left)
and red (right).

Controlling a bicolor LED with the BASIC Stamp requires two /O pins. After you have
manually verified that the bicolor LED works using the manual test, you can connect the
circuit to the BASIC Stamp as shown in Figure 2-19.

v" Connect the bicolor LED circuit to the BASIC Stamp as shown in Figure 2-19.

P15 O

P14

A\ N
A Y

470 Q

X2

Vss

ooooag
ooooo
ooooo
Oooooo
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooa

Figure 2-19
Bicolor LED Connected
to BASIC Stamp

Schematic (left) and
wiring diagram (right).

Page 54 - What's a Microcontroller?

BASIC Stamp Bicolor LED Control

Figure 2-20 shows how you can use P15 and P14 to control the current flow in the
bicolor LED circuit. The upper schematic shows how current flows through the green
LED when P15 is set to Vdd with Hl GH and P14 is set to Vsswith LOW This is because
the green LED will let current flow through it when electrical pressure is applied as
shown, but the red LED acts like a closed valve and does not let current through it. The
bicolor LED glows green.

The lower schematic shows what happens when P15 is set to Vss and P14 is set to Vdd.
The electrical pressure is now reversed. The green LED shuts off and does not allow
current through. Meanwhile, the red LED turns on, and current passes through the circuit
in the opposite direction.
Current
|

HIGH =Vvdd P15 O

4
~ 2
LOW=Vss P14 D 4’\7/(\)/‘;,2 Figure 2-20
BASIC Stamp bicolor
LED Test

Current through green
LOW =Vss P15 D LED (above) and red

LED (below).
;T Current

X

HIGH =Vvdd P14 D AN
470 Q

Figure 2-20 aso shows the key to programming the BASIC Stamp to make the bicolor
LED glow two different colors. The upper schematic shows how to make the bicolor
LED green using H GH 15 and LOW 14. The lower schematic shows how to make the
bicolor LED glow red by using LOW 15 and HI GH 14. To turn the LED off, send low
signals to both P14 and P15 using LOW 15 and LOW 14. In other words, use LOwon both
pins.

Lights On — Lights Off - Page 55

The bicolor LED will also turn off if you send high signals to both P14 and P15. Why?
Because the electrical pressure (voltage) is the same at P14 and P15 regardless of whether
you set both I/O pins high or low.

Example Program: TestBiColorLED.bs2

v Reconnect power.
v" Enter and run TestBiColorLed.bs2 code in the BASIC Stamp Editor.
v Verify that the LED cycles through the red, green, and off states.

What's a M crocontroller - TestBi Col orLed. bs2
Turn bicolor LED red, then green, then off in a |oop.

' {$STAWP BS2}
' {$PBASI C 2. 5}

PAUSE 1000
DEBUG " Program Runni ng!", CR

DO

DEBUG "G een. .. "
H GH 15

LOW 14

PAUSE 1500

DEBUG "Red. . ."
LOW 15

H GH 14

PAUSE 1500

DEBUG "OfFf...", CR
LOW 15

LOW 14

PAUSE 1500

LooP

Your Turn — Lights Display

In Activity #3, a variable named count er was used to control how many times an LED
blinked. What happens if you use the value count er to control the PAUSE command's
Duration argument while repeatedly changing the color of the bicolor LED?

v" Rename and save TestBiColorLed.bs2 as TestBiColorLedY ourTurn.bs2.
v Add acount er variable declaration before the DO statement:

Page 56 - What's a Microcontroller?

counter VAR BYTE

v" Replace thetest codein the DO, . . LOOP with thisFOR. . . NEXT loop.
FOR counter = 1 to 50

H GH 15

LOW 14

PAUSE count er

LOW 15

H GH 14

PAUSE count er

NEXT

When you are done, your code should look like this:
counter VAR BYTE
DO
FOR counter = 1 to 50
H GH 15
LOW 14
PAUSE count er
LOW 15
H GH 14
PAUSE count er
NEXT

LOoP

At the beginning of each pass through the FOR. . . NEXT loop, the PAUSE value (Duration
argument) is only one millisecond. Each time through the FOR. . . NEXT loop, the pause
gets longer by one millisecond at atime until it gets to 50 milliseconds. The DO. . . LOOP
causesthe FOR. . . NEXT loop to execute over and over again.

v" Run the modified program and observe the effect.

Lights On — Lights Off - Page 57

SUMMARY

The BASIC Stamp can be programmed to switch a circuit with a light emitting diode
(LED) indicator light on and off. LED indicators are useful in a variety of places
including many computer monitors, disk drives, and other devices. The LED was
introduced along with a technigue to identify its anode and cathode terminals. An LED
circuit must have a resistor to limit the current passing through it. Resistors were
introduced along with one of the more common coding schemes for indicating aresistor’s
value.

The BASIC Stamp switches an LED circuit on and off by internally connecting an 1/0
pin to either Vdd or Vss. The H GH command can be used to make the BASIC Stamp
internally connect one of its I/O pins to Vdd, and the LOW command can be used to
internally connect an 1/0O pin to Vss. The PAUSE command is used to cause the BASIC
Stamp to not execute commands for an amount of time. This was used to make LEDs
stay on and/or off for certain amounts of time. The amount of time is determined by the
number used in the PAUSE command’ s Duration argument.

DO. . . LOOP can be used to create an infinite loop. The commands between the DO and
LOooP keywords will execute over and over again. Even though thisis called an infinite
loop, the program can still be re-started by disconnecting and reconnecting power or
pressing and releasing the Reset button. A new program can also be downloaded to the
BASIC Stamp, and this will erase the program with the infinite loop. Counted loops can
be made with FOR. . . NEXT, avariable to keep track of how many repetitions the loop has
made, and numbers to specify where to start and stop counting.

Current direction and voltage polarity were introduced using a bicolor LED. If voltageis
applied across the LED circuit, current will pass through it in one direction, and it glows
aparticular color. If the voltage polarity is reversed, current travels through the circuit in
the opposite direction and it glows a different color.

Questions
1. What is the name of this Greek letter: Q, and what measurement does Q refer
to?
2. Which resistor would alow more current through the circuit, a 470 Q resistor or
a 1000 Q resistor?

3. How do you connect two wires using a breadboard? Can you use a breadboard
to connect four wires together?

Page 58 - What's a Microcontroller?

4. What do you always have to do before modifying a circuit that you built on a
breadboard?

5. How long would PAUSE 10000 last?
6. How would you cause the BASIC Stamp to do nothing for an entire minute?
7. What are the different types of variables?
8. Can abyte hold the value 5007
9. What will the command HI GH 7 do?
Exercises

1. Draw the schematic of an LED circuit like the one you worked with in Activity
#2, but connect the circuit to P13 instead of P14. Explain how you would modify
LedOnOff.bs2 on page 38 so that it will make your LED circuit flash on and off
four times per second.

2. Explain how to modify LedOnOff TenTimes.bs2 so that it makes the LED circuit
flash on and off 5000 times before it stops. Hint: you will need to modify just
two lines of code.

Project

1. Make a 10-second countdown using one yellow LED and one bicolor LED.
Make the bicolor LED start out red for 3 seconds. After 3 seconds, change the
bicolor LED to green. When the bicolor LED changes to green, flash the yellow
LED on and off once every second for ten seconds. When the yellow LED is
done flashing, the bicolor LED should switch back to red and stay that way.

Solutions

Q1. Omega refers to the ohm which measures how strongly something resists current
flow.

Q2. A 470 Q resistor: higher values resist more strongly than lower values, therefore
lower values allow more current to flow.

Q3. To connect 2 wires, plug the 2 wires into the same 5-socket group. You can
connect 4 wires by plugging al 4 wires into the same 5-socket group.

Q4. Disconnect the power.

Q5. 10 seconds.

Q6. PAUSE 60000

Q7.Bit, N b, Byte, and Wrd

Q8. No. Thelargest value abyte can hold is 255. The value 500 is out of range for a
byte.

Lights On — Lights Off - Page 59

Q9. H GH 7 will cause the BASIC Stamp to internally connect 1/0 pin P7 to Vdd.
E1l. The PAUSE Duration must be reduced to 500 ms/ 4 = 125 ms. To use I/O pin
P13, H GH 14 and LOW 14 have been replaced with Hl GH 13 and LOW 13.

P13 DO
470 O H GH 13
X LED PAUSE 125
LOW 13
PAUSE 125
Vss LooP

E2. The count er variable has to be changed to Wr d size, and the FOR statement has
to be modified to count from 1 to 5000.

counter VAR Word

FOR counter = 1 to 5000
DEBUG ? counter, CR
H GH 14
PAUSE 500
LOW 14
PAUSE 500

NEXT

P1. The bicolor LED schematic, on the left, is unchanged from Figure 2-19 on page
53. The yellow LED schematic is based on Figure 2-11 on page 38. For this
project P14 was changed to P13, and a yellow LED was used instead of green.
NOTE: When the BASIC Stamp runs out of commands, it goes into alow power
mode that causes the bicolor LEDs to flicker briefly every 2.3 seconds. The
same applies after the program executes an END command. There's another
command called STOP that you can add to the end of the program to make it hold
any high/low signals without going into low power mode, which in turn prevents
the flicker.

P15 O

1 P13

4700 Yellow

N LED

A\
N

P14 Vss
470 Q

Page 60 -

What's a Microcontroller?

' What's a Mcrocontroller - ChO2Prj01_Count down. bs2
' 10 Second Countdown with Red, Yellow, G een LED
' Red/ Green: Bicolor LED on P15, P14. Yellow P13

' {$STAMP BS2}
' {$PBASI C 2. 5}

DEBUG " Pr ogr am Runni ng! "
counter VAR Byte

' Red for three seconds ' Bicolor LED Red
LOW 15

H GH 14
PAUSE 3000

' Green for 10 seconds...
H GH 15 ' Bicolor LED G een
LOW 14

" ...while the yellow LED is flashing
FOR counter = 1 TO 10
H GH 13 ' Yel |l ow LED on
PAUSE 500
LOW 13 ' Yell ow LED of f
PAUSE 500
NEXT

' Red stays on ' Bi Color LED Red
LOW 15
HGH 14

Digital Input — Pushbuttons - Page 61

Chapter 3: Digital Input — Pushbuttons

FOUND ON CALCULATORS, HANDHELD GAMES, AND APPLICANCES

How many devices with pushbuttons do you use on a daily basis? Here are a few
examples that might appear in your list: computer, mouse, calculator, microwave oven,
TV remote, handheld game, and cell phone. In each device, there is a microcontroller
scanning the pushbuttons and waiting for the circuit to change. When the circuit changes,
the microcontroller detects the change and takes action. By the end of this chapter, you
will have experience with designing pushbutton circuits and programming the BASIC
Stamp to monitor them and take action when changes occur.

RECEIVING VS. SENDING HIGH AND LOW SIGNALS

In Chapter #2, you programmed the BASIC Stamp to send high and low signals, and you
used LED circuits to display these signals. Sending high and low signal's means you used
aBASIC Stamp I/0 pin as an output. In this chapter, you will use a BASIC Stamp /O
pin as an input. As an input, an I/O pin listens for high/low signals instead of sending
them. You will send these signals to the BASIC Stamp using a pushbutton circuit, and
you will program the BASIC Stamp to recognize whether the pushbutton is pressed or not
pressed.

Other terms that mean send, high/low, and receive: Sending high/low signals is
described in different ways. You may see sending referred to as transmitting, controlling, or
switching. Instead of high/low, you might see it referred to as binary, TTL, CMOS, or
Boolean signals. Another term for receiving is sensing.

ACTIVITY #1: TESTING A PUSHBUTTON WITH AN LED CIRCUIT

If you can use a pushbutton to send a high or low signal to the BASIC Stamp, can you
also control an LED with a pushbutton? The answer is yes, and you will use it to test a
pushbutton in this activity.

Introducing the Pushbutton

Figure 3-1 shows the schematic symbol and the part drawing of a normally open
pushbutton. Two of the pushbutton’s pins are connected to each terminal. This means
that connecting awire or part lead to pin 1 of the pushbutton is the same as connecting it

Page 62 - What's a Microcontroller?

to pin 4. The same rule applies with pins 2 and 3. The reason the pushbutton doesn’t just
have two pins is because it needs stability. If the pushbutton only had two pins, those
pins would eventually bend and break from all the pressure that the pushbutton receives
when people pressit.

l Figure 3-1
1,4 IJ 1@ Normally Open Pushbutton
23 2(Schematic symbol (left) and
part drawing (right)

The left side of Figure 3-2 shows how a normally open pushbutton looks when it’s not
pressed. When the button is not pressed, there is a gap between the 1,4 and 2,3 terminals.
This gap makes it so that the 1,4 terminal can not conduct current to the 2,3 terminal.
This is called an open circuit. The name “normally open” means that the pushbutton’s
normal state (not pressed) forms an open circuit. When the button is pressed, the gap
between the 1,4 and 2,3 terminals is bridged by a conductive metal. This is called a
closed circuit, and current can flow through the pushbutton.

l Figure 3-2
1,4 I:] 1,4

<«— Normally Open Pushbutton

2,3 0l 2,3d
T Not pressed (left) and pressed (right)

Test Parts for the Pushbutton

(1) LED — pick acolor

(1) Resistor — 470 Q (yellow-violet-brown)
(2) Pushbutton — normally open

(1) Jumper wire

Building the Pushbutton Test Circuit

Figure 3-3 shows a circuit you can build to manually test the pushbutton.

Digital Input — Pushbuttons - Page 63

Always disconnect power from your Board of Education or BASIC Stamp HomeWork
Board before making any changes to your test circuit. From here onward, the instructions
will no longer say “Disconnect power...” between each circuit modification. It is up to you to
remember to do this.

Always reconnect power to your Board of Education or BASIC Stamp HomeWork Board
before downloading a program to the BASIC Stamp.

v Build the circuit shown in Figure 3-3.

Vdd
vdd Vin Vss [[+t
14 67— m
’ o (IEEEE DDDD%
23 pm" Ooo0oo _ OFD\Q
, piall| COOOD[|O00Qy0
rof| COOO0DO| 00RO .
P11 oooog DD, O F|gur63_3
soM| COoool |ogAoo o
470 Q Pg oooo °©' ooo Pushbutton Test Circuit
oo 00000.&,00000
b7 Ooog—wo0ooo
o 0oooo| |Doooo
e 0oooO| |Ooooo
3 LED i ooooo| |(ooooo
- 0oooO| |Ooooo
05 0oooO| |Ooooo
- 0oooo| jooooo
—— s Ooooo OOoood
Vs x| 00000 00000

Testing the Pushbutton

When the pushbutton is not pressed, the LED will be off. If the wiring is correct, when
the pushbutton is pressed, the LED should be on (emitting light).

Warning Signs: If the “Pwr” LED on the Board of Education flickers, goes dim, or goes out
completely when you reconnect power, it may mean that there is a short circuit from Vdd to
Vss or from Vin to Vss. If this happens, disconnect power immediately and find and correct
the mistake in your circuit.

The LED built into the HomeWork Board is different. It may either be labeled “Power” or
“Running” and it only glows while a program is running. If a program ends, either because it
executes an END command or because it runs out of commands to execute, the LED will
turn off.

v' Verify that the LED in your test circuit is off.

Page 64 - What's a Microcontroller?

v Press and hold the pushbutton, and verify that the LED emits light while you are
holding the pushbutton down.

How the Pushbutton Circuit Works

The |€eft side of Figure 3-4 shows what happens when the pushbutton is not pressed. The
LED circuit is not connected to Vdd. It is an open circuit that cannot conduct current.
By pressing the pushbutton, as shown on the right side of the figure, you close the
connection between the terminals with conductive metal. This makes a pathway for
electrons to flow through the circuit and so the LED emitslight as aresult.

vdd vdd

—J: Figure 3-4
1,4 1,4 Pushbutton Not Pressed,

I] < and Pressed

2,3 2,3

Pushbutton not pressed:
circuit open and light off

No
Current l 400 Current l 47100 (left)

Pushbutton pressed:
3 LED X LED circuit closed and light on

(right)
Vss Vss
Your Turn — Turn the LED off with a Pushbutton

Figure 3-5 shows a circuit that will cause the LED to behave differently. When the
button is not pressed, the LED stays on; when the button is pressed, the LED turns off.
Since this pushbutton connects a conductor across terminals 1,4 and 2,3 when pressed, it
means that electricity can take the path of least resistance through the pushbutton instead
of through the LED. Unlike the potential short circuits discussed in the Warning Signs
box, the short circuit the pressed pushbutton creates across the LED’ s terminals does not
damage any circuits and serves a useful purpose.

v Build the circuit shown in Figure 3-5.
v Repeat the tests you performed on the first pushbutton circuit you built with this
new circuit.

Digital Input — Pushbuttons - Page 65

vdd
X3
oo
P15
1,4 Pl4r oo
P13 %%
P12 ooLof
P11 ;
LED § 10 o/igfo Figure 3-5
P9 O E O '5_ LED that Gets Shorted
2,3 i ®Ooo0 by Pushbutton
S ooooog
o ooooog
470 Q pa ooooog
P3 ooooog
P2 oooog ooooog
b1 oooool jooooo
— 50 oooog ooooog
Vss Yo O000oO oooog
Can you really do that with the LED? Up until now, the LED’s cathode has always been
—_— connected to Vss. Now, the LED is in a different place in the circuit, with its anode
(?) connected to Vdd. People often ask if this breaks any circuit rules, and the answer is no.
v The electrical pressure supplied by Vdd and Vss is 5 volts. The red LED will always use

about 1.7 volts, and the resistor will use the remaining 3.3 volts, regardless of their order.

ACTIVITY #2: READING A PUSHBUTTON WITH THE BASIC STAMP

In this activity, you will connect a pushbutton circuit to the BASIC Stamp and display
whether or not the pushbutton is pressed. Y ou will do this by writing a PBASIC program
that checks the state of the pushbutton and displaysit in the Debug Terminal.

Parts for a Pushbutton Circuit

(2) Pushbutton — normally open

(1) Resistor — 220 Q (red-red-brown)

(1) Resistor — 10 kQ (brown-black-orange)
(2) Jumper wires

Page 66 - What's a Microcontroller?

Building a Pushbutton Circuit for the BASIC Stamp

Figure 3-6 shows a pushbutton circuit that is connected to BASIC Stamp /O pin P3.

v Build the circuit shown in Figure 3-6.

P15
Vvdd P14
P13
P12

i
P7
P3 PG
P5
200 & o
Q P3

Figure 3-6
Pushbutton Circuit
Connected to 1/0
Pin P3

On the wiring
diagram, the
220 Q resistor is
on the left side
connecting the
pushbutton to P3
while the 10 kQ
resistor is on the
right, connecting
the pushbutton
circuit to Vss.

Figure 3-7 shows what the BASIC Stamp sees when the button is pressed, and when it's
not pressed. When the pushbutton is pressed, the BASIC Stamp senses that Vdd is
connected to P3. Inside the BASIC Stamp, this causes it to place the number 1 in a part
of its memory that stores information about its I/O pins. When the pushbutton is not
pressed, the BASIC Stamp cannot sense VVdd, but it can sense Vss through the 10 kQ and
220 Q resistors. This causes it to store the number O in that same memory location that

stored a 1 when the pushbutton was pressed.

Digital Input — Pushbuttons - Page 67

Figure 3-7
BASIC Stamp Reading a
Pushbutton

When the pushbutton is
pressed, the BASIC Stamp
reads a 1 (above). When
the pushbutton is not
pressed, the BASIC Stamp
reads a 0 (below).

Vdd

Binary and Circuits: The base-2 number system uses only the digits 1 and 0 to make
numbers, and these binary values can be transmitted from one device to another. The
BASIC Stamp interprets Vdd (5 V) as binary-1 and Vss (0 V) as binary-0. Likewise, when
the BASIC Stamp sets an I/O pin to Vdd using Hl GH, it sends a binary-1. When it sets an
1/0 pin to Vss using LOW it sends a binary-0. This is a very common way of communicating
binary numbers used by many computer chips and other devices.

Programming the BASIC Stamp to Monitor the Pushbutton

The BASIC Stamp stores the one or zero it senses at |/O pin P3 in a memory location
called | N3. Hereisan example program that shows how this works:
Example Program: ReadPushbuttonState.bs2

This next program makes the BASIC Stamp check the pushbutton every ¥ second and
send the value of | N3 to the Debug Terminal.

Page 68 - What's a Microcontroller?

Figure 3-8 shows the Debug Terminal while the program is running. When the
pushbutton is pressed, the Debug Termina displays the number 1, and when the
pushbutton is not pressed, the Debug Terminal displays the number 0.

Figure 3-8
Debug Terminal Displaying
Pushbutton States

The Debug Terminal displays 1 when
the pushbutton is pressed and 0
when it is not pressed.

Enter the ReadPushbuttonState.bs? program into the BASIC Stamp Editor.

Run the program.

Verify that the Debug Terminal displays the value 0 when the pushbutton is not
pressed.

v' Veify that the Debug Terminal displays the value 1 when the pushbutton is
pressed and held.

ASANEN

' What's a Mcrocontrol |l er - ReadPushbuttonState. bs2
' Check and send pushbutton state to Debug Terminal every 1/4 second.

' {$STAMP BS2}
' {$PBASI C 2. 5}

DO

DEBUG ? | N3
PAUSE 250

LooP

How ReadPushbuttonState.bs2 Works

The DO. . . LOOP in the program repeats every ¥ second because of the command PAUSE
250. Each time through the DO. . . LOOP, the command DEBUG ? | N3 sends the value of
I N3 to the Debug Terminal. The value of | N3 is the state that 1/0 pin P3 senses at the
instant the DEBUG command is executed.

Digital Input — Pushbuttons - Page 69

Your Turn — A Pushbutton with a Pull-up Resistor

The circuit you just finished working with has a resistor connected to Vss. This resistor
is called a pull-down resistor because it pulls the voltage at P3 down to Vss (0 volts)
when the button is not pressed. Figure 3-9 shows a pushbutton circuit that uses a pull-up
resistor. This resistor pulls the voltage up to Vdd (5 volts) when the button is not pressed.
The rules are now reversed. When the button is not pressed, | N3 stores the number 1,
and when the button is pressed, | N3 stores the number 0.

The 220 Q resistor is used in the pushbutton example circuits to protect the BASIC Stamp
1/0 pin. Although it's a good practice for prototyping, in most products this resistor is
replaced with a wire (since wires cost less than resistors).

v" Maodify your circuit as shown in Figure 3-9.
v" Re-run ReadPushbuttonState.bs2.
v"Using the Debug Terminal, verify that I N3 is 1 when the button is not pressed
and 0 when the button is pressed.
Vdd Vin Vss
3

vad s ooOooo oooog
[.,f| Coooo _ ooooo
b13 ooooo ooooo
10kQ -off| CO0O0O0| |Doogd
511 ooooo ooooo

510 ooOooo oooog Fi 3.9

p3 o oooog ooooo ljgure s-

5 ooooo ooooo e
220 O ooo elalalals M_odn‘_led Pushbutton
Ea ooy oOoO| |ooooo Circuit

P5 Ooonoo ooooo
P4 oo (]} ooooo
P3 oo (]} ooooo
prm P1 oo O oooog
= . ooCjoEsgreoon
Vss ; oogog 00000
pon oooo

Active-low vs. Active-high: The pushbutton circuit in Figure 3-9 is called active-low
because it sends the BASIC Stamp a low signal (Vss) when the button is active (pressed).
The pushbutton circuit in Figure 3-6 is called active-high because it sends a high signal
(Vdd) when the button is active (pressed).

Page 70 - What's a Microcontroller?

ACTIVITY #3: PUSHBUTTON CONTROL OF AN LED CIRCUIT

Figure 3-10 shows a zoomed-in view of a pushbutton and LED used to adjust the settings
on a computer monitor. Thisisjust one of many devices that have a pushbutton that you
can press to adjust the device and an LED to show you the device' s status.

Figure 3-10
Button and LED on
a Computer Monitor

The BASIC Stamp can be programmed to make decisions based on what it senses. For
example, it can be programmed to decide to flash the LED on/off ten times per second
when the button is pressed.

Pushbutton and LED Circuit Parts

(1) Pushbutton — normally open

(1) Resistor — 10 kQ (brown-black-orange)
(1) LED —any color

(1) Resistor — 220 Q (red-red-brown)

(1) Resistor —470 Q (yellow-violet-brown)
(2) Jumper wires

Digital Input — Pushbuttons - Page 71

Building the Pushbutton and LED Circuits

Figure 3-11 shows the pushbutton circuit used in the activity you just finished along with
the LED circuit from Chapter 2, Activity #2.

v Build the circuit shown in Figure 3-11.

P14
470 O
§ LED
V;s
vdd Figure 3-11
Pushbutton and
LED Circuit
0
P3
220 Q
10 kQ
V;s

Programming Pushbutton Control

The BASIC Stamp can be programmed to make decisions using an | F. . . THEN. . . ELSE
statement. The example program you are about to run will flash the LED on and off
when the pushbutton is pressed. Each time through the DO ..LOOP, the
| F. .. THEN. . . ELSE statement checks the state of the pushbutton and decides whether or
not to flash the LED.

Example Program: PushbuttonControlledLed.bs2

v Enter PushbuttonControlledL ed.bs2 into the BASIC Stamp Editor and runiit.

v' Verify that the LED flashes on and off while the pushbutton is pressed and held
down.

v Verify that the LED does not flash when the pushbutton is not pressed down.

Page 72 - What's a Microcontroller?

' What's a Mcrocontroller - PushbuttonControl |l edLed. bs2
Check pushbutton state 10 tinmes per second and blink LED when pressed.

' {$STAMP BS2}
' {$PBASI C 2. 5}

DO
DEBUG ? | N3

IF (IN3 = 1) THEN
H GH 14
PAUSE 50
LOW 14
PAUSE 50

ELSE
PAUSE 100

ENDI F

LooP

How PushbuttonControlledLed.bs2 Works

This program is a modified version of ReadPushbuttonState.bs2 from the previous
activity. The DO. .. LOOP and DEBUG ? | N3 commands are the same. The PAUSE 250
was replaced with an | F. . . THEN. . . ELSE statement. When the condition after the | F is
true (IN3 = 1), the commands that come after the THEN statement are executed. They
will be executed until the ELSE statement is reached, at which point the program skips to
the ENDI F and moves on. When the condition after the | F is not true (IN3 = 0), the
commands after the ELSE statement are executed until the ENDI F is reached.

You can make a detailed list of what a program should do, to either help you plan the
program or to describe what it does. This kind of list is called pseudo code, and the
example below uses pseudo code to describe how PushbuttonControlledL ed.bs2 works.

Digital Input — Pushbuttons - Page 73

Do the commands between here and the Loop statement over and over again
o Display the value of IN3 in the Debug Terminal
o Ifthevalueof IN3is1, Then
= TurntheLED on
» Wait for 1/20 of a second
= TurntheLED off
= Wait for 1/20 of a second
0 Elsg (if thevalue of IN3is0)
» do nothing, but wait for the same amount of time it would have
taken to briefly flash the LED (1/10 of a second).
Loop

Your Turn — Faster/Slower

v
v

v

Save the example program under a different name.

Modify the program so that the LED flashes twice as fast when you press and
hold the pushbutton.

Modify the program so that the LED flashes half as fast when you press and hold
the pushbutton.

ACTIVITY #4: TWO PUSHBUTTONS CONTROLLING TWO LED CIRCUITS

Let's add a second pushbutton to the project and see how it works. To make things a
little more interesting, let’s also add a second LED circuit and use the second pushbutton
to control it.

Pushbutton and LED Circuit Parts

(2) Pushbuttons — normally open

(2) Resistors— 10 kQ (brown-black-orange)
(2) Resistors— 470 Q (yellow-violet-brown)
(2) Resistors— 220 Q (red-red-brown)

(2) LEDs—any color

(3) Jumper wires

Page 74 - What's a Microcontroller?

Adding a Pushbutton and LED Circuit

Figure 3-12 shows a second LED and pushbutton circuit added to the circuit you tested in
the previous activity.

v Build the circuit shown in Figure 3-12. |If you need help building the circuit
shown in the schematic, use the wiring diagram in Figure 3-13 as aguide.

v" Modify ReadPushbuttonState.bs2 so that it reads | N4 instead of | N3, and use it
to test your second pushbutton circuit.

P15 D MV
470 Q
P14
470 Q
N N
LED LED
Vgs Vgs

Figure 3-12
d Schematic for Two

vdd vdd
Pushbuttons and LEDs
P e B
P4 G—M\N——0

220 Q

/1
P3 O—AW)
2200
ilo kQ 10 kQ

Vgs Vgs

Dots indicate connections: There are three places where lines intersect in Figure 3-12,
but only two of those intersections have dots. When two lines intersect with a dot, it means
they are electrically connected. For example, the 10 kQ resistor on the lower-right side of
Figure 3-12 has one of its terminals connected to one of the P3 circuit's pushbutton
terminals and to one of its 220 Q resistor terminals. When one line crosses another, but
there is no dot, it means the two wires DO NOT electrically connect. For example, the line
that connects the P4 pushbutton to the 10 kQ resistor does not connect to the P3
pushbutton circuit because there is no dot at that intersection.

Digital Input — Pushbuttons - Page 75

Figure 3-13
Wiring Diagram for Two Pushbuttons
and LEDs

Programming Pushbutton Control

In the previous activity, you experimented with making decisions using an
I F...THEN. .. ELSE statement. Thereisalso such athingasan|F...ELSEIF...ELSE
statement. It works great for deciding which LED to flash on and off. The next example
program shows how it works.

Example Program: PushbuttonControlOfTwolLeds.bs2

v Enter and run PushbuttonControl Of TwolL eds.bs2 in the BASIC Stamp Editor.

v Verify that the LED in the circuit connected to P14 flashes on and off while the
pushbutton in the circuit connected to P3 is held down.

v Also check to make sure the LED in the circuit connected to P15 flashes while
the pushbutton in the circuit connected to P4 is held down

' What's a Mcrocontroller - PushbuttonControl O TwoLeds. bs2
' Blink P14 LED if P3 pushbutton is pressed, and blink P15 LED if
P4 pushbutton is pressed.

' {$STAMP BS2}
' {$PBASI C 2. 5}

PAUSE 1000

Page 76 - What's a Microcontroller?

DO

DEBUG HOVE
DEBUG ? | N4
DEBUG ? | N3

IF (IN3 = 1) THEN
H GH 14
PAUSE 50
ELSEIF (IN4 = 1) THEN
H GH 15
PAUSE 50
ELSE
PAUSE 50
ENDI F

LOW 14
LOW 15

PAUSE 50

LooP

How PushbuttonControlOfTwolLeds.bs2 Works

If the display of I N3 and | N4 scrolled down the Debug Terminal as they did in the
previous example, it would be difficult to read. One way to fix thisisto aways send the
cursor to the top-left position in the Debug Terminal using the HOVE control character:

DEBUG HOVE

By sending the cursor to the home position each time through the DO. .. LOCP, the
commands:

DEBUG ? | N4
DEBUG ? | N3

...display the values of | N4 and | N3 in the same part of the Debug Terminal each time.
The DO keyword begins the loop in this program:

DO

These commands in the | F statement are the same as the ones in the example program
from the previous activity:

Digital Input — Pushbuttons - Page 77

IF (IN3 = 1) THEN
H GH 14
PAUSE 50

This is where the ELSEI F keyword helps. If IN3 ishot 1, but | N4 is 1, we want to turn
the LED connected to P15 on instead of the one connected to P14.

ELSEIF (IN4d = 1) THEN

H GH 15
PAUSE 50

If neither statement is true, we still want to pause for 50 ms without changing the state of
any LED circuits.

ELSE
PAUSE 50

When you' re finished with al the decisions, don’t forget the ENDI F.

ENDI F

It's time to turn the LEDs off and pause again. You could try to decide which LED you
turned on and turn it back off. PBASIC commands execute pretty quickly, so why not
just turn them both off and forget about more decision making?

LOW 14
LOW 15

PAUSE 50

The LOOP statement sends the program back up to the DO statement, and the process of
checking the pushbuttons and changing the states of the LEDs starts all over again.

LOOP

Your Turn —What about Pressing Both Pushbuttons?

The example program has aflaw. Try pressing both pushbuttons at once, and you'll see
the flaw. You would expect both LEDs to flash on and off, but they don’t because only
onecodeblock inan| F. .. ELSEI F. . . ELSE statement gets executed before it skips to the
ENDI F. Hereishow you can fix this problem:

Page 78 - What's a Microcontroller?

v" Save PushbuttonControl Of TwoL eds.bs2 under a new name.
v" Replacethis| F statement and code block:

IF (IN3 = 1) THEN
H GH 14
PAUSE 50

...with this| F. . . ELSEI F statement:

IF (IN3 = 1) AND (IN4 = 1) THEN
H GH 14
H GH 15
PAUSE 50

ELSEIF (IN3 = 1) THEN
H GH 14
PAUSE 50

A code block is a group of commands. The | F statement above has a code block with

three commands (HI GH, Hl GH, and PAUSE). The ELSEI F statement has a code block with
two commands (Hl GH, PAUSE).

v" Run your modified program and see if it handles both pushbutton and LED
circuits as you would expect.

The AND keyword can be used in an | F. .. THEN statement to check if more than one
condition is true. All conditions with AND have to be true for the | F statement to be true.

The ORkeyword can also be used to check if at least one of the conditions are true.

You can also modify the program so that the LED that’s flashing stays on for different
amounts of time. For example, you can reduce the Duration of the PAUSE for both

pushbuttons to 10, increase the PAUSE for the P14 LED to 100, and increase the PAUSE
for the P15 LED to 200.

v" Modify the PAUSE commands in the | F and the two ELSEI F statements as

discussed.
v" Run the modified program.
v' Observe the difference in the behavior of each light.

Digital Input — Pushbuttons - Page 79

ACTIVITY #5: REACTION TIMER TEST

You are the embedded systems engineer at a video game company. The marketing
department recommends that a circuit to test the player’s reaction time be added to the
next hand-held game controller. Your next task is to develop a proof of concept for the
reaction timer test.

The solution you will build and test in this activity is an example of how to solve this
problem, but it's definitely not the only solution. Before continuing, take a moment to
think about how you would design this reaction timer.

Reaction Timer Game Parts

(1) LED —hicolor

(1) Resistor — 470 Q (yellow-violet-brown)
(2) Pushbutton — normally open

(1) Resistor — 10 kQ (brown-black-orange)
(1) Resistor — 220 Q (red-red-brown)

(2) Jumper wires

Building the Reaction Timer Circuit

Figure 3-14 shows a schematic and wiring diagram for a circuit that can be used with the
BASIC Stamp to make a reaction timer game.

v Build the circuit shown in Figure 3-14 on page 80.

v" Run TestBiColorLED.bs2 from Chapter 2, Activity #5 to test the bicolor LED
circuit and make sure your wiring is correct.

v If you just rebuilt the pushbutton circuit for this activity, run
ReadPushbuttonState.bs2 from Activity #2 in this chapter to make sure your
pushbutton is working properly.

Page 80 - What's a Microcontroller?

P15 ©
1
z 7
¥ Vss
2
P14 D AN ooooo
ooooo
470 Q ooooo .
elalalals Flgurg 3-14
vdd E E E E E Reaction
Timer Game
Circuit
-
P3
220 Q
10 kQ
V;s

Programming the Reaction Timer

This next example program will leave the bicolor LED off until the game player presses
and holds the pushbutton. When the pushbutton is held down, the LED will turn red for a
short period of time. When it turns green, the player has to let go of the pushbutton as
fast as he or she can. The program then measures time it takes the player to release the
pushbutton in reaction to the light turning green.

The example program also demonstrates how polling and counting work. Polling is the
process of checking something over and over again very quickly to seeif it has changed.
Counting is the process of adding a number to a variable each time something does (or
does not) happen. In this program, the BASIC Stamp will poll from the time the bicolor
LED turns green until the pushbutton isreleased. It will wait 1/2000 of a second by using
the command PAUSE 1. Each time it polls and the pushbutton is not yet released, it will
add 1 to the counting variable named t i meCount er . When the pushbutton is released,
the program stops polling and sends a message to the Debug Terminal that displays the
value of theti neCount er variable.

Example Program: ReactionTimer.bs2

v Enter and run ReactionTimer.bs2.
v Follow the prompts on the Debug Terminal (see Figure 3-15).

Digital Input — Pushbuttons - Page 81

Figure 3-15
Reaction Timer Game Instructions in
the Debug Terminal

What's a Mcrocontroll er - ReactionTi mer. bs2

' Test reaction tine with a pushbutton and a bicol or LED.

' {$STAMP BS2}
' {$PBASI C 2. 5}

PAUSE 1000

ti meCount er VAR Wor d

DEBUG " Press and hol d pushbutton",

"to make light turn red."

“When |ight turns green,

"go as fast as you can.",
DO

DO
LOOP UNTIL IN3 = 1

H GH 14
LOW 15

PAUSE 1000

LOW 14
H GH 15

timeCounter = 0

Wait 1 sec before 1st nessage.
Decl are variable to store tine.

Di spl ay reaction instructions.

Begi n mai n | oop.

' Nested | oop repeats...
until pushbutton press.

Bi col or LED red.

Del ay 1 second.

Bi col or LED green.

Set tinmeCounter to zero.

Page 82 - What's a Microcontroller?

DO ' Nested | oop, count tine...
PAUSE 1
ti meCounter = timeCounter + 1
LOOP UNTIL IN3 =0 ' until pushbutton is rel eased.
LOW 15 ' Bicolor LED off.
DEBUG " Your tine was ", DEC timeCounter, ' Display tinme neasurenent.
ns.", CR CR
"To play again, hold the ", CR ' Play again instructions.

"pbutton down again.", CR CR

LooP ' Back to "Begin main | oop".

How ReactionTimer.bs2 Works

Since the program will have to keep track of the number of times the pushbutton was
polled, avariable caled t i meCount er is declared.

ti mneCounter VAR Word ' Declare variable to store tine.

Variables initialize to zero: When a variable is declared in PBASIC, its value is
automatically zero until a command sets it to a new value.

The DEBUG commands contain instructions for the player of the game.

DEBUG "Press and hol d pushbutton", CR
"to make light turn red.", CR CR
"When |ight turns green, let", CR
"go as fast as you can.", CR, CR

DO. . . LOOP statements can be nested. In other words, you can put one DO. . . LOCP inside
another.

DO ' Begin main | oop.
DO " Nested | oop repeats...
LOOP UNTIL IN3 =1 " until pushbutton press.

Rest of program was here.

LOOP ' Back to "Begin nmain |oop".

Digital Input — Pushbuttons - Page 83

Theinner DO. . . LOOP deserves acloser look. A DO. . . LOOP can use acondition to decide
whether or not to break out of the loop and move on to more commands that come
afterwards. This DO. .. LOOP will repeat itself as long as the button is not pressed
(IN3 = 0). TheDO ..LOOP will execute over and over again, until 1| N3 = 1. Then, the
program moves on to the next command after the LOOP UNTI L statement. This is an
example of polling. TheDO. .. LOOP UNTI L polls until the pushbutton is pressed.

DO " Nested | oop repeats...
LOOP UNTIL IN3 =1 " until pushbutton press.

The commands that come immediately after the LOOP UNTI L statement turn the bicolor
LED red, delay for one second, then turn it green.

H GH 14 ' Bicolor LED red.
LOW 15

PAUSE 1000 ' Delay 1 second.
LOW 14 ' Bicolor LED green.
H GH 15

As soon as the bicolor LED turns green, it’s time to start counting to track how long until
the player releases the button. The ti meCount er variable is set to zero, then another
DO. .. LOOP with an UNTI L condition starts repeating itself. It repeats itself until the
player releases the button (I N3 = 0). Each time through the loop, the BASIC Stamp
delays for 1 ms using PAUSE 1, and it also adds 1 to the value of the ti meCount er
variable.

ti meCounter = 0 ' Set tinmeCounter to zero.
DO ' Nested | oop, count tine...
PAUSE 1

ti meCounter = tinmeCounter + 1
LOOP UNTIL IN3 =0 " until pushbutton is rel eased.
After the pushbutton is released, the bicolor LED is turned off.

LOW 15

The results are displayed in the Debug Terminal.

Page 84 - What's a Microcontroller?

DEBUG "Your tine was ", DEC tineCounter,
"To play again, hold the ", CR
"button down again.", CR CR

The last statement in the program is LOOP, which sends the program back to the very first
DO statement.

Your Turn — Revising the Design (Advanced Topics)

The marketing department gave your prototype to some game testers. When the game
testers were done, the marketing department came back to you with an itemized list of
three problems that have to be fixed before your prototype can be built into the game
controller.

v' Save ReactionTimer.bs2 under a new name (like ReactionTimerY ourTurn.bs2).
The “itemized list” of problems and their solutions are discussed below.

Item 1: When a player holds the button for 30 seconds, his score is actually around
14,000 ms, a measur ement of 14 seconds. This hasto be fixed!

It turns out that executing the loop itself aong with adding one to the ti meCount er
variable takes about 1 ms without the PAUSE 1 command. Thisis called code overhead,
and it's the amount of time it takes for the BASIC Stamp to execute the commands. A
quick fix that will improve the accuracy isto simply comment out the PAUSE 1 command
by adding an apostrophe to the left of it.

PAUSE 1

v" Try commenting PAUSE 1 and test to see how accurate the programiis.

Instead of commenting the delay, another way you can fix the program is to multiply
your result by two. For example, just before the DEBUG command that displays the
number of ms, you can insert a command that multiplies the result by two:

ti meCounter = tinmeCounter * 2 ' <- Add this
DEBUG "Your tine was ", DEC tineCounter, " nms.", CR CR

Digital Input — Pushbuttons - Page 85

v" Uncomment the PAUSE command by deleting the apostrophe, and try the
multiply-by-two solution instead.

For precision, you can use the */ operator to multiply by a value with a fraction. The */
operator is not hard to use; here’s how:

1) Place the value or variable you want to multiply by a fractional value before the
*/ operator.

2) Take the fractional value that you want to use and multiply it by 256.
3) Round off to get rid of anything to the right of the decimal point.
4) Place that value after the */ operator.
Example: Let's say you want to multiply the t i neCount er variable by 3.69.
1) Start by placing t i neCount er to the left of the */ operator:
ti meCounter = tineCounter */
2) Multiply your fractional value by 256: 3.69 x 256 = 944.64.
3) Round off: 944.64 = 945.
4) Place that value to the right of the */ operator:

ti meCounter = tinmeCounter */ 945 ' multiply by 3.69

Multiplying by 2 will scale a result of 14,000 to 28,000, which isn't quite 30,000.
30,000 + 14,000 = 2.14. To multiply by 2.14 with the */ operator for increased precision,
we need to figure out how many 256" arein 2.14. So, 2.14 x 256 = 547.84 ~ 548. You
can usethisvalueand the*/ operator toreplaceti mecounter = tineCounter * 2.

v Replace timecounter = tinmeCounter * 2 with tinecounter =
ti meCounter */ 548 and retest your program.

Your 30-second test with the original, unmodified program may yield a vaue that's
dightly different from 14,000. If so, you can use the same procedure with your test
resultsto calculate avalue for the*/ operator to make your results even more precise.

v Tryit!

Page 86 - What's a Microcontroller?

Item 2: Players soon figure out that the delay from red to green is 1 second. After
playing it several times, they get better at predicting when to let go, and their score
no longer reflectstheir truereaction time.

The BASIC Stamp has a RANDOM command. Here is how to modify your code for a
random number:

v At the beginning of your code, add a declaration for anew variable called val ue,
and set it to 23. The value 23 is called the seed because it starts the pseudo
random number sequence.

ti meCounter VAR Word
val ue VAR Byte ' <- Add this
val ue = 23 ' <- Add this

v" Just before the PAUSE 1000 command inside the DO. . . LOOP, use the RANDOM
command to give val ue a new “random” value from the pseudo random

seguence that started with 23.
RANDOM val ue ' < Add this
DEBUG "Delay time ", ? 1000 + value, CR ' <- Add this

v" Modify that PAUSE 1000 command so that the “random” val ue is added to its
Duration argument.

PAUSE 1000 + val ue ' <- Mdify this

LOW 14
H GH 15

v Since the largest value a byte can store is 255, the PAUSE command only varies
by ¥4 second. You can multiply the val ue variable by 4 to make the red light
delay vary from 1 to just over 2 seconds.

DEBUG "Del ay tine ", ? 1000 + (value*4), CR ' <- Mdify
PAUSE 1000 + (value * 4) ' <- Mdify this again

Digital Input — Pushbuttons - Page 87

What’s an algorithm? An algorithm is a sequence of mathematical operations.

What's pseudo random? Pseudo random means that it seems random, but it isn’t really.
9 Each time you start the program over again, you will get the same sequence of values.
/

e @

@’ What's a seed? A seed is a value that is used to start the pseudo random sequence. If you
use a different value for the seed (change val ue from 23 to some other number), it will
result in a different pseudo random sequence.

Item 3: A player that lets go of the button before the light turns green gets an
unreasonably good score (1 ms). Your microcontroller needs to figure out if a
player is cheating.

Pseudo code was introduced near the end of Activity #3 in this chapter. Here is some
pseudo code to help you apply an | F. .. THEN. . . ELSE statement to solve the problem.
Assuming you have made the other changesin items 1 and 2, t i meCount er will now be
2 instead of 1 if the player releases the button before the light turns green. The changes
below will work if ti meCount er iseither 1 or 2.

o [f thevalue of timeCounter islessthan or equal to 2 (timeCounter <= 2)
o Display a messagetelling the player he or she hasto wait until after the
light turns green to let go of the button.
o Elsg, (if the value of timeCounter is greater than 1)
o Display the value of timeCounter (just likein ReactionTimer.bs2) time
inms.
e EndIf
e Displaya*“ Toplay again...” message.

v" Modify your program by implementing this pseudo code in PBASIC to fix the
cheating player problem.

SUMMARY

This chapter introduced the pushbutton and some common pushbutton circuits. This
chapter aso introduced how to build and test a pushbutton circuit and how to use the
BASIC Stamp to read the state of one or more pushbuttons. The BASIC Stamp was
programmed to make decisions based on the state(s) of the pushbutton(s) and this
information was used to control LED(s). A reaction timer game was built using these
concepts. In addition to controlling LEDs, the BASIC Stamp was programmed to poll a
pushbutton and take time measurements.

Page 88 - What's a Microcontroller?

Several programming concepts were introduced, including counting, pseudo code for
planning program flow, code overhead in timing-sensitive applications, and seed values
for pseudo random events.

Reading individua pushbutton circuits using the specia /O variables built into the
BASIC Stamp (1 N3, | N4, etc.) was introduced. Making decisions based on these values
using | F...THEN...ELSE statements, | F...ELSEIF...ELSE statements, and code
blocks were aso introduced. For evaluating more than one condition, the AND and OR
operators were introduced. Adding a condition to aDo. . . LOOP using the UNTI L keyword
was introduced along with nesting DO. . . LOOP code blocks. The RANDOM command was
introduced to add an element of unpredictability to an application, the Reaction Timer
game.

Questions
1. What is the difference between sending and receiving H GH and LOwW signals
using the BASIC Stamp?
2. What does “normally open” mean in regards to a pushbutton?
3. What happens between the terminals of a normally open pushbutton when you

pressit?

4. What is the value of | N3 when a pushbutton connects it to Vdd? What is the
value of | N3 when a pushbutton connectsit to Vss?

5. What does the command DEBUG ? | N3 do?

6. What kind of code blocks can be used for making decisions based on the value
of one or more pushbuttons?

7. What does the HOVE control character do in the statement DEBUG HOVE?

Exercises

1. Explain how to modify ReadPushbuttonState.bs2 on page 68 so that it reads the
pushbutton every second instead of every %4 second.

2. Explain how to modify ReadPushbuttonState.bs2 so that it reads a normally open
pushbutton circuit with a pull-up resistor connected to 1/O pin P6.

Project

1. Modify ReactionTimer.bs2 so that it is a two-player game. Add a second button
wired to P4 for the second player.

Digital Input — Pushbuttons - Page 89

Solutions

QL
Q2.
Qs
Q4.
Q5.
Q6.
Q7.

El.

E2.

Sending uses the BASIC Stamp 1/O pin as an output, whereas receiving uses the
I/O pin as an input.

Normally open means the pushbutton's normal state (not pressed) forms an open
circuit.

When pressed, the gap between the terminals is bridged by a conductive metal.
Current can then flow through the pushbutton.

I N3 = 1 when pushbutton connectsit to Vdd. | N3 = 0 when pushbutton
connectsit to Vss.

DEBUG ? | N3 displaysthetext “IN3 =" followed by the value stored in | N3
(either a0 or 1 depending on the state of 1/0 pin P3), followed by a carriage
return.

IF...THEN. . .ELSEand I F...ELSEIF...ELSE.

The HOVE control character sends the cursor to the top left position in the Debug
Terminal.

The DO . . LOOP in the program repeats every Y4 second because of the command
PAUSE 250. To repeat every second, change the PAUSE 250 (250 ms = 0.25 s
=Y4s), to PAUSE 1000 (1000ms=159).

DO
DEBUG ? | N3
PAUSE 1000
LOOP

Replace 1 N3 with 1 N6, to read 1/O pin P6. The program only displays the
pushbutton state, and does not use the value to make decisions; it does not matter
whether the resistor is a pull-up or a pull-down. The DEBUG command will
display the button state either way.

DO
DEBUG ? | N6
PAUSE 250
LOoOP

Page 90 - What's a Microcontroller?

P1. First, a button was added for the second player, wired to BASIC Stamp 1/0

pin P4. The schematic is based on Figure 3-14 on page 80.
Vvdd vdd

S el

220 220 Q
10kQ 10kQ

P15

P14
470Q = —
Vss Vss

Snippets from the solution program are included below, but keep in mind
solutions may be coded a variety of different ways. However, most solutions
will include the following modifications:

Use two variables to keep track of two player's times:

ti meCount er A VAR Word " Tinme score of player A
ti meCount er B VAR Word " Tine score of player B

Change instructions to reflect two pushbuttons:

DEBUG "Press and hol d pushbuttons”, CR,
DEBUG "buttons down again.", CR, CR

Wait for both buttons to be pressed before turning LED red, by using the AND
operator:

LOOP UNTIL (IN3 = 1) AND (I N4 = 1)
Wait for both buttons to be released to end timing, again using the AND operator:
LOOP UNTIL (IN3 = 0) AND (I N4 = 0)
Add logic to decide which player'stime is incremented:
IF (IN3 = 1) THEN
ti meCounter A = timeCounterA + 1
ENDI F
IF (IN4 = 1) THEN

ti meCounterB = ti meCounterB + 1
ENDI F

Digital Input — Pushbuttons - Page 91

Change time display to show times of both players:

DEBUG "Pl ayer A Tine: ", DEC tineCounterA, " nms. ", CR
DEBUG "Pl ayer B Tine: ", DEC tineCounterB, " ns. ", CR CR

Add logic to show which player had the faster reaction time:

IF (timeCounterA < tineCounterB) THEN
DEBUG "Pl ayer Ais the winner!", CR
ELSEI F (ti meCounterB < tinmeCounterA) THEN
DEBUG "Pl ayer Bis the winner!", CR
ELSE
DEBUG "It's a tie!", CR
ENDI F

The complete solution is shown below.

What's a M crocontroller - ChO3Prj0l1_TwoPl ayer Reacti onTi mer . bs2
Test reaction tine with a pushbutton and a bicol or LED.

Add a second player with a second pushbutton. Both pl ayers

play at once using the sane LED. Quickest to rel ease w ns.

' Pin P3: Player A Pushbutton, Active Hi gh

' Pin P4: Player B Pushbutton, Active H gh

{$STAVP BS2}
' {$PBASI C 2.5}

ti meCount er A VAR Wor d ' Time score of player A
ti meCount er B VAR Wor d ' Time score of player B
PAUSE 1000 ' 1 s before 1st message
DEBUG " Press and hol d pushbuttons", CR ' Display reaction
"to make light turn red.", CR CR ' instructions.
“When light turns green, let", CR
"go as fast as you can.", CR CR
DO ' Begin main |oop.
DO ' Loop until both press
' Not hi ng
LOOP UNTIL (IN3 = 1) AND (IN4 = 1)
H GH 14 ' Bicolor LED red.
LOW 15
PAUSE 1000 ' Delay 1 second.
LOW 14 ' Bicolor LED green.

H GH 15

Page 92 - What's a Microcontroller?

ti meCounterA = 0 ' Set tineCounters to zero
ti meCounterB = 0
DO
PAUSE 1
IF (IN3 = 1) THEN " If button is still down,
timeCounterA = ti meCounterA + 1 ' increnent counter
ENDI F

IF (IN4 = 1) THEN
ti meCounterB = ti meCounterB + 1

ENDI F
LOOP UNTIL (IN3 = 0) AND (I N4 = 0) ' Loop until both buttons
' rel eased.
LOW 15 ' Bicolor LED off.
DEBUG "Pl ayer A Tine: ", DEC tineCounterA, " ns. ", CR
DEBUG "Pl ayer B Tine: ", DEC tineCounterB, " ns. ", CR CR
I'F (tineCounterA < timeCounterB) THEN
DEBUG "Pl ayer Ais the winner!", CR
ELSEI F (tineCounterB < tineCounterA) THEN
DEBUG "Pl ayer B is the winner!", CR
ELSE ' A& Btines are equal
DEBUG "It's a tiel", CR
ENDI F
DEBUG CR
DEBUG "To play again, hold the ", CR ' Play again instructions.

DEBUG "buttons down again.", CR CR

LOooP ' Back to Begin main |oop.

Controlling Motion - Page 93

Chapter 4: Controlling Motion

MICROCONTROLLED MOTION

Microcontrollers make sure things move to the right place all around you every day. If
you have an inkjet printer, the print head that goes back and forth across the page as it
printsis moved by a stepper motor that is controlled by a microcontroller. The automatic
grocery store doors that you walk through are controlled by microcontrollers, and the
automatic eject feature in your DVD player is also controlled by a microcontroller.

ON/OFF SIGNALS AND MOTOR MOTION

Just about all microcontrolled motors receive sequences of high and low signals similar
to the ones you' ve been sending to LEDs. The difference is that the microcontroller has
to send these signals at rates that are usually much faster than the blinking LED examples
from Chapter 2. If you were to use an LED circuit to monitor control signals, some
would make the LED flicker on/off so rapidly that the human eye could not detect the
switching. The LED would only appear to glow faintly. Others would appear as a rapid
flicker, and others would be more easily discernible.

Some motors require lots of circuitry to help the microcontroller make them work. Other
motors require extra mechanical parts to make them work right in machines. Of al the
different types of motors to start with, the hobby servo that you will experiment with in
this chapter is probably the ssmplest. As you will soon see, it is easy to control with the
BASIC Stamp, requires little or no additional circuitry, and has a mechanical output that
is easy to connect to things to make them move.

INTRODUCING THE SERVO

A hobby servo is a device that controls position, and you can find them in just about any
radio controlled (RC) car, boat or plane. In RC cars, the servo holds the steering to
control how sharply the car turns. In an RC boat, it holds the rudder in position for turns.
RC planes typically have severa servos that position the different flaps to control the
plane’'s motion. In RC vehicles with gas powered engines, another servo moves the
engine' s throttle lever to control how fast the engine runs. An example of an RC airplane
and its radio controller are shown in Figure 4-1. The hobbyist “flies’ the airplane by
manipulating thumb joysticks on the radio controller, which causes the servos on the
plane to control the positions of the RC plane’s elevator flaps and rudder.

Page 94 - What's a Microcontroller?

Figure 4-1
Model Airplane and
Radio Controller

So, how does holding the radio controller’s joystick in a certain position cause a flap on
the RC plane to hold a certain position? The radio controller converts the position of the
joysticks into pulses of radio activity that last certain amounts of time. The time each
pulse lasts indicates the position of one of the joysticks. On the RC plane, a radio
receiver converts these radio activity pulses to digital pulses (high/low signals) and sends
them to the plane's servos. Each servo has circuitry inside it that converts these digital
pulses to a position that the servo maintains. The amount of time each pulse lasts is what
tells the servo what position to maintain. These control pulses only last a few
thousandths of a second, and repeat around 40 to 50 times per second to make the servo
maintain the position it holds.

Figure 4-2 shows adrawing of a Parallax Standard Servo. The plug (1) is used to connect
the servo to a power source (Vdd and Vss) and a signal source (aBASIC Stamp 1/0 pin).
The cable (2) has three wires, and it conducts Vdd, Vss and the signal line from the plug
into the servo. The horn (3) is the part of the servo that looks like a four-pointed star.
When the servo is running, the horn is the moving part that the servo holds in different
positions. The Phillips screw (4) holds the horn to the servo’s output shaft. The case (5)
contains the servo’s position sensing and control circuits, a DC motor, and gears. These
parts work together to take high/low signals from the BASIC Stamp and translate them
into positions held by the servo horn.

Controlling Motion - Page 95

Figure 4-2
The Parallax Standard
Servo

(1) Plug

(2) Cable

(3) Horn

(4) Screw that attaches
the horn to the servo’s
PARALLAX output shaft

(5) Case

www.parallax.com

In this chapter, you will program the BASIC Stamp to send signals to a servo that control
the servo horn’s position. By making the BASIC Stamp send signals that tell the servo to
hold different positions, your programs can aso orchestrate the servo’s motion. Your
programs can even monitor pushbuttons and use information about whether the buttons
are pressed to adjust the position a servo holds (pushbutton servo position control). The
BASIC Stamp can aso be programmed to receive messages that you type into the Debug
Terminal, and use those messages to control the servo’s position (terminal servo position
control).

ACTIVITY #1: CONNECTING AND TESTING THE SERVO

In this activity, you will follow instructions for connecting a servo to your particular
board' s power supply and BASIC Stamp.

Page 96 - What's a Microcontroller?

Servo and LED Circuit Parts

(1) Parallax Standard Servo
(1) Resistor —470 Q (yellow-violet-brown)
(1) LED —any color

The LED circuit will be used to monitor the control signal the BASIC Stamp sends to the
servo. Keep in mind that the LED circuit is not required to help the servo operate. It is
just there to help “see” the control signals.

CAUTION: use only a Parallax Standard Servo for the activities in this text! Other
servos may be designed to different specifications that might not be compatible with these
activities.

Building the Servo and LED Circuits

In Chapter 1, you identified your board and revision using the BASIC Stamp Editor Help.
Y ou will need to know which board and revision you have here so that you can find the
servo circuit building instructions for your board.

v If you do not already know which board and revision you have, open the BASIC
Stamp Editor Help and click on the Getting Started with Stamps in Class link on
the home page. Then, follow the directions to determine which board you have.

v"If you have a Board of Education USB (any Rev) or Serial (Rev C or newer), go
to the Board of Education Servo Circuit section below.

v If you have aBASIC Stamp HomeWork Board (Rev C or newer), go the BASIC
Stamp HomeWork Board Servo Circuit section on page 99.

v If your board is not listed above, go to www.parallax.com/Go/WAM — Servo
Circuit Connections to find circuit instructions for your board. When you are
done with the servo circuit instructions for your board, go on to Activity #2:
Servo Control Test Program on page 102.

Board of Education Servo Circuit

These instructions are for all USB Board of Education Revisions as well as for the Serial
Board of Education Rev C or newer.

v Turn off the power as shown in Figure 4-3.

Controlling Motion - Page 97

(J
0.0 Figure 4-3

Disconnect Power

Set 3-position switch to 0

Figure 4-4 shows the servo header on the Board of Education. This is where you will
plug in your servo. This board features a jumper that you can use to connect the servo’'s
power supply to either Vin or Vdd. The jumper is the removable black rectangular piece
indicated by the arrow between the two servo headers.

v' Verify that the jJumper is set to Vdd as shown in Figure 4-4. If itisinstead set to
Vin, lift the rectangular jumper up off of the pins it is currently on, and then
pressit on the two pins closest to the Vdd label.

15 14 \Vdd 13 12
@ Figure 4-4

gledk Servo Header Jumper Set to Vdd
acl

X4 X5
Vin

The jumper allows you to choose the power supply (Vin or Vdd) for the Parallax
Standard Servo.

. If you are using a 9 V battery, set it to Vdd. DO NOT USE Wall-mount 9 V Battery
“replacers.”

. If you are using a 4 AA cell, 6 V battery pack, either setting will work.

. If you are using a wall-mount DC power supply, use only Vdd. Before connecting
a wall-mount DC supply to the Board of Education, make sure to check the
specifications for acceptable DC supplies listed in the BASIC Stamp Editor Help.

Figure 4-5 shows the schematic of the circuit you will build on your Board of Education.

v Build the circuit shown in Figure 4-5 and Figure 4-6.
v" Make sure you did not plug the servo in upside-down. The white, red and black
wires should line up as shown in Figure 4-6.

Page 98 - What's a Microcontroller?

P14
470 Q

P14 D White

Black

Red |

\%

n
n

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
PO

X2

Oooooao

ooooo

Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooag

\. 0o

osoo
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
Oooooao
oooog

Servo

PARALLAX

www.parallax.com

Figure 4-5

Servo and LED
Indicator Schematic
for Board of
Education

For Serial Board of
Education Rev C or
newer, or any USB
Board of Education

Figure 4-6

Servo and LED
Indicator on Board
of Education

Controlling Motion - Page 99

Up until now, you have been using the 3-position switch in position 1. Now, you will
move it to position 2 to turn on the power to the servo header.

v Supply power to the servo header by adjusting the 3-position switch as shown in
Figure 4-7. Y our servo may move a bit when you connect the power.

Reset

Figure 4-7
Power turned on to Board of
(. Education and Servo Header

If you see instructions in this chapter that read “Connect power to your board” move the
3-position switch to position-2. Likewise, if you see instructions in this chapter that read
“Disconnect power from your board” move the 3-position switch to position-0.

v Disconnect power from your board.
v' Go onto Activity #2 on page 102.

BASIC Stamp HomeWork Board Servo Circuit
If you are connecting your servo to a BASIC Stamp HomeWork Board (Rev C or newer),

you will need these extra parts from your kit:

(2) 3-pin male/male header (shown in Figure 4-8).
(4) Jumper wires

Figure 4-8
Extra Part for BASIC Stamp
HomeWork Board Servo Circuit

3-pin male/male header

Figure 4-9 shows the schematic of the servo and LED indicator circuits on the BASIC
Stamp HomeWork Board. The instructions that come after this figure will show you how
to safely build this circuit.

Page 100 - What's a Microcontroller?

v" Disconnect your 9V battery from your HomeWork Board.
v/ Build the LED indicator and servo header circuit shown by the schematic in
Figure 4-9 and wiring diagram in Figure 4-10.

P14
470 Q
X LED
Vss
vdd Figure 4-9
Schematic for Servo and
) LED Indicator on
p14 D— White | HomeWork Board
Red Servo
Black
Vgs

Figure 4-10
LED Indicator and Servo

Header Circuits on
HomeWork Board

PARALLAX

www.parallax.com

AN

Controlling Motion - Page 101

Connect the servo to the servo header as shown in Figure 4-11.

Make sure that the colors on the servo’'s cable align properly with the colors
labeled in the picture.

Double-check your wiring.

WARNING

Use only a 9 V battery when your Parallax Standard Servo is connected to the BASIC
Stamp HomeWork Board. Do not use any kind of DC supply or “battery replacer” that
plugs into an AC outlet.

For best results, make sure your battery is new. If you are using a rechargeable battery,
make sure it is freshly recharged. It should also be rated for 100 mAh (milliamp hours) or
more.

v

X2

Reconnect your 9 V battery to your HomeWork Board. The servo may twitch
dlightly when you make the connection.

Figure 4-11
Servo Connected to
HomeWork Board

PARALLAX

www.parallax.com

Page 102 - What's a Microcontroller?

ACTIVITY #2: SERVO CONTROL TEST PROGRAM

A degree is an angle measurement denoted by the ° symbol. Example degree angle
measurements are shown in Figure 4-12, including 30°, 45°, 90°, 135°, and 180°. Each
degree of angle measurement represents 1/360™ of a circle, so the 90° measurement is ¥4
of acirclesince 90 + 360 = V4. Likewise, 180° is %2 of acircle since 180 + 360 = %, and
you can calculate similar fractions for the other degree measurements in the figure.

Figure 4-12
. o Examples of
/4 /4 90° \Qs /12 Degree Angle
Measurements

The Paralax Standard Servo can make its horn hold positions anywhere within a 180°
range, so degree measurements can be useful for describing the positions the servo holds.
Figure 4-13 shows examples of a servo with a loop of wire that has been threaded
through two of the holes in its horn and then twist-tied. The direction the twist tie points
indicates the angle of the servo’'s horn, and the figure shows examples of 0°, 45°, 90°,
135°, and 180°.

Figure 4-13: Servo Horn Position Examples

Your servo horn’s range of motion and mechanical limits will probably be different from what's
shown here. Instructions on how to adjust it to match this figure come after the first example
program.

Factory servo horn mounting is random, so your servo horn positions will probably be
different from the ones in Figure 4-13. In fact, compared to Figure 4-13, your servo’'s
horn could be mounted anywhere in a +/- 45° range. The servo in Figure 4-14 shows an
example of a servo whose horn was mounted 20° clockwise from the one in Figure 4-13.
After you find the center of the servo horn’s range of motion, you can either use it as a
90° reference or mechanically adjust the servo’s horn so that it matches Figure 4-13 by
following instructions later in this activity.

Controlling Motion - Page 103

Figure 4-14: Servo Horn Position Examples before Mechanical Adjustment
235

This is an example of a horn that's mounted on the servo’s output shaft about 20°
counterclockwise of how it was set in Figure 4-13.

You can find the center of the servo’s range of motion by gently rotating the horn to find
its clockwise and counterclockwise mechanical limits. The half way position between
these two limits is the center or 90° position. The servo’'s center position could fall
anywhere in the region shown in Figure 4-15.

The center of your servo horn’s range of motion should
fall somewhere in this region

Figure 4-15

Range of Possible
Center Positions

standard servo

www.parallax.com

Page 104 - What's a Microcontroller?

In these next steps, twist the servo horn slowly and do not force it! The servo has
built-in mechanical limits to prevent the horn from rotating outside its 180° range of motion.
Twist the horn gently, and you'll be able to feel the when it reaches one of its mechanical
limits. Don'’t try to force it beyond those limits because it could strip the gears inside the
servo.

<]

Verify that the power to your board is till disconnected.

Gently rotate the servo horn to find the servo’s clockwise and counterclockwise
mechanical limits. The servos horn will turn with very little twisting force until
you reach these limits. DO NOT TRY TO TWIST THE HORN PAST THESE
LIMITS; only twist it far enough to find them.

Rotate the servo’'s horn so that it is half way between the two limits. This is
approximately the servo’s “center” position.

With the servo horn in its center position, thread a jumper wire through the horn

and twist tie it so that it points upward into the region shown in Figure 4-15.

Keep in mind the direction the twist tie is pointing in the figure is just an example; your
twist tie might point anywhere in the region. Wherever it points when it's in the center of
its range of motion should be pretty close to the servo’s 90° position. Again, this position
can vary from one servo to the next because of the way the horn gets attached to the

SEervo.

Programming Servo Positions

The graph in Figure 4-16 is called a timing diagram, and it shows examples of the
high/low signals the BASIC Stamp has to send a servo to make it hold its 90° position.

vdd (5 V)

Figure 4-16
Servo Signal Timing
Diagram

1.5 ms pulses make
the servo hold a 90°

Vss (0 V) " “center” position.

The timing diagram shows high signals that last for 1.5 ms, separated by low signals that
last 20 ms. The. .. totheright of the signal is away of indicating that the 1.5 ms high
and 20 ms low signal has to be repeated over and over again to make the servo hold the

Controlling Motion - Page 105

position. The “~" symbol in “~20 ms’ indicates that the low time can be approximate,
and it can actually vary a few milliseconds above or below 20 ms with next to no effect
on the where the servo positions its horn. That’s because amount of time the high signa
lastsis what tells the servo what position to hold, so it has to be precise.

There's a special command called PULSOUT that gives your program precise control over
the durations of those very brief high signals, which are commonly referred to as pulses.
Here is the command syntax for PULSOUT:

PULSOUT Pin, Duration

With the PULSOUT command, you can write PBASIC code to make the BASIC Stamp set
the servo’'s position to 90° using the Figure 4-16 timing diagram as a guide. The
PULSOUT command’s Pin argument has to be a number that tells the BASIC Stamp which
I/O pin should transmit the pulse. The PULSOUT command’s Duration argument is the
number of 2-millionths-of-a-second time increments the pulse should last. 2 millionths
of asecond is equal to 2 microseconds, which is abbreviated 2 ps.

A millionth of a second is called a microsecond. The Greek letter u is used in place of the
word micro and the letter s is used in place of second. This is handy for writing and taking
notes, because instead of writing 2 microseconds, you can write 2 pus.

Reminder: one thousandth of a second is called a millisecond, and is abbreviated ms.

Fact: 1 ms = 1000 us. In other words, you can fit one thousand millionths of a second into
one thousandth of a second.

Now that we know how to use the PULSOUT command, ServoCenter.bs2 sends control
pulses repeatedly to make the servo hold its 90° position. The command PULSOUT 14,

750 will send a 1.5 ms pulse to the servo. That's because the PULSOUT command's
Duration argument specifies the number of 2 ps units the pulse should last. Since the
Duration argument is 750, the PULSOUT command will make the pulse last for 750 x 2 us
= 1500 ps, which is 1.5 ms since there are 1000 pusin 1 ms. After the high pulseis done,
the PULSOUT command leaves the /O pin sending a low signal. So, a PAUSE 20
command after PULSOUT makes the BASIC Stamp send a low signal for 20 ms. With
both of those commandsinside aDoO. . . LOOP, the 1.5 ms high followed by the 20 ms low
will repeat over and over again to make the servo hold its position.

Page 106 - What's a Microcontroller?

Example Program: ServoCenter.bs2

' What's a Mcrocontroller - ServoCenter.bs2
Hol d the servo in its 90 degree center position.

' {$STAWP BS2}
' {$PBASI C 2. 5}

DEBUG " Program Runni ng!", CR
DO
PULSOUT 14, 750

PAUSE 20
LOOP

Test the Servo’s 90° “Center” Position

The servo’'s 90° position is called its center position because the 90° point is in the
“center” of the servo’s 180° range of motion. The 1.5 ms pulses make the servo hold its
horn in this center position, which should be close to the half way point you determined
by finding the servo’s mechanical limits. Y ou can either use whatever center position the
servo holds as your reference for 90°, or use a screwdriver to remove and reposition the
horn so that 90° makes the jumper wire twist tie point straight up. Instructions for this
are coming up in the section titled: Optional — Adjust Servo Horn to 90° Center. If you
use the center position as a reference without adjusting it, any other position the servo
holds will be relative that 90° position. For instance, the 45° position would be 1/8 of a
turn clockwise from it, and the 135° position would be 1/8 of a turn counterclockwise.
Examples of this were shown in Figure 4-14 on page 103.

Let'sfirst find what your servo’s actual center position is:

v Gently turn the servo’s horn to one of its mechanical limits.

v" Reconnect power to your board. If you have a Board of Education, make sure to
slide the 3-position all the way to the right (to position-2).

v Run ServoCenter.bs2.

As soon as the program loads, the servo’s horn should rotate to its center position and
stay there. The servo “holds’ this position, because standard servos are designed to resist
external forces that push against it. That's how the servo holds the RC car steering, boat
rudder, or airplane control flap in place.

v" Make anote of your servo’s center position.

Controlling Motion - Page 107

v' Apply gentle twisting pressure to the horn like you did while rotating the servo
to find its mechanical limits. The servo should resist and hold its horn in its
center position.

If you disconnect power, you can rotate the servo away from its center position. When
you reconnect power, the program will restart, and servo will immediately move the horn
back to its center position and hold it there.

v Tryit!

Optional — Adjust Servo Horn to 90° Center

You can optionally adjust your serva’s horn so that it makes the jumper wire twist tie
point straight up when ServoCenter.bs2 is running, like it does in the right side of Figure
4-17. If you make this mechanical adjustment, it’'ll simplify tracking the servo’s angles
because each angle will resemble the onesin Figure 4-13 on page 102.

You will need a #2 Phillips screwdriver for this optional adjustment.

Output Q
shaft -
Phillips / Figure 4-17
Screw Mechanical Servo
® Centering

\
&

You can remove

and reposition the
servo horn on the
output shaft with a

PARALLAX small screwdriver.

www.parallax.com

_“4

PARALLAX

www.parallax.com

v Disconnect power from your board.

Page 108 - What's a Microcontroller?

v" Remove the screw that attaches the servo's horn to its output shaft, and then
gently pull the horn away from case to freeit. Your parts should resemble the
left side of Figure 4-17.

v Reconnect power to your board. The program should make the servo hold its
output shaft in the center position.

v' Slip the horn back onto the servo’s output shaft so that it makes the twist tied
wire point straight up like it does on the right side of Figure 4-17.

Alignment Offset: It might not be possible to get it to line up perfectly because of the way
the horn fits onto the output shaft, but it should be close. You can then adjust the wire loop
to compensate for this small offset and make the twist tie point straight up.

Disconnect power from your board.

Retighten the Phillips screw.

Reconnect power so that the program makes the servo hold its center position
again. The twist tie should now point straight up (or almost straight up)
indicating the 90° position.

AN

Your Turn — Programs to Point the Servo in Different Directions

Figure 4-18 shows a few PULSOUT commands that tell the servo to hold certain major
positions, like 0°, 45°, 90°, 135°, and 180°. These PULSOUT commands are approximate,
and you may have to adjust the values dlightly to get more precise angular positions. You
can modify the PULSOUT command’'s Duration argument to hold any position in this
range. For example, if you want the servo to hold the 30° position, your PULSOUT
command’s Duration argument would have to be 417, which is 2/3 of the way between
Duration arguments of 250 (0°) to 500 (45°).

The pulse durations in Figure 4-18 will get the servo horn close to the angles shown,
but they are not necessarily exact. You can experiment with different PULSOUT
Duration values for more precise positioning.

Save a copy of ServoCenter.bs2 as TestServoPositions.bs2

Change the program’s PULSOUT Duration argument from 750 to 500, and run the
modified program to verify that it makes the servo hold its 45° position.

v Repeat thistest of PULSOUT Duration arguments with 1000 (135°), and 417 (30°).

AN

Controlling Motion - Page 109

v" Try predicting a PULSOUT Duration you would need for a position that’s not listed
in Figure 4-18, and test to make sure the servo turns the horn to and holds the
position you want. Example positions could include 60°, 120°, etc.

Keep your program’s PULSOUT Duration arguments in the 350 to 1150 range. The 250
to 1250 range is “in theory” but in practice the servo might try to push against its mechanical
limits. This can reduce the servo’s useful life. If you want to maximize your servo’s range of
motion, carefully test values that get gradually closer to the mechanical limits. So long as
you use PULSQUT Duration values that cause the servo to position its horn just inside its
mechanical limits, wear and tear will be normal instead of excessive.

Figure 4-18: Servo Horn Positions, PULSOUT Commands, and ms Pulse Durations

750

PULSOUT 14,
(1.5 ms)

L,
[Q
2%, <
N ™
Y, ~
v S
Ko
) 96‘ b}'\
O Bt
53
T
30° \Q%

0° PULSOUT 14, 250

PULSOUT 14, 1250 180°
(0.5 ms)

(2.5 ms)

standard servo

www.parallax.com

Page 110 - What's a Microcontroller?

Do the Math

Along with each PULSOUT command in Figure 4-18, there's a corresponding number of
milliseconds that each pulse lasts. For example, the pulse that PULSOUT 14, 417 sends
lasts 0.834 ms, and the pulse that PULSOUT 14, 500 sends lasts 1.0 ms. If you have a
BASIC Stamp 2 and want to convert time from milliseconds to a Duration for your
PULSOUT command, use this equation:

Duration = number of msx500

For example, if you didn't already know that the PULSOUT Duration argument for 1.5 ms
is 750, hereis how you could calculate it:

Duration = 1.5x 500
=750

The reason we have to multiply the number of milliseconds in a pulse by 500 to get a
PULSOUT Duration argument is because Duration isin terms of 2 ps unitsfor aBS2. How
many 2 ps units arein 1 ms? Just divide 2-one-millionths into 1-one-thousandth to find
out.

1 2
% _500
1,000 1,000,000

If your command isPULSOUT 14, 500, the pulsewill last for 500 x 2 us = 1000 ps= 1.0
ms. (Remember, 1000 us=1ms.)

You can also figure out the Duration of amystery PULSOUT command using this equation:

Duration
500

number of ms =
For example, if you see the command PULSOUT 14, 850, how long does that pulse
really last?

850
number of ms=——ms
50

=1.7ms

Controlling Motion - Page 111

Write Code from Timing Diagrams

Figure 4-19 shows a timing diagram of the signal the BASIC Stamp can send to a servo
so its horn will hold a 135° position. Since this timing diagram features repeated pulses
separated by 20 ms low signals, the DO. . . LOOP from ServoCenter.bs2 provides a good
starting point, and all that needs to be adjusted is the high pulse duration. To calculate
the PULSOUT command’s Duration argument for the 2 ms pulses in the timing diagram,
you can use the Duration equation in the Do the Math section:

Duration = number of msx 500
=2.0x500
=1000

When 1000 gets substituted into the PULSOUT command’s Duration argument, the servo
control loop should look like this:

DO
PULSQUT 14, 1000
PAUSE 20

LOCP

v' TestthisDO. .. LOOP in acopy of ServoCenter.bs2 and verify that it positions the
servo’s horn at approximately 135°.
v Repeat this exercise for the timing diagram in Figure 4-20.

Figure 4-19
Timing Diagram for
vdd (5 V) 135° Position

2 ms pulses
separated by 20

Vss (0 V) ms

Page 112 - What's a Microcontroller?

Figure 4-20

vdd (5 V) Timing Diagram for
45° Position
1 ms pulses

Vss (OV) © separated by 20 ms

ACTIVITY #3: CONTROL SERVO HOLD TIME

Animatronics uses electronics to animate props and special effects, and servos are a
common tool in thisfield. Figure 4-21 shows an example of arobotic hand animatronics
project, with servos controlling each finger. The PBASIC program that controls the hand
gestures has to make the servos hold positions for certain amounts of time for each
gesture. In the previous activity, our programs made the servo hold certain positions
indefinitely. This activity introduces how write code that makes the servo hold certain
positions for certain amounts of time.

Figure 4-21
Animatronic Hand

There are five servos in the lower
right of the figure that that pull bicycle
break cables that are threaded
through the fingers and thumb to
make them flex. This gives the
BASIC Stamp control over each
finger.

Controlling Motion - Page 113

FOR. .. NEXT Loops to Control the Time a Servo Holds a Position

If you write code to make an LED blink once every second, you can nest the code in a
FOR. .. NEXT loop that repeats three times to make the light blink for three seconds. If
your LED blinks five times per second, you’ d have to make the FOR. . . NEXT loop repeat
fifteen times to get the LED to blink for three seconds. Since the PULSOUT and PAUSE
commands that control your servo are responsible for sending high/low signals, they also
make the LED blink. The signals we sent to the servo in the previous activity made the
LED glow faintly, maybe with some apparent flicker, because the on/off signals are so
rapid, and the high times are so brief. Let's sow the signals down to /10" speed for
visible LED indicator light blinking.

Example Program: SlowServoSignalForLed.bs2

Compared to the servo center signal, this example program increases the PULSOUT and
PAUSE durations by a factor of ten so that we can see them as LED indicator light
blinking. The program’s FOR. . . NEXT loop repeats at almost 5 times per second, so 15
repetitions results in making the light blink for three seconds.

v Disconnect Power to your servo:

o If you have a Board of Education, set the 3-position switch to postion-1
to disconnect power from the servo. Position-1 will still supply power
to the rest of the system.

o If you have a BASIC Stamp Homework Board, temporarily unplug the
end of the wire that’s plugged into Vdd and leave it floating. This will
disconnect power from your servo.

Enter and run SlowServoSignalsForlL ed.bs2.
Verify that the LED blinks rapidly for about three seconds.
Change the FOR. . . NEXT loop’s Endvalue from 15 to 30 and re-run the program.
Since the loop repeated twice as many times, the light should blink for twice as
long — six seconds.
v Reconnect power to your servo:
o If you have a Board of Education, set the 3-position switch back to
postion-2 to reconnect power to the servo.
o0 If you have a BASIC Stamp Homework Board, plug the end of the wire
you disconnected back into the Vdd socket.

AANEN

' What's a Mcrocontrol |l er — Sl owSer voSi gnal sFor Led. bs2
' Slow down the servo signals to 1/10 speed so that they are we can
' see the LED indicator blink on/off.

Page 114 - What's a Microcontroller?

' {$STAMP BS2}
' {$PBASI C 2. 5}

DEBUG " Program Runni ng!", CR
count er VAR Wor d

FOR counter = 1 to 15
PULSQUT 14, 7500
PAUSE 200

NEXT

Example Program: ThreeServoPositions.bs2

If you change PULSOUT 14, 7500 to PULSOUT 14, 750 and PAUSE 200 to PAUSE 20,
you will have a FOR .. NEXT loop that briefly sends the center position signal to the
Servo. Since the signas now last 1/10" of their durations in
SlowServoSignalsForLed.bs2, the entire FOR. . . NEXT loop will take 1/10™ the time to
execute. If the goal is to make the servo hold a particular position for three seconds,
simply deliver ten times as many pulses by increasing the FOR. . . NEXT loop’s EndValue
argument from 15 to 150.

FOR counter = 1 to 150 ' Center for about 3 sec.
PULSQUT 14, 750
PAUSE 20

LOOP

The ThreeServoPositions.bs2 example program makes the servo hold the three different
positions shown in Figure 4-22, each for about 3 seconds.

Figure 4-22
ThreeServoPositions.bs2

The program makes the
servo hold each position
for about three seconds.

v Enter and run ThreeServoPositions.bs2.
v Verify that the servo holds each position in the Figure 4-22 sequence for about
three seconds.

Controlling Motion - Page 115

The last position the servo will hold for 3 seconds is 135° and then the program stops.
The servo horn will stay in the same position even though the BASIC Stamp has stopped
sending control pulses. The difference is that during the three seconds that the BASIC
Stamp holds the 135° position, the servo resists any forces that try to push the horn away
from that position. After the 3 secondsis up, the servo’s horn can be turned by hand.

One way you can tell if the servo is receiving control signalsis by watching the indicator
LED that is connected to P14. While the indicator LED glows, it means the servo is
receiving control signals and is holding its position. When the signal stops you'll see the
glow in the indicator LED stop.

v" Re-run the program (or just press and release your board’ s Reset Button).
v' As soon as the servo gets to the 135° position, keep an eye on the signal
indicator LED as you apply light twisting force to the horn.

Y ou should be able to feel the servo resisting while the LED glows faintly indicating the
servo is till receiving a control signal. As soon as the LED turns off indicating that the
control signal has stopped, the servo will stop holding its position, and you will be able to
rotate the horn.

v" When the 135° signal stops, verify that the LED indicates the signal has stopped
and that the servo allows you to twist the horn away from the 135° position.

' What's a Mcrocontroller — ThreeServoPositions. bs2
' Servo holds the 45, 90, and 135 degree positions for about 3 seconds each.

' {$STAMP BS2}
' {$PBASI C 2. 5}

count er VAR Wor d

PAUSE 1000

DEBUG "Position = 45 degrees...", CR

FOR counter = 1 TO 150 ' 45 degrees for about 3 sec.
PULSOUT 14, 500
PAUSE 20

NEXT

DEBUG " Position = 90 degrees...", CR

Page 116 - What's a Microcontroller?

FOR counter = 1 TO 150 ' 90 degrees for about 3 sec.
PULSOUT 14, 750
PAUSE 20

NEXT

DEBUG "Position = 135 degrees...", CR

FOR counter = 1 TO 150 ' 135 degrees for about 3 sec.
PULSOUT 14, 1000
PAUSE 20

NEXT

DEBUG "Al'l done.", CR CR

END

Your Turn — Adjusting Position vs. Adjusting Hold Time

ThreeServoPositions.bs2 assumes that executing 50 servo pulses in a FOR. . . NEXT loop
takes about 1 second. You can also use this to adjust a hold time by adjusting the
FOR. . . NEXT loop’s EndValue argument. For example, if you want the servo to only hold
its position for two about seconds, change the Endvalue argument from 150 to 100. For
five seconds, change it from 150 to 250, and so on...

v' Save acopy of ThreeServoPositions.bs2.

v Modify each FOR ..NEXT loop’s Endvalue argument and experiment with
different values for different hold times.

v" Optional: Customize the hold positions by adjusting each PULSOUT command’s
Duration argument.

FOR. .. NEXT Loop Repetition Time — It’s really 1/44™ of a Second, not 1/50™

1/50™ of a second is a rough approximation of the loop repetition. 1/44™ of a second is a
much closer approximation. Consider how much time each element of the FOR. . . NEXT
loop takes to execute. The command PULSOUT 14, 750 isin the middle of the range of
possible pulse durations, so it can be the benchmark for average pulse duration. It sends
a pulse that lasts 750 x 2 us = 1500 us = 1.5 ms. The PAUSE 20 command makes the
program delay for 20 ms. A FOR. .. NEXT loop with a PULSOUT and PAUSE command
takes about 1.3 ms to process all the numbers and commands. Although this means that
the low signal between pulses really lasts for 21.3 ms instead of 20 ms, this does not
affect the servo’'s performance. The low times can be a few ms off, it's just the high
pulse durations that have to be precise, and the PULSOUT command is very precise.

Controlling Motion - Page 117

So, the total time the FOR. . . NEXT loop takesto repeat is1.5 ms+ 20 ms+ 1.3 ms= 22.8
ms, which is 22.8 thousandths of a second. So, how many 22.8-thousandths-of-a-second
fit into 1-second? Let'sdivide 0.0228 into 1 and find out:

1second + 0.0228 seconds/repetition ~43.86 repetitions
~ 44 repetitions

So that’s why the loop repeats at a rate of about 44 repetitions per second. The number
of repetitionsin 1 second is called a hertz, abbreviated Hz. So, we can say that the servo
signal repeats or cycles at about 44 Hz.

Cycles and hertz (Hz): When a signal repeats itself a certain number of times, each
repetition is called a cycle. The number of cycles in a second is measured in hertz. Hertz is
abbreviated Hz.

Longer or shorter PULSOUT Duration values cause the FOR. . . NEXT loop to take a little
more or less time to repeat. The PULSOUT Duration of 750 is right in the middle of the
range of servo control pulse durations shown back in Figure 4-18 on page 109. So, you
can use 44 Hz as a benchmark for the number of servo pulsesin a second for your code.
If you need to be more precise, just repeat the math for the PULSOUT command you are
using. For example, if the loop has a PULSOUT command with aDuration of 1000 instead
of 750, it takes 2 ms for the pulse instead of 1.5 ms. The loop still has a pause of 20 ms
and 1.3 ms of processing time. So that addsup to 2 + 20 + 1.3 ms=23.3 ms. Divide that
in to 1 second to find out the FOR. . . NEXT loop’s rate, and we get 1 + 0.0233 = 429 =
43 Hz.

FOR. .. NEXT Loop Servo Control Summary

Figure 4-23 shows the part each number in a FOR . . NEXT loop plays in servo control.
The FOR. . . NEXT loop’s Endvalue determines the number of 44"™ of a second the servo
holds a position. The PULSOUT command’'s Duration argument tells the servo what
position to hold. The value 750 sends a 1.5 ms pulse, which instructs the servo to hold a
90° position according to Figure 4-18 on page 108. The PULSOUT command’s Pin
argument chooses the I/O pin for sending servo control signals. So, 14 makes the
PULSOUT command send its brief high signa (pulse) to the servo connected to 1/O pin
P14. When the pulse ends, it leaves the I/O pin sending a low signal. Then, the
PAUSE 20 command ensures that the low signal lasts for approximately 20 ms before the
next pulse.

Page 118 - What's a Microcontroller?

Number of 44ths of a

Servo I/O pin second to hold the

position
FOR countgr = 1 TO 132 .
PULSOUT 14, 750 Figure 4-23
PAUSE 20 \ Servo Control
NEXT Position to hold For...Next Loop

Required 20 ms
between each pulse

On the average, a FOR . . NEXT loop that sends a single PULSOUT command to a servo,
followed by PAUSE 20, repeats at about 44 times per second. Since this loop repeats 132
times, it makes the servo hold the 135° position for about 3 seconds. That’s because:

132 repetitions+44 repetitions/second =3 seconds

If your application or project needs to make the BASIC Stamp send a servo signa for a
certain number of seconds, just multiply the number of seconds by 44, and use the result
inyour FOR. . . NEXT loop’s EndVvalue argument. For example, if your signal needs to last
five seconds:

5 secondsx 44 repetitions/second = 220 repetitions

ACTIVITY #4: CONTROLLING POSITION WITH YOUR COMPUTER

Factory automation often involves microcontrollers communicating with larger
computers. The microcontrollers read sensors and transmit that data to the main
computer. The main computer interprets and analyzes the sensor data, and then sends
position information back to the microcontroller. The microcontroller might then update
a conveyer belt's speed, or a sorter’s position, or some other mechanical, motor
controlled task.

You can use the Debug Terminal to send messages from your computer to the BASIC
Stamp as shown in Figure 4-24. The BASIC Stamp has to be programmed to listen for
the messages you send using the Debug Terminal, and it also has to store the data you
send in one or more variables.

Controlling Motion - Page 119

Figure 4-24

Sending Messages to the
BASIC Stamp

Click the white field above
the message display pane
and type your message. A
copy of the message you
entered appears in the lower
windowpane. This copy is
called an echo.

In this activity, you will program the BASIC Stamp to receive two values from the Debug
Terminal, and then use these values to control the servo:

1. Thenumber of pulsesto send to the servo
2. The Duration value used by the PULSOUT command

You will aso program the BASIC Stamp to use these values to control the servo.

Parts and Circuit
Same as Activity #2

Programming the BASIC Stamp to Receive Messages from Debug

Programming the BASIC Stamp to send messages to the Debug Terminal is done using
the DEBUG command. Programming the BASIC Stamp to receive messages from the
Debug Terminal is done using the DEBUG N command. When using DEBUG N, you also
have to declare one or more variables for the BASIC Stamp to store the information it
receives.

Page 120 - What's a Microcontroller?

Here is an example of avariable you can declare for the BASIC Stamp to store avalue:

pul ses VAR Word

Later in the program, you can use this variable to store a number received by the
DEBUG N command:

DEBUG N DEC pul ses

When the BASIC Stamp receives a numeric value from the Debug Terminal, it will store
it in the pul ses variable. The DEC formatter tells the DEBUG N command that the
characters you are sending will be digits that form a decimal number. As soon as you hit
the Enter key, the BASIC Stamp will store the digits it received in the pul ses variable as
adecimal number, then move on.

Although it is not included in the example program, you can add a line to verify that the
message was processed by the BASIC Stamp.

DEBUG CR, "You sent the value: ", DEC pul ses

Example Program: ServoControlWithDebug.bs2

Figure 4-25 shows the locations of the Debug Terminal’s Transmit windowpane along
with its Receive windowpane. The Receive windowpane is the one we' ve been using al
along to display messages that the Debug Terminal “receives’ from the BASIC Stamp.
The Transmit windowpane allows you to type in characters and numbers and “transmit”
them to the BASIC Stamp.

Figure 4-25
Debug Terminal’'s Windowpanes

« Transmit windowpane

«— Receive windowpane

In Figure 4-25, the number 264 is typed into the Debug Terminal’s Transmit
windowpane. Below, in the Receive windowpane, a copy of the 264 value is shown next

Controlling Motion - Page 121

to the “Enter Run time...” message. This copy is called an echo, and it only displaysin
the Receive windowpane if the Echo Off checkbox is left unchecked.

Echo is when you send a message through the Debug Terminal’s Transmit windowpane,
and a copy of that message appears in the Debug Terminal's Receive windowpane. There
is an Echo Off checkbox in the lower right corner of the Debug Terminal, and you can click it
to toggle the checkmark. For this activity, we want to display the echoes in the Receive
windowpane, so the_Echo Off checkbox should be unchecked.

Enter ServoControl WithDebug.bs2 into the BASIC Stamp Editor and run it.

If the Transmit windowpane is too small, resize it using your mouse to click,

hold, and drag the separator downward. The separator is shown just above the

text message “Enter runtimeasa’ in Figure 4-25.

v Make sure the Echo Off checkbox in the lower-right corner is unchecked.

v Click the upper, Transmit windowpane to place your cursor there for typing
messages.

v" When the Debug Terminal prompts you to, “Enter run time as a number of
pulses.” type the number 132, then press your computer keyboard’ s Enter key.

v When the Debug Terminal prompts you to “Enter position as a PULSOUT

duration:” type the number 1000, then press Enter.

NN

The PULSOUT Duration should be a number between 350 and 1150. If you enter
numbers outside that range, the program will change it to the closest number within that
range, either 350 or 1150. If the program did not have this safety feature, certain numbers
could be entered that would make the servo try to rotate to a position beyond its own
mechanical limits. Although it will not break the servo, it could shorten the device’s lifespan.

The BASIC Stamp will display the message “Servo is running...” while it is sending
pulses to the servo. When it is done sending pulses to the servo, it will display the
message “DONE” for one second. Then, it will prompt you to enter the number of pulses
again. Have fun with it, but make sure to follow the directive in the caution box about
staying between 350 and 1150 for your PULSOUT value.

v' Experiment with entering other values between 350 and 1150 for the PULSOUT
Duration and values between 1 and 65534 for the number of pulses.

Page 122 - What's a Microcontroller?

It takes about 44 pulses to make the servo hold a position for 1 second. So, to make the
servo hold a position for about 5 minutes, you could enter 13200 at the “number of pulses”
prompt. That's 44 pulses/second x 60 seconds/minute x 5 minutes = 13,200 pulses.

Why use values from 1 to 644347 If you really want to know, read all the way through the
FOR. . . NEXT section in the BASIC Stamp Manual to learn about the 16-bit rollover, or
variable range, error. It can cause a bug when you are making your own programs!

' What's a Mcrocontroller - ServoControl WthDebug. bs2
' Send nessages to the BASIC Stanp to control a servo using
' the Debug Term nal .

' {$STAWP BS2}
' {$PBASI C 2. 5}

count er VAR Wor d
pul ses VAR Wor d
duration VAR Wor d
PAUSE 1000

DEBUG CLS, "Servo Run Tine:", CR
" ~44 pulses in 1 second", CR,
"Servo Position:", CR
" 350 <= PULSOUT Duration <= 1150", CR, CR

DO

DEBUG "Enter run tine as a ", CR
"nunmber of pul ses: "

DEBUG N DEC pul ses

DEBUG "Enter position as a"
"PULSQUT Duration: "

DEBUG N DEC dur ati on

3

duration = duration M N 350 MAX 1150
DEBUG "Servo is running...", CR
FOR counter = 1 TO pul ses
PULSQUT 14, duration
PAUSE 20
NEXT

DEBUG "DONE", CR, CR
PAUSE 1000

LooP

Controlling Motion - Page 123

How ServoControlWithDebug.bs2 Works

Three Wor d variables are declared in this program:

count er Var WORD
pul ses Var WWORD
duration Var WORD

The counter variable is declared for use by a FOR .. NEXT loop. (See Chapter 2,
Activity #3 for details) The pul ses and duration variables are used a couple of
different ways. They are both used to receive and store values sent from the Debug
Terminal. The pul ses variable is aso used to set the number of repetitions in the
FOR. . . NEXT loop that delivers pulses to the servo, and the dur at i on variable is used to
set the duration of each pulse for the PULSOUT command.

A DEBUG command provides a reminder that there are about 44 pulsesin 1 second in the
FOR. .. NEXT loop, and that the PULSOUT Duration argument that controls servo position
can be a value between 350 and 1150.

DEBUG CLS, "Servo Run Tine:", CR,
~44 pul ses in 1 second", CR,
"Servo Position:", CR,
350 <= PULSQUT Duration <= 1150", CR, CR

The rest of the program is nested inside a DO...LOOP without a WHI LE or UNTI L
Condition argument so that the commands execute over and over again.

DO

LOooOP

Rest of program not shown.

The DEBUG command is used to send you (the “user” of the software) a message to enter
the number of pulses. Then, the DEBUG N command waits for you to enter digits that
make up the number and press the Enter key on your keyboard. The digits that you enter
are converted to a value that is stored in the pul ses variable. This process is repeated
with a second DEBUG and DEBUG N command that loads another value you enter into the
dur at i on variabletoo.

DEBUG "Enter run tinme as a ", CR
"number of pul ses: "
DEBUG N DEC pul ses

Page 124 - What's a Microcontroller?

DEBUG "Enter position as a", CR,
"PULSQUT Duration:
DEBUG N DEC durati on

After you enter the second value, it's useful to display a message while the servo is
running so that you don’t try to enter a second value during that time:

DEBUG "Servo is running...", CR

While the servo is running, you can try to gently move the servo horn away from the
position it isholding. The servo resists light pressure applied to the horn.

FOR Counter = StartValue TO EndValue {STEP StepValue}. . . NEXT

This is the FOR. . . NEXT loop syntax from the BASIC Stamp Manual. It shows that you
need a Counter, StartValue and EndValue to control how many times the loop repeats
itself. There is also an optional StepValue if you want to add a number other than 1 to the
value of Counter each time through the loop.

As in previous examples, the counter variable was used to keep track of the
FOR. .. NEXT loop's repetitions. The counter variable aside, this FOR .. NEXT loop
introduces some new techniques for using variables to define how the program (and the
servo) behaves. Up until this example, the FOR. . . NEXT loops have used constants such
as 10 or 132 in the loop’ s Endvalue argument. InthisFOR. . . NEXT loop, the value of the
pul ses variable is used to control the FOR .. NEXT loop’s Endvalue. S0, you set the
value of pul ses by entering a number into the Debug Terminal, and it controls the
number of repetitions the FOR. . . NEXT loop makes, which in turn controls the time the
servo holds a given position.

FOR counter = 1 to pul ses
PULSQUT 14, duration
PAUSE 20

NEXT

Also, in previous examples, constant values such as 500, 750, and 1000 were used for the
PULSOUT command's Duration argument. In this loop, a variable named dur ati on,
which you set by entering values into the Debug Terminal’s Transmit windowpane, now
defines the PULSOUT command’s pulse duration, which in turn controls the position the
servo holds.

Controlling Motion - Page 125

Take some time to understand the FOR..NEXT loop in ServoControlWithDebug.bs2.

It is one of the first examples of the amazing things you can do with variables in PBASIC
command arguments and loops, and it also highlights how useful a programmable
microcontroller module like the BASIC Stamp can be.

Your Turn — Setting Limits in Software

Let’s imagine that this computer servo control system is one that has been developed for
remote-control. Perhaps a security guard will use this to open a shipping door that he or
she watches on a remote camera. Maybe a college student will use it to control doorsin a
maze that mice navigate in search of food. Maybe a military gunner will use it to point
the cannon at a particular target. If you are designing the product for somebody else to
use, the last thing you want is to give the user (security guard, college student, military
gunner) the ability to enter the wrong number that could damage the equipment.

While running ServoControlWithDebug.bs2, it is possible to make a mistake while
typing the Duration value into the Debug Terminal. Let's say you accidentally typed 100
instead of 1000 and pressed Enter. The value 100 would cause the servo to try to turnto a
position beyond its mechanical limits. Although it won't instantly break the servo, it's
certainly not good for the servo or its useful lifespan. So the program has a line that
prevents this mistake from doing any damage:

duration = duration M N 350 MAX 1150

This command would correct the 100 accident by changing the durati on variable to
350. Likewise, if you accidentally typed 10000, it would reduce the dur at i on variable
to 1150. Y ou could do something equivalent with acouple of | F. . . THEN statements:

I F duration < 350 THEN duration = 350
I F duration > 1150 THEN duration = 1150

There are some machines where even automatically correcting to the nearest value could
have undesirable results. For example, if you are a computer controlling a machine that
cuts some sort of expensive material, you wouldn't necessarily want the machine to just
assume you meant 350 when you tried to type 1000, but accidentally typed 100. If it just
cut the material at the 350 setting, it could turn out to be an expensive mistake. So,
another approach your program can take is to simply tell you that your value was out of
range, and to try again. Hereis an example of how you can modify the code to do this:

Page 126 - What's a Microcontroller?

v' Save the example program ServoControlWithDebug.bs2 under the new name
ServoControlWithDebugY ourTurn.bs2.
v" Replace these two commands:

DEBUG "Enter position as a", CR,
"PULSQUT Dur ati on:
DEBUG N DEC duration

..with this code block:

DO
DEBUG "Enter position as a", CR,
"PULSQUT Dur ati on:
DEBUG N DEC dur ati on
I F duration < 350 THEN
DEBUG "Val ue of duration nust be at |east 350", CR
PAUSE 1000
ENDI F
| F duration > 1150 THEN
DEBUG "Val ue of duration cannot be nore than 1150", CR
PAUSE 1000
ENDI F
LOOP UNTIL duration >= 350 AND duration <= 1150

v' Save the program.
v Run the program and verify that it repeats until you enter a value in the correct
350 to 1150 range.

ACTIVITY #5: CONVERTING POSITION TO MOTION

In this activity, you will program the servo to change position at different rates. By
changing position at different rates, you will cause your servo horn to rotate at different
speeds. You can use this technique to make the servo control motion instead of position.

Programming a Rate of Change for Position

You can use a FOR. . . NEXT loop to make a servo sweep through a range of motion like
this:

FOR counter = 500 TO 1000
PULSQUT 14, counter
PAUSE 20

NEXT

Controlling Motion - Page 127

The FOR .. NEXT loop causes the servo’'s horn to start at around 45° and then rotate
sowly counterclockwise until it gets to 135°. Because count er is the index of the
FOR. . . NEXT loop, it increases by one each time through. The value of count er isaso
used in the PULSOUT command’s Duration argument, which means the duration of each
pulse gets a little longer each time through the loop. Since the counter variable
changes, so does the position of the servo’s horn.

FOR. . . NEXT loops have an optional STEP StepValue argument. The StepValue argument
can be used to make the servo rotate faster. For example, you can use the StepVvalue
argument to add 8 to count er each time through the loop (instead of 1) by modifying the
FOR statement like this:

FOR counter = 500 TO 1000 STEP 8

You can aso make the servo turn the opposite direction by counting down instead of
counting up. In PBASIC, FOR .. NEXT loops will count backwards if the Startvalue
argument is larger than the Endvalue argument. Here is an example of how to make a
FOR. . . NEXT loop count from 1000 down to 500:

FOR counter = 1000 TO 500

You can combine counting down with a StepVvalue argument to get the servo to rotate
more quickly in the clockwise direction like this:

FOR counter = 1000 TO 500 STEP 20

The trick to getting the servo to turn at different ratesisto use these FOR. . . NEXT loops to
count up and down with different step sizes. The next example program uses these
techniques to make the servo’ s horn rotate back and forth at different rates.

Example Program: ServoVelocities.bs2

v Enter and run ServoVelocities.bs2.

v As the program runs, watch how the value of count er changes in the Debug
Terminal.

v' Also, watch how the servo behaves differently through the two different
FOR. . . NEXT loops. Both the servo horn’s direction and speed change.

Page 128 - What's a Microcontroller?

What's a Mcrocontroller - ServoVel ocities. bs2
Rotate the servo counterclockw se slowly, then cl ockwi se rapidly.

{ $STAMP BS2}
{$PBASI C 2. 5}

count er VAR Wor d
PAUSE 1000

DO
DEBUG " Pul se wi dth increment by 8", CR

FOR counter = 500 TO 1000 STEP 8
PULSOQUT 14, counter
PAUSE 7
DEBUG DEC5 counter, CR, CRSRUP
NEXT

DEBUG CR, "Pul se wi dth decrenment by 20", CR

FOR counter = 1000 TO 500 STEP 20
PULSOQUT 14, counter
PAUSE 7
DEBUG DEC5 counter, CR, CRSRUP
NEXT

DEBUG CR, "Repeat", CR
LOOP

How ServoVelocities.bs2 Works

The first FOR. . . NEXT loop counts upwards from 500 to 1000 in steps of 8. Since the
count er variableisused as the PULSOUT command’ s Duration argument, the servo horn’s
position rotates counterclockwise by stepsthat are eight times the smallest possible step.

FOR counter = 500 TO 1000 STEP 8
PULSQUT 14, counter
PAUSE 7
DEBUG DEC5 counter, CR, CRSRUP
NEXT

Why PAUSE 7 instead of PAUSE 20? The command DEBUG DEC5 counter, CR
) CRSRUP takes about 8 ms to execute. This means that PAUSE 12 would maintain the 20
' ?) ms delay between pulses. A few trial and error experiments showed that PAUSE 7 gave the
@’ servo the smoothest motion. Since the 20 ms low time between servo pulses doesn’t need
to be precise, it's okay to tune and adjust it.

Controlling Motion - Page 129

More DEBUG formatters and control characters are featured in the DEBUG command that
displays the value of the count er variable. This value is printed using the 5-digit decimal
format (DEC5). After the value is printed, there is a carriage return (CR). After that, the
control character CRSRUP (cursor up) sends the cursor back up to the previous line. This
causes the new value of count er to be printed over the old value each time through the
loop.

The second FOR. . . NEXT loop counts downwards from 1000 back to 500 in steps of 20.
The count er variable is also used as an argument for the PULSOUT command in this
example, so the servo horn rotates clockwise.

FOR counter = 1000 TO 500 STEP 20
PULSQUT 14, counter
PAUSE 7
DEBUG DEC5 counter, CR, CRSRUP
NEXT

Your Turn — Adjusting the Velocities

Try different STEP vaues to make the servo turn at different rates.

Re-run the program after each modification.

Observe the effect of each new Stepvalue value on how fast the servo horn turns.
Experiment with different PAUSE command Duration values (between 3 and 12)
to find the value that gives the servo the smoothest motion for each new
StepValue value.

ANENENEN

ACTIVITY #6: PUSHBUTTON-CONTROLLED SERVO

In this chapter, you have written programs that make the servo go through a pre-recorded
set of motions, and you have controlled the servo using the Debug Terminal. You can
also program the BASIC Stamp to control the servo based on pushbutton inputs. In this
activity you will:

e Build acircuit for a pushbutton servo control.
e Program the BASIC Stamp to control the servo based on the pushbutton inputs.

When you are done, you will be able to press and hold one button to get the BASIC
Stamp to rotate the servo in one direction, and press and hold the other button to get the
servo to rotate in the other direction. When no buttons are pressed, the servo will hold
whatever position it moved to last.

Page 130 - What's a Microcontroller?

Extra Parts for Pushbutton Servo Control

The same parts from the previous activities in this chapter are still used. In addition, you
will need to gather the following parts for the pushbutton circuits:

(2) Pushbuttons — normally open

(2) Resistors— 10 kQ (brown-black-orange)
(2) Resistors—220 Q (red-red-brown)

(3) Jumper wires

Adding the Pushbutton Control Circuit

Figure 4-26 shows the pushbutton circuits that you will use to control the servo.

v' Add this circuit to the servo+LED circuit that you have been using up to this
point. When you are done your circuit should resemble:
o Figure 4-27 if you are using a Board of Education USB (any Rev) or
Serial (Rev C or newer).
o Figure 4-28 if you are using a BASIC Stamp HomeWork Board (Rev C
or newe).

v' If your board is not listed above, refer to the Servo Circuit Connections

download at go to www.parallax.com/Go/WAM to find circuit instructions for
your board.

vdd Vdd
L
P4 O—MW\N—9—0 0——|
P

2200 Figure 4-26
X Pushbutton
P3 G—AWW o Circuits for Servo
220 Q Control

ilo kQ 10kQ

Controlling Motion - Page 131

Red
Black

Figure 4-27
Board of
Education Servo
Circuit with
Pushbutton

Circuits Added

For the Board of
Education Serial
Rev C or higher,
or USB of any
revision

ooooooooo

goooooEooooooooon
gooooooooooooooon

PARALLAX

www.parallax.com

gooooooooooooooon

Figure 4-28
HomeWork
Board Servo
Circuit with
Pushbutton
Circuits Added

For the
HomeWork
PARALLAX Board Rev C or

higher

www.parallax.com

Page 132 - What's a Microcontroller?

v Test the pushbutton connected to P3 using the origina version of
ReadPushbuttonState.bs2. The section that has this program and the instructions
on how to useit begins on page 67.

v" Maodify the program so that it reads P4.

v" Run the modified program to test the pushbutton connected to P4.

Programming Pushbutton Servo Control

I F... THEN code blocks can be used to check pushbutton states and either add to or
subtract from a variable named duration. This variable is used in the PULSOUT
command's Duration argument. If one of the pushbuttons is pressed, the value of
dur ati on increases. If the other pushbutton is pressed, the value of dur at i on decreases.
A nested | F. .. THEN statement is used to decide if the durati on variable is too large
(greater than 1000) or too small (smaller than 500).

Example Program: ServoControlWithPushbuttons.bs2

This example program makes the servo’'s horn rotate counterclockwise when the
pushbutton connected to P4 is pressed. The servo’s horn will keep rotating so long as the
pushbutton is held down and the value of duration is smaller than 1000. When the
pushbutton connected to P3 is pressed, the servo horn rotates clockwise. The servo aso
is limited in its clockwise motion because the dur ati on variable is not alowed to go
below 500. The Debug Terminal displays the value of dur ati on while the program is
running.

v' Enter the ServoControlWithPushbuttons.bs2 program into the BASIC Stamp
Editor and run it.

v' Verify that the servo turns counterclockwise when you press and hold the
pushbutton connected to PA4.

v" Verify that as soon asthe limit of durati on > 1000 is reached or exceeded that
the servo stops turning any further in the counterclockwise direction.

v" Verify that the servo turns clockwise when you press and hold the pushbutton
connected to P3.

v Verify that as soon as the limit of durati on < 500 is reached or exceeded that
the servo stops turning any further in the clockwise direction.

Controlling Motion - Page 133

' What's a Mcrocontroller - ServoControl WthPushbuttons. bs2
Press and hold P4 pushbutton to rotate the servo countercl ockw se,
' or press the pushbutton connected to P3 to rotate the servo cl ockw se.

' {$STAMP BS2}
' {$PBASI C 2. 5}

duration VAR Wor d
duration = 750
PAUSE 1000

DO
IF IN3 = 1 THEN
I F duration > 500 THEN
duration = duration - 25
ENDI F
ENDI F

IF INA = 1 THEN
| F duration < 1000 THEN
duration = duration + 25
ENDI F
ENDI F

PULSOQUT 14, duration
PAUSE 10

DEBUG HOVE, DEC4 duration, " = duration"
LOOP

Your Turn — Mechanical Limits vs. Software Limits

The servo’'s mechanical stoppers prevent the servo from turning beyond about 0° and
180°, which corresponds to PULSOQUT Duration arguments in the 250 and 1250
neighborhoods. ServoControl WithPushbuttons.bs2 also has software limits, imposed by
| F. .. THEN statements that prevent you from using a pushbutton to turn the servo beyond
acertain point. In contrast to the mechanical limits, the software limits are very easy to
adjust. For example, you can give your pushbutton controlled servo a wider range of
motion by simply replacing every instance of 500 with 350, and every instance of 1000
with 1150. Or, you could give your servo a narrower range of motion by replacing
instances of 500 with 650 and instances of 1000 with 850. The software limits don't
even need to be symmetrical. For example, you could change the software limits from
the 500—1000 range to the 350-750 range.

v Experiment with different software servo limits, including 350 to 1150, 650 to
850, and 350 to 750.

Page 134 - What's a Microcontroller?

v Test each set of software limits to make sure they perform as expected.

You can aso change how quickly the servo turns as you hold a button down. For
example, if you change the two 25 values in the program to 50, the servo will respond
twice as quickly. Alternately, you could change them to 30 to make the servo respond
just a little faster, or to 20 to make them respond a little slower, or to 10 to make it
respond alot slower.

v Tryit!

SUMMARY

This chapter introduced microcontrolled motion using a Parallax Standard Servo. A
servo is a device that moves to and holds a particular position based on electronic signals
it receives. These signals take the form of pulses that last anywhere between 0.5 and 2.5
ms, and they have to be delivered roughly every 20 ms for the servo to maintain its
position.

A programmer can use the PULSOUT command to make the BASIC Stamp send these
signals. Since pulses have to be delivered every 20 ms for the servo to hold its position,
the PULSOUT and PAUSE commands are usually placed in some kind of loop. Variables or
constants can be used to determine both the number of loop repetitions and the PULSOUT
command’ s Duration argument.

In this chapter, several ways to get values into the variables were presented. The variable
can receive the value from your Debug Termina using the DEBUG N command. The
value of the variable can pass through a sequence of values if it is used as the Counter
argument of aFOR. . . NEXT loop. This technique can be used to cause the servo to make
sweeping motions. | F. .. THEN statements can be used to monitor pushbuttons and add
or subtract from the variable used in the PULSOUT command’s Duration argument when a
certain button is pressed. This alows both position control and sweeping motions
depending on how the program is constructed and how the pushbuttons are operated.

Controlling Motion - Page 135

Questions

1. What arethefive externa partson aservo? What are they used for?

2. Isan LED circuit required to make a servo work?

3. What command controls the low time in the signal sent to a servo? What
command controls the high time?

4. What programming element can you use to control the amount of time that a
servo holds a particular position?

5. How do you use the Debug Terminal to send messages to the BASIC Stamp?
What programming command is used to make the BASIC Stamp receive
messages from the Debug Terminal ?

6. What type of code block can you write to limit the servo’ s range of motion?

Exercises

1. Write acode block that sweeps the value of PULSOUT controlling a servo from a
Duration of 700 to 800, then back to 700, in increments of (a) 1, (b) 4.

2. Add anested FOR .. NEXT loop to your answer to exercise 1b so that it delivers
ten pulses before incrementing the PULSOUT Duration argument by 4.

Project

1. Modify ServoControlWithDebug.bs2 so that it monitors a kill switch. If the kill
switch (P3 pushbutton) is pressed, the Debug Termina should not accept any
commands, and it should display: “Press Start switch to start machinery.” When
the start switch (P4 pushbutton) is pressed, the program should function
normally. If power is disconnected and reconnected, the program should behave
as though the kill switch has been pressed.

Solutions

QL. 1) Plug — connects servo to power and signal sources; 2) Cable — conducts power
and signals from plug into the servo; 3) Horn — the moving part of the servo; 4)
Screw — attaches servo’s horn to the output shaft; 5) Case — contains DC motor,
gears, and control circuits.

Q2. No, the LED just helps us see what's going on with the control signals.

Q3. The low time is controlled with the PAUSE command. The high time is
controlled with the PULSOUT command.

Q4. A FOR. . . NEXT loop.

Page 136 - What's a Microcontroller?

Q5. Type messages into the Debug Terminal’s Transmit windowpane. Use the
DEBUG N command and a variable to make the BASIC Stamp receive the

characters.

Q6. Either anested | F. . . THEN statement or a command that uses the MaX and M N

operators to keep the variable in certain ranges.

El.

a) Increments of 1 b) Add STEP 4 to both FOR. . . NEXT loops.

FOR counter = 700 TO 800 FOR counter = 700 TO 800 STEP 4
PULSOQUT 14, counter PULSQUT 14, counter
PAUSE 20 PAUSE 20

NEXT NEXT

FOR counter = 800 TO 700 FOR counter = 800 TO 700 STEP 4
PULSOQUT 14, counter PULSQUT 14, counter
PAUSE 20 PAUSE 20

NEXT NEXT

E2. Assume avariable named pul ses has been declared:
FOR counter = 700 TO 800 STEP 4
FOR pulses = 1 TO 10
PULSQUT 14, counter
PAUSE 20
NEXT
NEXT
FOR counter = 800 TO 700 STEP 4
FOR pulses = 1 TO 10
PULSQUT 14, counter
PAUSE 20
NEXT
NEXT

P1. There are many possible solutions; two are given here.

' What's a Mcrocontroller - Ch04Prj01Sol nl_ Kill Swi tch. bs2
' Send nessages to the BASIC Stanp to control a servo using
the Debug Terminal as long as kill switch is not being pressed.

' Contributed by: Professor Clark J. Radcliffe, Departnment
' of Mechani cal Engineering, Mchigan State University

' {$STAMP BS2}
' {$PBASI C 2. 5}

Controlling Motion - Page 137

counter VAR Wrd
pul ses VAR Wér d
duration VAR Word

DO

PAUSE 2000
IF (IN3 = 1) AND (I N4 = 0) THEN

DEBUG "Press Start switch to start machinery. ", CR , CRSRUP
ELSEIF (IN3 = 0) AND (IN4 = 1) THEN

DEBUG CLS, "Enter nunber of pulses:", CR

DEBUG N DEC pul ses

DEBUG "Ent er PULSOUT duration:", CR
DEBUG N DEC dur ati on

DEBUG "Servo is running...", CR

FOR counter = 1 TO pul ses
PULSQUT 14, duration
PAUSE 20

NEXT

DEBUG " DONE"
PAUSE 2000

ENDI F

LOOP

Below is aversion that can even detect button presses while it's sending a signa
to the servo. This is important for machinery that needs to STOP
IMMEDIATELY when the kill switch is pressed. It utilizes the waiting
technique that was introduced in the Reaction Timer game in Chapter 3, Activity
#5 in three different places in the program. You can verify that the program
stops sending a control signal to the servo by monitoring the LED signal
indicator light connected to P14.

What's a Mcrocontroller - ChO4Prj01Sol n2_ Kill Switch. bs2
' Send nessages to the BASIC Stanp to control a servo using
' the Debug Terminal as long as kill switch is not being pressed.

{$STAVP BS2}
{$PBASI C 2. 5}

count er VAR Wor d
pul ses VAR Wor d
duration VAR Wor d

Page 138 - What's a Microcontroller?

PAUSE 1000
DEBUG "Press Start switch (P4) to start machinery.", CR

DO LOOP UNTIL IN4 = 1
DEBUG "Press Kill switch (P3) to stop nachinery.", CR

DEBUG CR, CR, "Servo Run Tinme:", CR
" ~44 pulses in 1 second", CR
"Servo Position:", CR
" 350 <= PULSQUT Duration <= 1150", CR, CR

DO

IF IN3 =1 THEN
DEBUG "Press Start switch (P4) to start machinery.", CR
DO LOOP UNTIL IN4 = 1
DEBUG "Press Kill switch (P3) to stop nachinery.", CR
ENDI F
DEBUG "Enter run tine as a ", CR
"nunber of pul ses: "
DEBUG N DEC pul ses

DEBUG "Enter position as a", CR
"PULSQUT Duration: "
DEBUG N DEC durati on

duration = duration MN 350 MAX 1150
DEBUG "Servo is running...", CR

FOR counter = 1 TO pul ses
PULSQUT 14, duration
PAUSE 20
IF IN3 = 1 THEN
DEBUG "Press Start switch (P4) to start nmachinery.", CR
DO LOOP UNTIL IN4 =1
DEBUG "Press Kill switch (P3) to stop nachinery.", CR
ENDI F
NEXT

DEBUG "DONE', CR, CR
PAUSE 1000

LOoP

Measuring Rotation - Page 139

Chapter 5: Measuring Rotation

ADJUSTING DIALS AND MONITORING MACHINES

Many households have dias to control the lighting in a room. Twist the dia one
direction, and the lights get brighter; twist the dial in the other direction, and the lights get
dimmer. Model trains use dials to control motor speed and direction. Many machines
have dials or cranks used to fine tune the position of cutting blades and guiding surfaces.

Dials can aso be found in audio equipment, where they are used to adjust how music and
voices sound. Figure 5-1 shows a simple example of a dial with a knob that is turned to
adjust the speaker’s volume. By turning the knob, a circuit inside the speaker changes,
and the volume of the music the speaker plays changes. Similar circuits can also be
found inside joysticks, and even inside the servo used in Chapter 4: Controlling Motion.

Figure 5-1
Volume Adjustment on a
Speaker

THE VARIABLE RESISTOR UNDER THE DIAL — A POTENTIOMETER

The device inside many sound system dials, joysticks and servos is cdled a
potentiometer, often abbreviated as a“pot.” Figure 5-2 shows a picture of some common
potentiometers. Notice that they al have three pins.

Page 140 - What's a Microcontroller?

Figure 5-2
A Few Potentiometer
Examples

Figure 5-3 shows the schematic symbol and part drawing of the potentiometer you will
use in this chapter. Terminals A and B are connected to a 10 kQ resistive element.
Terminal W is called the wiper terminal, and it is connected to a wire that touches the
resistive element somewhere between its ends.

A
Figure 5-3
10 kQ
W Pot Potentiometer Schematic Symbol
W A~ and Part Drawing
B
B

Figure 5-4 shows how the wiper on a potentiometer works. As you adjust the knob on
top of the potentiometer, the wiper terminal contacts the resistive element at different
places. Asyou turn the knob clockwise, the wiper gets closer to the A terminal, and as
you turn the knob counterclockwise, the wiper gets closer to the B terminal.

A
+
_m+ 10ko Figure 5-4
W —> A . , .
Pot Adjusting the Potentiometer’'s Wiper
A - Terminal

Measuring Rotation - Page 141

ACTIVITY #1: BUILDING AND TESTING THE POTENTIOMETER CIRCUIT

Placing different size resistors in series with an LED causes different amounts of current
to flow through the circuit. Large resistance in the LED circuit causes small amounts of
current to flow through the circuit, and the LED glows dimly. Small resistances in the
LED circuit causes more current to flow through the circuit, and the LED glows more
brightly. By connecting the W and A terminals of the potentiometer, in series with an
LED circuit, you can use it to adjust the resistance in the circuit. Thisin turn adjusts the
brightness of the LED. In this activity, you will use the potentiometer as a variable
resistor and use it to change the brightness of the LED.

Dial Circuit Parts

(1) Potentiometer — 10 kQ

(1) Resistor — 220 Q (red-red-brown)
(1) LED —red

(1) Jumper wire

Building the Potentiometer Test Circuit

Figure 5-5 shows a circuit that can be used for adjusting the LED’s brightness with a
potentiometer.

v Build the circuit shown in Figure 5-5.

Tip: If you have trouble keeping the potentiometer seated in the breadboard sockets, check
its legs. If each one has a small bend, use a needle-nose pliers to straighten them out and
then try plugging the pot into the breadboard again. When the pot’s legs are straight, they
may maintain better contact with the breadboard sockets.

Page 142 - What's a Microcontroller?

Vdd

2200

Pot
10 kO Y LED

nc -

Testing the Potentiometer Circuit

<
[ox
o
<
»
»

Ooooooo
oooog

©

OooOooooo- ooooo

Ooooooooooooooood
Oo0oooooooooodomd
Oo0ooooooooooooymad

DDDDDDDDDDH‘DDDFJQ@.
=

O0000ooooQAaoogooag
O0000o00owooooooo
Oo0000ooooopooooooo

Oooooooooao
oooooooo

Figure 5-5
Potentiometer-LED
Test Circuit

v Turn the potentiometer clockwise until it reaches its mechanical limit shown in

Figure 5-6 (a).

Press the pot against the breadboard a little as you turn its knob. For these activities,
the potentiometer needs to be firmly seated in the breadboard sockets. If you're not careful
when you turn the knob, the pot can become disconnected from the breadboard sockets,
and that can lead to incorrect measurements. So, apply a little downward pressure as you
turn the potentiometer’s knob to keep it seated in the breadboard.

Handle with care: If your potentiometer will not turn this far, do not try to force it. Just turn
it until it reaches its mechanical limit; otherwise, it might break.

v' Gradually rotate the potentiometer counterclockwise to the positions shown in
Figure 5-6 (b), (c), (d), (e), and (f) noting the how brightly the LED glows at

each position.

Measuring Rotation - Page 143

Figure 5-6

(@) (©) () Potentiometer Knob

_ 5 _ 5 N (a) through (f) show the

d b o d i potentiometer’s wiper
(b) \ (d) { ®

=4 O o4 O s i terminal set to different

positions.

How the Potentiometer Circuit Works

The total resistance in your test circuit is 220 Q plus the resistance between the A and W
terminals of the potentiometer. The resistance between the A and W terminals increases
as the knob is adjusted further clockwise, which in turn reduces the current through the
LED, making it dimmer.

ACTIVITY #2: MEASURING RESISTANCE BY MEASURING TIME

This activity introduces a new part called a capacitor. A capacitor behaves like a
rechargeable battery that only holds its charge for short durations of time. This activity
also introduces RC-time, which is an abbreviation for resistor-capacitor time. RC-timeis
a measurement of how long it takes for a capacitor to lose a certain amount of its stored
charge as it supplies current to aresistor. By measuring the time it takes for the capacitor
to discharge with different size resistors and capacitors, you will become more familiar
with RC-time. In this activity, you will program the BASIC Stamp to charge a capacitor
and then measure the time it takes the capacitor to discharge through aresistor.

Introducing the Capacitor

Figure 5-7 shows the schematic symbol and part drawing for the type of capacitor used in
this activity. Capacitance value is measured in microfarads (UF), and the measurement is
typicaly printed on the capacitors.

The cylindrical case of this particular capacitor is called a canister. This type of
capacitor, called an electrolytic capacitor, must be handled carefully.

v" Read the CAUTION box on the next page.

Page 144 - What's a Microcontroller?

CAUTION: This capacitor has a positive (+) and a negative (-) terminal. The negative
terminal is the lead that comes out of the metal canister closest to the stripe with a negative
(-) sign. Always make sure to connect these terminals as shown in the circuit diagrams.
Connecting one of these capacitors incorrectly can damage it. In some circuits, connecting
this type of capacitor incorrectly and then connecting power can cause it to rupture or even
explode.

CAUTION: Do not apply more voltage to an electrolytic capacitor than it is rated to
handle. The voltage rating is printed on the side of the canister.

CAUTION: Safety goggles or safety glasses are recommended.

J_ Figure 5-7

+ 3300 uF 3300 pF Capacitor Schematic

T Symbol and Part Drawing

Pay careful attention to the leads and
how they connect to the Positive and
Negative Terminals.

Resistance and Time Circuit Parts

(1) Capacitor — 3300 pF

(1) Capacitor — 1000 pF

(1) Resistor —220 Q (red-red-brown)

(1) Resistor — 470 Q (yellow-violet-brown)
(1) Resistor — 1 kQ (brown-black-red)

(1) Resistor —2 kQ (red-black-red)

(1) Resistor — 10 kQ (brown-black-orange)

Building and Testing the Resistor-Capacitor (RC) Time Circuit

Figure 5-8 shows the circuit schematic and Figure 5-9 shows the wiring diagram for this
activity. You will be taking time measurements using different resistor values in place of
the resistor labeled R;.

Measuring Rotation - Page 145

v' Read the SAFETY box carefully.

SAFETY

Always observe polarity when connecting the 3300 or 1000 puF capacitor. Remember,
the negative terminal is the lead that comes out of the metal canister closest to the stripe
with a negative (-) sign. Use Figure 5-7 to identify the (+) and (-) terminals.

Your 3300 pF capacitor will work fine in this experiment so long as you make sure that the
positive (+) and negative (-) terminals are connected EXACTLY as shown in Figure 5-8 and
Figure 5-9.

Never reverse the supply polarity on the 3300 uF or any other polar capacitor. The
voltage at the capacitor's (+) terminal must always be higher than the voltage at its (-)
terminal. Vss is the lowest voltage (0 V) on the Board of Education and BASIC Stamp
HomeWork Board. By connecting the capacitor's negative terminal to Vss, you ensure that
the polarity across the capacitor’s terminals will always be correct.

Never apply voltage to the capacitor that exceeds the voltage rating on the canister.
Wear safety goggles or safety glasses during this activity.
Always disconnect power before you build or modify circuits.

Keep your hands and face away from this capacitor when power is connected.

v" With power disconnected, build the circuit as shown starting with a 470 Q
resistor in place of the resistor labeled R;.

P7 e
290 O igure 5?8 .
+ R,=470Q Schematic for Testing
3300 pF R, R, =1kQ RC-time Voltage Decay

R, =2kQ

R,=10kQ The four different
resistors will be used one
at a time as R; in the

— schematic.
Vss

Four different resistors will be used as R; shown in the schematic. First, the schematic
will be built and tested with R, = 470 Q, and then R; = 1 kQ, etc. will be used later.

Page 146 - What's a Microcontroller?

v

R R R R / Figure 5-9

- QO V\(irin.g Diagra}m for
X3 Viewing RC-time Voltage
Decay

<
o
a
=
<
<
»
7

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
PO
X2)

]
gy

Ooooooooooooo@Aaa
ODOoooooooooooos

+ Make sure that the
negative lead of the
capacitor is connected on
your board the same way
it is shown in this figure,
with the negative lead
connected to Vss.

OO00000O0oOoooNooooog
OO0o0oooooOooooofNaoo
Oo000oooooooooooood
DDDDDDDDDDDDDWDDD

Ooooooooooooo

Ooooooooooog
Ooooooooooog

Make sure that the negative lead of the capacitor is connected on your board the
same way it is shown in this figure, with the negative lead connected to V'ss.

Polling the RC-Time Circuit with the BASIC Stamp

Although a stopwatch can be used to record how long it takes the capacitor’s charge to
drop to a certain level, the BASIC Stamp can aso be programmed to monitor the circuit
and give you a more consi stent time measurement.

Example Program: PolledRcTimer.bs2

v
v

v

NN

Enter and run PolledRcTimer.bs2.

Observe how the BASIC Stamp charges the capacitor and then measures the
dischargetime.

Record the measured time (the capacitor’s discharge time) in the 470 Q row of
Table 5-1.

Disconnect power from your Board of Education or BASIC Stamp HomeWork
Board.

Remove the 470 Q resistor labeled R; in Figure 5-8 and Figure 5-9 on page 146,
and replace it with the 1 kQ resistor.

Reconnect power to your board.

Record your next time measurement (for the 1 kQ resistor).

Measuring Rotation - Page 147

v Repeat these steps for each resistor value in Table 5-1.

Table 5-1: Resistance and RC-time for C = 3300 uF

Resistance (Q)

Measured Time (s)

470

1k

2k

10k

What's a M crocontroller - PolledRcTi mer. bs2
Reaction timer programnodified to track an RC-ti me vol tage decay.

{ $STAMP BS2}
{ $PBASI C 2. 5}

ti meCount er VAR Wor d

count er VAR Ni b

PAUSE 1000

DEBUG CLS

H GH 7

DEBUG " Capacitor Charging...", CR

FOR counter = 5 TOO

PAUSE 1000

DEBUG DEC2 counter, CR, CRSRUP
NEXT

DEBUG CR, CR, "Measure decay time now ",

I NPUT 7
DO
PAUSE 100
ti meCounter = tineCounter + 1

DEBUG ? | N7

CR CR

DEBUG DEC5 ti neCounter, CR, CRSRUP, CRSRUP

LOOP UNTIL IN7 =0

DEBUG CR, CR, CR "The RC decay tinme was ",

DEC ti neCounter, CR

"tenths of a second.", CR CR

END

Page 148 - What's a Microcontroller?

How PolledRcTimer.bs2 Works

Two variables are declared. Theti meCount er variableis used to track how long it takes
the capacitor to discharge through Ri. The counter variable is used to count down
while the capacitor is charging.

ti meCount er VAR Wor d
count er VAR N b

The command DEBUG CLS clears the Debug Terminal so that it doesn’t get cluttered with
successive measurements. H GH 7 sets P7 high and starts charging the capacitor, then a
“Capacitor charging...” message is displayed. After that, a FOR .. NEXT loop counts
down while the capacitor is charging. As the capacitor charges, the voltage across its
terminals increases toward anywhere between 3.4 and 4.9 V (depending on the value
of Ry).

DEBUG CLS

H GH 7
DEBUG " Capacitor Charging...", CR

FOR counter = 5 TOO

PAUSE 1000

DEBUG DEC2 counter, CR, CRSRUP
NEXT

A message announces when the decay starts getting polled.

DEBUG CR, CR, "Measure decay tinme now", CR CR

In order to let the capacitor discharge itself through the R; resistor, the 1/0 pin is changed
from HI GH to | NPUT. As an input, the I/O pin, has no effect on the circuit, but it can
sense high or low signals. As soon as the 1/0O pin releases the circuit, the capacitor
discharges as it feeds current through the resistor. As the capacitor discharges, the
voltage across its terminal s gets lower and lower (decays).

I NPUT 7

Back in the pushbutton chapter, you used the BASIC Stamp to detect a high or low signal
using the variables | N3 and | N4. At that time, a high signal was considered Vdd, and a
low signal was considered Vss. To the BASIC Stamp, actually a high signal is any
voltage above about 1.4 V. Of course, it could beup to 5 V. Likewise, alow signal is

Measuring Rotation - Page 149

anything between 1.4 V and0V. This DO...LOOP checks P7 every 100 ms until the
value of I N7 changes from 1 to 0, which indicates that the capacitor voltage decayed to
14V.

DO

PAUSE 100
ti meCounter = tinmeCounter + 1

DEBUG ? | N7
DEBUG DEC5 timeCounter, CR, CRSRUP, CRSRUP

LOOP UNTIL IN7 = 0

The result is then displayed and the program ends.
DEBUG CR, CR, CR, "The RC decay tinme was "

DEC ti meCounter, CR,
"tenths of a second.", CR CR
END

Your Turn — A Faster Circuit

By using a capacitor that has roughly 1/3 the capacity to hold charge, the time
measurement for each resistor value that is used in the circuit will be reduced by 1/3.
Later on in the next activity, you will use a capacitor that has 1/33,000 the capacity! The
BASIC Stamp will still take the time measurements for you, using a command called
RCTI ME.

v Disconnect power to your Board of Education or HomeWork Board.

v Replace the 3300 pF capacitor with a 1000 UF capacitor.

v' Confirm that the polarity of your capacitor is correct. The negative terminal

should be connected to Vss.

Reconnect power.

Repeat the steps in the Example Program: PolledRcTimer.bs2 section, and

record your time measurements in Table 5-2.

v/ Compare your time measurements to the ones you took earlier in Table 5-1.
How close are they to 1/3 the value of the measurements taken with the 3300 puF
capacitor?

AN

Page 150 - What's a Microcontroller?

Table 5-2: Resistance and RC-time for C = 1000 uF

Resistance (Q) Measured Time (s)
470
1k
2k
10k

ACTIVITY #3: READING THE DIAL WITH THE BASIC STAMP

In Activity #1, a potentiometer was used as a variable resistor. The resistance in the
circuit varied depending on the position of the potentiometer’s adjusting knob. In
Activity #2, an RC-time circuit was used to measure different resistances. In this
activity, you will build an RC-time circuit to read the potentiometer, and use the BASIC
Stamp to take the time measurements. The capacitor you use will be very small, and the
time measurements will be in the microseconds range. Even though the measurements
take very short durations of time, the BASIC Stamp will give you an excellent indication
of the resistance between the potentiometer’s A and W terminals which in turn indicates
the knob’ s position.

Parts for Reading RC-Time with the BASIC Stamp

(1) Potentiometer — 10 kQ

(1) Resistor — 220 Q (red-red-brown)
(2) Jumper wires

(1) Capacitor — 0.1 pF

(1) Capacitor — 0.01 pF

(2) Jumper wires

These capacitors do not have + and — terminals. They are non-polar. So, you can safely
connect these capacitors to a circuit without worrying about positive and negative terminals.

J_ % Figure 5-10
0.1pF J— 0.01 pF Ceramic Capacitors
T T

0.1 pF capacitor (left)
0.01 pF capacitor (right)

Measuring Rotation - Page 151

Building an RC Time Circuit for the BASIC Stamp

Figure 5-11 shows a schematic and wiring diagram for the fast RC-time circuit. Thisis
the circuit that you will use to monitor the position of the potentiometer’s knob with the
help of the BASIC Stamp and a PBASIC program.

v" Build the circuit shown in Figure 5-11.

P7

w == 0.1uF

Figure 5-11
Schematic and wiring

Vdd Vin Vss

X3

o1s@| 00000 DDDDFT diagram for BASIC
P14 %%%%gkﬁggggg Stamp RCTIME Circuit
mg alalalals ooooo with Potentiometer
r1M| ODOO00OO ooooo
r1o| DOOOO ooooo
o ooooo ooooo
s ooooo ooooo
p7 ooooo ooooo
6 ooooo ooooo
b oooog ooooo
b ooo2 0050
b ooyon 2y
o oo oo,
> oo oo
0 Ne @0 oooo
x| 0000 oooog

Programming RC-Time Measurements

The example program in Activity #2 measured RC decay time by checking whether
I N7 = 0 every 100 ms, and it kept track of how many times it had to check. When | N7
changed from 1 to O, it indicated that the capacitor’ s voltage decayed to 1.4 V. The result
when the program was done polling was that the ti meCount er variable stored the
number of tenths of a second it took for the capacitor’s voltage to decay to 1.4 V.

This next example program uses a PBASIC command called RCTI Me that makes the
BASIC Stamp measure RC decay in terms of 2 us units. So, instead of tenths of a

Page 152 - What's a Microcontroller?

second, the result RCTI ME 7, 1, tine storesintheti me variableisthe number of two-
millionths of a second units that it takes for the capacitor’ s voltage to decay below 1.4 V.
Since the RCTI ME command has such fine measurement units, you can reduce the
capacitor size from 3300 uF to 0.1 or even 0.01 pF, and still get time measurements that
indicate the resistor’s value. Since the resistance between the potentiometer’s A and W
terminals changes as you turn the knob, the RCTI ME measurement will give you a time
measurement, which corresponds to the position of the potentiometer’ s knob.

Example Program: ReadPotWithRcTime.bs2

v' Enter and run ReadPotWithRcTime.bs2
v" Try rotating the potentiometer’s knob while monitoring the value of the ti me
variable using the Debug Terminal.

Remember to apply a little downward pressure to keep the potentiometer seated on the
breadboard as you twist its knob. If your servo starts twitching back and forth unexpectedly
instead of holding its position, an un-seated pot may be the culprit.

' What's a Mcrocontroller - ReadPot WthRcTi me. bs2
' Read potentionmeter in RC-tinme circuit using RCTI ME conmand.

' {$STAWP BS2}
' {$PBASI C 2. 5}

time VAR Wrd
PAUSE 1000
DO
H GH 7
PAUSE 100
RCTIME 7, 1, tine
DEBUG HOMVE, “"tinme = ", DEC5 tine

LooP

Your Turn — Changing Time by Changing the Capacitor

v" Replacethe 0.1 uF capacitor with a0.01 pF capacitor.

v' Try the same positions on the potentiometer that you did in the main activity and
compare the value displayed in the Debug Termina with the values obtained for
the 0.1 pF capacitor. Are the RCTI ME measurements about one tenth the value
for a given potentiometer position?

Measuring Rotation - Page 153

v" Go back to the 0.1 uF capacitor.

v" With the 0.1 yF capacitor back in the circuit and the 0.01 uF capacitor removed,
turn the pot’s knob to its limit in both directions and make notes of the highest
and lowest values for the next activity. Highest: Lowest:

How ReadPotWithRcTime.bs2 Works
Figure 5-12 shows how the ReadPotWithRcTimebs2's H GH, PAUSE and RCTI ME
commands interact with the circuit in Figure 5-11.

Figure 5-12: Voltage at P7 through HIGH, PAUSE, and RCTIME
Invisible to RC Circuit

P7 C—M

A
vy
2200 Ne ’ m
1
Pot

== 0.1pF

RCTIME 7, 1, time

-100 ms Opys 100ps 200 ps 300 ps 400 ps

On the l€eft, the HI GH 7 command causes the BASIC Stamp to internally connect its I/O
pin P7 to the 5 V supply (Vdd). Current from the supply flows through the
potentiometer’s resistor and also charges the capacitor. The closer the capacitor gets to
its final charge (almost 5 V), the less current flows into it. The PAUSE 100 command is
primarily to make the Debug Termina display update at about 10 times per second;
PAUSE 1 is usualy sufficient to charge the capacitor. On the right, the RCTIME 7, 1,

ti me command changes the 1/0 pin direction from output to input and starts counting
timein 2 psincrements. As an input the 1/0 pin no longer supplies the circuit with 5 V.

Page 154 - What's a Microcontroller?

In fact, as an input, it's pretty much invisible to the RC circuit. So, the capacitor starts
losing its charge through the potentiometer. As the capacitor loses its charge, its voltage
decays. The RCTI ME command keeps counting time until P7 senses a low signal,
meaning the voltage across the capacitor has decayed to 1.4 V, at which point it stores its
measurement in thet i ne variable.

Figure 5-12 aso shows a graph of the voltage across the capacitor during the HI GH,
PAUSE, and RCTI ME commands. |n response to the H GH 7 command, which connects the
circuit to 5 V, the capacitor quickly charges. Then, it remains level at its final voltage
during most of the PAUSE 100 command. When the program gets to the RCTI ME 7, 1,
ti me command, it changes the 1/O pin direction to input, so the capacitor starts to
discharge through the potentiometer. As the capacitor discharges, the voltage at P7
decays. When the voltage decays to 1.4 V (at the 150 pus mark in this example), the
RCTI ME command stops counting time and stores the measurement result in the ti ne
variable. Since the RCTI ME command counts time in 2 ps units, the result for 150 us that
gets stored in thet i me variableis 75.

1/0 Pin Logic Threshold: 1.4 V is a BASIC Stamp 2 I/O pin’s logic threshold. When the 1/O
pin is set to input, it stores a 1 in its input register if the voltage applied is above 1.4 V or a 0
if the input voltage is 1.4 V or below. The first pushbutton example back in Chapter 3,
Activity #2 applied either 5V or O V to P3. Since 5 V is above 1.4 V, | N3 stored a 1, and
since 0 V is below 1.4 V, | N3 stored a 0.

RCTI ME State Argument: In ReadPotWithRcTime.bs2, the voltage across the capacitor
decays from almost 5 V, and when it gets to 1.4 V, the value in the | N7 register changes
from 1 to 0. At that point, the RCTI ME command stores its measurement in its Duration,
which is the ti ne variable in the example program. The RCTI ME command’'s State
argument is 1 in RCTIME 7, 1, time, which tells the RCTI ME command that the | N7
register will store a 1 when the measurement starts. The RCTI ME command measures how
long it takes for the | N7 register to change to the opposite state, which happens when the
voltage decays below the 1/O pin’s 1.4 V logic threshold.

For more information: Look up the RCTI ME command in either the BASIC Stamp Manual
or the BASIC Stamp Editor’s Help.

Figure 5-13 shows how the decay time changes with the potentiometer’s resistance for
the circuit in Figure 5-11. Each position of the potentiometer’s knob sets it at a certain
resistance. Turn it further one direction, and the resistance increases, and in the other
direction, the resistance decreases. When the resistanceis larger, the decay takes alonger
time, and the RCTI ME command stores a larger value in the ti me variable. When the
resistance is smaller, the decay takes a shorter time, and the RCTI ME command stores a

Measuring Rotation - Page 155

smaller value in the ti me variable. The DEBUG command in ReadPotWithRcTime.bs2
displays this time measurement in the Debug Terminal, and since the decay time changes
with the potentiometer’ s resistance, which in turn changes with the potentiometer knob’s
position, the number in the Debug Terminal indicates the knob’ s position.

N---p----- -More resistance,
longer decay time

Figure 5-13
How Potentiometer Resistance

H— I 4 ; H : Affects Decay Time

Ops 100ps 200 ps 300 pus 400 ps

Why does the capacitor charge to a lower voltage when the potentiometer has less
resistance?

Take a look at the schematic in the upper-left corner of Figure 5-12 on page 153. Without
the 220 Q resistor, the 1/0 pin would be able to charge the capacitor to 5 V, but the 220 Q
resistor is necessary to prevent possible 1/0 pin damage from a current inrush when it starts
charging the capacitor. It also prevents the potentiometer from drawing too much current if it
is turned to 0 Q while the I/O pin sends its 5 V high signal.

With 5 V applied across the 220 Q resistor in series with the potentiometer, the voltage
between them has to be some fraction of 5 V. When two resistors conducting current are
placed in series, which results in an intermediate voltage, the circuit is called a voltage
divider. So the 220 Q resistor and potentiometer form a voltage divider circuit, and for any
given potentiometer resistance (Rpot), you can use this equation to calculate the voltage
across the potentiometer (Vpot):

Vpot =5V x Rpot + (Rpot + 220 Q)

The value of Vpot sets the ceiling on the capacitor’s voltage. In other words, whatever the
voltage across the potentiometer would be if the capacitor wasn’t connected, that's the
voltage the capacitor can charge to, and no higher. For most of the potentiometer knob’s
range, the resistance values are in the kQ, and when you calculate Vpot for kQ Rpot values,
the results are pretty close to 5 V. The 220 Q resistor doesn’t prevent Vpot from charging
above 1.4 V until the potentiometer’s value is down at 85.6 Q, which is less than 1% of the
potentiometer’s range of motion. This 1% would have resulted in the lowest measurements
anyhow, so it's difficult to tell that measurements of 1 in this range are anything out of the
ordinary. Even with the additional 220 Q resistors built into BASIC Stamp HomeWork board
1/0 pin connections, only the lowest 1.7% of the potentiometer’s range is affected, so it's still
virtually unnoticeable.

So the 220 Q resistor protects the 1/O pin, with minimal impact on the RC decay
measurement’s ability to tell you where you positioned the potentiometer’s knob.

Page 156 - What's a Microcontroller?

ACTIVITY #4: CONTROLLING A SERVO WITH A POTENTIOMETER

Thumb joysticks like the one in Figure 5-14 are commonly found in video game
controllers. Each joystick typically has two potentiometers that allow the electronics
inside the game controller to report the joystick’s position to the video game console.
One potentiometer rotates with the joystick’s horizontal motion (left/right), and the other
rotates with the joystick’ s vertical motion (forward/backward).

Horizontal _

potentiometer Figure 5-14
Potentiometers Inside
the Parallax Thumb

\ Joystick Module

Vertical
potentiometer

Another thumb joystick application that uses potentiometers is the RC radio controller
and model airplane in Figure 4-1 on page 94. The controller has two joysticks, and each
has two potentiometers. Each potentiometer’s position is responsible for controlling a
different servo on the RC plane.

In this activity, you will use a potentiometer similar to the ones found in thumb joysticks
to control a servo's position. As you turn the potentiometer’ s knob, the servo’s horn will
mirror this motion. This activity utilizes two circuits, the potentiometer circuit from
Activity #3 in this chapter, and the servo circuit from Chapter 4, Activity #1. The
PBASIC program featured in this chapter repeatedly measures the potentiometer’s
position with an RCTI ME command, and then uses the measurement and some math to
control the servo’s position with a PULSOUT command.

Measuring Rotation - Page 157

The BASIC Stamp can measure the joystick’s position. Since there are two
potentiometers in each thumb joystick, each of them can replace the stand alone
potentiometer in the circuits in Figure 5-11 on page 151. One RCTI ME command can then
measure the vertical potentiometer's position, and another can measure the horizontal
potentiometer.

Potentiometer Controlled Servo Parts

(1) Potentiometer — 10 kQ

(1) Resistor — 220 Q (red-red-brown)

(1) Resistor —470 Q (yellow-violet-brown)
(1) Capacitor — 0.1 pF

(1) Parallax Standard Servo

(1) LED —any color

(2) Jumper wires

HomeWork Board users will also need:

(2) 3-pin male-male header
(4) Jumper wires

Building the Dial and Servo Circuits

This activity will use two circuits that you have aready built individualy: the
potentiometer circuit from the activity you just finished and the servo circuit from the
previous chapter.

v' Leave your potentiometer RC-time circuit from Activity #3 on your prototyping
area. If you need to rebuild it, use Figure 5-11 on page 151. Make sure to use
the 0.1 uF capacitor, not the 0.01 uF capacitor.

v' Add your servo circuit from Chapter 4, Activity #1 to the project. Remember
that your servo circuit will be different depending on your carrier board. Below
are the pages for the sections that you will need to jump to:

0 Page 96: Board of Education Servo Circuit
o0 Page99: BASIC Stamp HomeWork Board Servo Circuit

Page 158 - What's a Microcontroller?

Programming Potentiometer Control of the Servo

You will need the smallest and largest value of the time variable that you recorded from
your RC-time circuit while using a 0.1 uF capacitor.

v If you have not already completed the Y our Turn section of the previous activity,
go back and complete it now.

For this next example, here are the time values that were measured by a Parallax
technician; your values will probably be dightly different:

o All theway clockwise: 1
o All theway counterclockwise: 691

So how can these input values be adjusted so that they map to the 500—1000 range for
controlling the servo with the PULSOUT command? The answer is by using multiplication
and addition. First, multiply the input values by something to make the difference
between the clockwise (minimum) and counterclockwise (maximum) values 500 instead
of amost 700. Then, add a constant value to the result so that its range is from 500 to
1000 instead of 1 to 500. In electronics, these operations are called scaling and offset.

Here' s how the math works for the multiplication (scaling):

time(maximum) = 691x % =691x 0.724 = 500

. . 500
ti minimum) =1x—— = 0.724
el) =1 o1

After the values are scaled, hereis the addition (offset) step.

time(maximum) = 500+ 500 = 1000
time(minimum) = 0.724 + 500 = 500

The */ operator that was introduced on page 85 is built into PBASIC for scaling by
fractiona values, like 0.724. Here again are the steps for using */ applied to 0.724:

1. Place the value or variable you want to multiply by a fractiona value before the
*| operator.

Measuring Rotation - Page 159

time = time */
2. Takethefractiona value that you want to use and multiply it by 256.

new fractional value = 0.724x 256 = 185.344

3. Round off to get rid of anything to the right of the decimal point.
new fractional value=185

4. Placethat value after the*/ operator.
time = time */ 185

That takes care of the scaling, now all we need to do is add the offset of 500. This can be
done with a second command that adds 500 to t i ne:

tinme */ 185
time + 500

time
tinme

Now, t i me isready to be recycled into the PULSOUT command’ s Duration argument.

time = tine */ 185 ' Scal e by 0.724.
time = time + 500 ' O fset by 500.
PULSQUT 14, tine ' Send pul se to servo.

Example Program: ControlServoWithPot.bs2
v Enter and run this program, then twist the potentiometer’s knob and make sure
that the servo’s movements echo the potentiometer’ s movements.

' What's a Mcrocontroller - Control ServoWt hPot. bs2
Read potentioneter in RC-tine circuit using RCTI ME conmand.
Scale time by 0.724 and offset by 500 for the servo.

' {$STAWP BS2}
' {$PBASI C 2.5}

PAUSE 1000
DEBUG " Pr ogr am Runni ng! "

tinme VAR Wor d

Page 160 - What's a Microcontroller?

DO
H GH 7
PAUSE 10
RCTIME 7, 1, time
time =time */ 185 ' Scale by 0.724 (X 256 for */).
tine = tine + 500 ' Ofset by 500.
PULSQUT 14, tine ' Send pul se to servo.
LOoP

Your Turn — Scaling the Servo’s Relationship to the Dial

Y our potentiometer and capacitor will probably give you ti me values that are somewhat
different from the ones discussed in this activity. These are the values you gathered in
the Y our Turn section of the previous activity.

v

v
v

Repeat the math discussed in the Programming Potentiometer Control of the
Servo section on page 158 using your maximum and minimum val ues.

Substitute your scale and offset values in Control ServoWithPot.bs2.

Comment out DEBUG "Program Running!" with an apostrophe at the
beginning of that line.

Add this line of code between the PULSOUT and LOOP commands so that you can
view your results:

DEBUG HOVE, DEC5 time ' Display adjusted tine val ue.

Run the modified program and check your work. Because the values were
rounded off, the limits may not be exactly 500 and 1000, but they should be
pretty close.

Declaring Constants and Pin Directives

In larger programs, you may end up using the value of the scale factor (which was 185)
and the offset (which was 500) many times in the program. Numbers like 185 and 500 in
your program are called constants because unlike variables, their values cannot be
changed while the program is running. In other words, the value remains “constant.”
Y ou can create names for these constants with CON directives:

Scal eFactor CON 185
O fset CON 500
del ay CON 10

Measuring Rotation - Page 161

These CON directives are just about always declared near the beginning of the
program so that they are easy to find.

Once your constant values have been given names with CON directives, you can use
Scal eFact or in place of 185 in your program and O f set in place of 500. For example:
time
tine

time */ scal eFactor ' Scal e by 0.724.
time + offset ' O fset by 500.

With the values we assigned to the constant names with CON directives, the commands

areredly:

tinme
time

time */ 185 ' Scal e by 0.724.
time + 500 ' O fset by 500.

One important advantage to using constants is that you can change one CON directive, and
it updates every instance of that constant name in your program. For example, if you
write a large program that uses the Scal eFact or constant in 11 different places, one
change to Scal e Factor CON.., and al the instances of Scal eFact or in your program
will use that updated value for the next program download. So, if you changed
Scal eFact or CON 500 to Scal eFact or CON 510, every command with Scal eFact or
will use 510 instead of 500.

You can aso give I/O pins names using PI N directives. For example, you can declare a
Pl Ndirective for |/O pin P7 like this:

RcPi n PIN 7

There are two places in the previous example program where the number 7 is used to
refer to 1/0O pin P7. The first can now be written as:

H GH RcPin
The second can be written as;
RCTIME RcPin, 1, tine

If you later change your circuit to use different 1/O pins, al you have to do is change the
value in your PIN directive, and both the HI GH and RCTI ME commands will be

Page 162 - What's a Microcontroller?

automatically updated. Likewise, if you have to recalibrate your scale factor or offset,
you can also just change the CON directives at the beginning of the program.

The PI N directive has an additional feature: The PBASIC compiler can detect whether
the pin name is used as an input or output, and it substitutes either the 1/0 pin number for
output, or the corresponding input register bit variable for input. For example, you could
declare two pin directives, like LedPin PI N 14 and Butt onPi n PIN 3. Then, your code
can make a statement like | F ButtonPin = 1 THEN H GH LedPin. The PBASIC
compiler convertsthisto | F IN3 = 1 THEN HI GH 14. Thel F ButtonPin = 1..made
a comparison, and the PBASIC compiler knows that you are using But t onPi n as an input.
So it uses the input register bit | N3 instead of the number 3. Likewise, the PBASIC
compiler knows that Hl GH LedPi n uses the LedPi n pin name as the constant value 14 for
an output operation, so it substitutes H GH 14.

Example Program: ControlServoWithPotUsingDirectives.bs2

This program works just like ControlServoWithPot.bs2 but makes use of named
constants and 1/0O pins.

v' Enter and run Control ServoWithPotUsingDirectives.bs2.
v Observe how the servo responds to the potentiometer and verify that it behaves
the same as Control ServoWithPot.bs2.

What's a M crocontroller - Control ServoWthPot Usi ngDi recti ves. bs2
' Read potentioneter in RC-tinme circuit using RCTI ME conmand.
' Apply scale factor and offset, then send val ue to servo.

{ $STAMP BS2}
{$PBASI C 2. 5}

rcPin PI N 7 " 1/O Pin Definitions
servoPi n Pl N 14

scal eFact or CON 185 ' Constant Decl arations
of f set CON 500

del ay CON 10

tinme VAR Wor d ' Variabl e Declaration

PAUSE 1000 "Initialization

Measuring Rotation - Page 163

DO
Mai n Routi ne

H GH rcPin ' RC decay neasurenent

PAUSE del ay

RCTIME rcPin, 1, tine

time = tine */ scal eFactor ' Scal e scal eFactor.

time = time + offset ' O fset by offset.

PULSQUT servoPin, tine ' Send pul se to servo.

DEBUG HOVE, DEC5 tine ' Display adjusted time val ue.
LOooP

Your Turn — Updating a PIN Directive

As mentioned earlier, if you connect the RC circuit to a different I/O pin, you can simply
change the value of the RcPi n PI N directive, and this change automatically reflects in
theH GH RcPi n and RCTI ME RcPin, 1, timnme commands.

v
v

Save the example program under a new name.

Change scal eFact or and of f set to the unique values for your RC circuit that
you determined in the previous Y our Turn section.

Run the modified program and verify that it works correctly.

Modify your circuit by moving the RC-time circuit connection from /O pin P7
to 1/0 pin P8.

Modify ther cPi n declaration so that it reads:

rcPin PIN 8

Re-run the program and verify that the H GH and RCTI ME commands are till
functioning properly on the different 1/0O pin with just one change to the RcPi n
Pl Ndirective.

Page 164 - What's a Microcontroller?

SUMMARY

This chapter introduced the potentiometer, a part often found under various knobs and
dials. The potentiometer has a resistive element that typically connects its outer two
terminals and awiper terminal that contacts a variable point on the resistive element. The
potentiometer can be used as a variable resistor if the wiper terminal and one of the two
outer terminalsis used in acircuit.

The capacitor was also introduced in this chapter. A capacitor can be used to store and
release charge. The amount of charge a capacitor can store is related to its value, which
is measured in farads, (F). The symbol U is engineering notation for micro, and it means
one-millionth. The capacitors used in this chapter's activities ranged from 0.01 to
3300 pF.

A resistor and a capacitor can be connected together in a circuit that takes a certain
amount of time to charge and discharge. This circuit is commonly referred to as an RC-
time circuit. The R and C in RC-time stand for resistor and capacitor. When one value
(C in this chapter's activities) is held constant, the change in the time it takes for the
circuit to discharge is related to the value of R. When the value of R changes, the value
of the time it takes for the circuit to charge and discharge also changes. The overall time
it takes the RC-time circuit to discharge can be scaled by using a capacitor of a different
size.

Polling was used to monitor the discharge time of a capacitor in an RC circuit where the
value of C was very large. Several different resistors were used to show how the
discharge time changes as the value of the resistor in the circuit changes. The RCTI ME
command was then used to monitor a potentiometer (a variable resistor) in an RC-time
circuit with smaller value capacitors. Although these capacitors cause the discharge
times to range from roughly 2 to 1500 us (millionths of a second), the BASIC Stamp has
no problem tracking these time measurements with the RCTI ME command. The 1/O pin
must be set HI GH, and then the capacitor in the RC-time circuit must be allowed to charge
by using PAUSE before the RCTI ME command can be used.

PBASIC programming can be used to measure a resistive sensor such as a potentiometer
and scale its value so that it is useful to another device, such as a servo. This involves
performing mathematical operations on the measured RC discharge time, which the
RCTI M command storesin avariable. This variable can be adjusted by adding a constant
value to it, which comes in handy for controlling a servo. In the Projects section, you
may find yourself using multiplication and division as well.

Measuring Rotation - Page 165

The coN directive can be used at the beginning of a program to substitute a name for a
constant value (a number). After a constant is named, the name can be used in place of
the number throughout the program. This can come in handy, especialy if you need to
use the same number in 2, 3, or even 100 different places in the program. You can
change the number in the CON directive, and al 2, 3, or even 100 different instances of
that number are automatically updated next time you run the program. PI N directives
allow you to name I/O pins. The I/O pin name is context sensitive, so the PBASIC
compiler substitutes the corresponding 1/O pin number for a pin name in commands like
H GH, LOW and RCTI ME. If the pin name gets used in a conditional statement, it instead
substitutes the corresponding input register, like | N2, I N3, etc.

Questions
1. When you turn the dia or knob on a sound system, what component are you
most likely adjusting?
2. In atypical potentiometer, is the resistance between the two outer terminals
adjustable?
3. How isacapacitor like arechargeable battery? How isit different?
4. What can you do with an RC-time circuit to give you an indication of the value
of avariable resistor?
5. What happens to the RC discharge time as the value of R (the resistor) gets
larger or smaller?
6. What doesthe con directive do? Explain thisin terms of a name and a number.
Exercise
1. Let'ssay that you have a 0.5 uF capacitor in an RC timer circuit, and you want
the measurement to take 10 times as long. Calculate the value of the new
capacitor.
Projects
1. Add abhicolor LED circuit to Activity #4. Modify the example program so that
the bicolor LED is red when the servo is rotating counterclockwise, green when
the servo isrotating clockwise, and off when the servo holding its position.
2. UselF... THENto modify the first example program from Activity #4 so that the

servo only rotates between PULSOUT values of 650 and 850.

Page 166 - What's a Microcontroller?

Solutions

QL. A potentiometer.

Q2. No, it's fixed. The variable resistance is between either outer terminal and the
wiper (middle) terminal.

Q3. A capacitor is like a rechargeable battery in that it can be charged up to hold
voltage. The differenceisthat it only holds a charge for a very small amount of
time.

Q4. You can measure the time it takes for the capacitor to discharge (or charge).
This time is related to the resistance and capacitance. If the capacitance is
known and the resistance is variable, then the discharge time gives an indication
of the resistance.

Q5. As R gets larger, the RC discharge time increases in direct proportion to the
increase in R. As R gets smaller, the RC discharge time decreases in direct
proportion to the decrease in R.

Q6. The coN directive substitutes a name for a number.

E1l. New cap = (10 x old cap value) = (10 x 0.5puF) =5 pF

P1. Activity #4 with bicolor LED added.

P13 D
! Potentiometer schematic from Figure 5-11
P Z onpage 151, servo from Chapter 4,
¥ Activity #1, and bicolor LED from Figure
2 2-19 on page 53 with P15 and P14 changed
P2 B Wy to P13 and P12 as shown.

470 Q

' What's a Mcrocontroller - Ch5Prj01_Control ServowWt hPot . bs2
Read potentioneter in RC-tine circuit using RCTI ME conmand.

' The tinme var ranges from 126 to 713, and an offset of 330 is needed.
Bi col or LED on P12, P13 tells direction of servo rotation:

' green for CW red for CCW off when servo is hol ding position.

" {$STAWP BS2}

" {$PBASI C 2. 5}

PAUSE 1000
DEBUG " Pr ogr am Runni ng! "

tine VAR Wor d " tine reading from pot
prevTi ne VAR Wor d ' previous reading

DO

prevTime = tinme

H GH 7

PAUSE 10

RCTIME 7, 1, tine

tine = tine + 350

IF (tine > prevTime + 2) THEN
H GH 13
LOW 12

ELSEIF (time < prevTinme - 2) THEN
LOW 13
H GH 12

ELSE
LOW 13
LOW 12

ENDI F

PULSOUT 14, tine

LOOP

Measuring Rotation - Page 167

Store previous tinme reading
Read pot using RCTI MVE

Scal e pot, match servo range
i ncreased, pot turned CCW
Bi col or LED red

val ue decreased, pot turned CW
Bi col or LED green

Servo hol di ng position
LED of f

. Thekey isto add I F. . . THEN blocks; an example is shown below. CLREQL isa
handy DEBUG control character meaning “clear to end of line.”

What's a Mcrocontroller - Ch5Prj02_Control ServoW t hPot . bs2
Read potentioneter in RC-tine circuit using RCTI ME conmand.
Modify with | F.THEN so the servo only rotates from 650 to 850.

The time variable ranges from1l to 691, so an of fset of at |east

649 i s needed.

{ $STAMP BS2}
{$PBASI C 2. 5}

PAUSE 1000

DEBUG " Pr ogr am Runni ng! "
time VAR Word

DO

H GH 7
PAUSE 10

RCTIME 7, 1, tine
tinme = time + 649

IF (time < 650) THEN
time = 650
ENDI F

Read pot with RCTIMVE

Scale tinme to servo range

Constrain range from 650 to 850

Page 168 - What's a Microcontroller?

IF (time > 850) THEN
time = 850
ENDI F

PULSQUT 14, tine
DEBUG HOME, “time = ", DEC4 time, CLRECL

LOOP

Digital Display - Page 169

Chapter 6: Digital Display

THE EVERYDAY DIGITAL DISPLAY

Figure 6-1 shows a display on the front of an oven door. When the oven is not in use, it
displays the time. When the ovenisin usg, it displays the oven’'s timer, cooking settings,
and it flashes on and off at the same time an alarm sounds to let you know the food is
done. A microcontroller inside the oven door monitors the pushbuttons and updates the
display. It also monitors sensors inside the oven and switches devices that turn the
heating elements on and off.

Figure 6-1
Digital Clock 7-Segment
Display on Oven Door

Each of the three digitsin Figure 6-1 is called a 7-segment display. In this chapter, you
will program the BASIC Stamp to display humbers and letters on a 7-segment display.

WHAT'S A 7-SEGMENT DISPLAY?

A 7-segment display is rectangular block of 7 lines of equa length that can be lit
selectively with LEDS to display digits and some letters. Figure 6-2 shows a part drawing
of the 7-segment LED display you will use in this chapter’'s activities. It aso has a dot
that can be used as a decimal point. Each of the segments (A through G) and the dot
contain a separate LED, which can be controlled individually. Most of the pins have a
number along with alabel that corresponds to one of the LED segments. Pin 5 islabeled
DP, which stands for decimal point. Pins 3 and 8 are labeled “common cathode” and
they will be explained when the schematic for this part is introduced.

Page 170 - What's a Microcontroller?

Common
Cathode

10987 6

Figure 6-2
7-Segment LED Display Part
Drawing and Pin Map

12345
|

Common
Cathode

Pin Map: Figure 6-2 is an example of a pin map. A pin map contains useful information that
helps you connect a part to other circuits. Pin maps usually show a number for each pin, a
name for each pin, and a reference.

Take a look at Figure 6-2. Each pin is numbered, and the name for each pin is the segment
letter next to the pin. The reference for this part is the decimal point. Orient the part so that
the decimal point is at the bottom-right. Then you can see from the pin map that Pin 1 is at
the bottom-left, and the pin numbers increase counterclockwise around the case.

Figure 6-3 shows a schematic of the LEDs inside the 7-segment LED display. Each LED
anode is connected to an individua pin. All the cathodes are connected together by wires
inside the part. Because all the cathodes share a common connection, the 7-segment LED
display can be called a common cathode display. By connecting either pin 3 or pin 8 of
the part to Vss, you will connect all the LED cathodesto Vss.

Digital Display - Page 171

=
N
I
(o))
~
©
=
o
6]

E
\\: Figure 6-3
7-Segment LED Display
Schematic

ACTIVITY #1: BUILDING AND TESTING THE 7-SEGMENT LED DISPLAY
In this activity, you will manually build circuits to test each segment in the display.

7-Segment LED Display Test Parts

(1) 7-segment LED display
(5) Resistors— 1 kQ (brown-black-red)
(1) Jumper wire

7-Segment LED Display Test Circuits

v With power disconnected from your Board of Education or HomeWork Board,
build the circuit shown in Figure 6-4 and Figure 6-5.
v Reconnect power and verify that the A segment emits light.

/

What's the x with the nc above it in the schematic? The nc stands for not connected or
[no-connect. It indicates that a particular pin on the 7-segment LED display is not connected
e @

- to anything. The x at the end of the pin also means not connected. Schematics sometimes
use just the x or just the nc.

Page 172 - What's a Microcontroller?

vdd
>
S 1kQ
<
nc nc nc nc nc nc nc
E D c B A E G DP Test Circuit Schematic
for the “A” Segment
LED Displa:
L AN AU AN AU AU AN AT A play
LED's

SOOI TENTNRNRVA 3
DDDDDDDDDDDDDDD&D
ooooooooooooooooo|gls
Doooooooooooooooo|jgle
0ooooooooooo .
Oooooooooooo Figure 6-5

<

s Test Circuit Wiring

Diagram for the “A”
Segment LED Display

ooo
oo
SSA

v Disconnect power, and modify the circuit by connecting the resistor to the B
LED input as shown in Figure 6-6 and Figure 6-7.

Digital Display - Page 173

nc nc nc nc nc nc nc
L 2 4 6 7 9 10 |5 Figure 6-6
E D c B A = G DP Test Circuit Schematic

for the "B” Segment
LED Displa:
L AN AU AN AV AU AN AR A play n

<
0
]

PPA

Figure 6-7

Test Circuit Wiring
Diagram for the “B”
Segment LED Display

UA

SSA

v" Reconnect power and verify that the B segment emits light.
v" Using the pin map from Figure 6-2 as a guide, repeat these steps for segments C
through G.

Page 174 - What's a Microcontroller?

Your Turn — The Number 3 and the Letter H
Figure 6-8 and Figure 6-9 show the digit “3” hardwired into the 7-segment LED display.

vdd vdd vdd vdd vdd
> > > >
S = = = S 1kQ ()
< < < <
nc nc nc
1 2 4 6 7 T9 10 |s
E D c B A F G DP Figure6-8
Hardwired Digit “3”
\ 4 N \ 4 N A 4 N X X N A 4 N A 4 N
LED’s

<
0
]

ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo

O

O

O

a

a

a

[m]

[

Figure 6-9

e afalalalalal=lalals Wiring Diagram for

000000000000 Figure 6-8
000000000000
000000000000
000000000000

ul

SSA

v" Build and test the circuit shown in Figure 6-8 and Figure 6-9, and verify that it
displays the number three.

Draw a schematic that will display the number 2 on the 7-segment LED.

Build and test the circuit to make sure it works. Trouble-shoot if necessary.
Determine the circuit needed for the letter “H” and then build and test it.

AENEN

Digital Display - Page 175

ACTIVITY #2: CONTROLLING THE 7-SEGMENT LED DISPLAY

In this activity, you will connect the 7-segment LED display to the BASIC Stamp, and
then run asimple program to test and make sure each LED is properly connected.

7-Segment LED Display Parts

(1) 7-segment LED display
(8) Resistors— 1 kQ (brown-black-red)
(5) Jumper wires

Connecting the 7-Segment LED Display to the BASIC Stamp

Figure 6-11 shows the schematic and Figure 6-12 shows the wiring diagram for this
BASIC Stamp controlled 7-segment LED display example.

v Build the circuit shown in Figure 6-11 and Figure 6-12.

Schematic and pin map: If you are trying to build the circuit from the schematic in Figure
6-11 without relying on Figure 6-12, make sure to consult the 7-segment LED display’s pin
map, shown here again in Figure 6-10 for convenience.

Common
Cathode

109876

Figure 6-10

7-Segment LED Display Part
Drawing and Pin Map

12345

Common
Cathode

Page 176 - What's a Microcontroller?

P15 D—MWN

P14 D—MN

P13 D——MWN

P12 D—MN

P11 D—AW

P10 D——MWA
P9

P8 D—MWAN——

Leps ¥

'’
74
174
174

common

Vss

Figure 6-11
BASIC Stamp
Controlled 7-
Segment
LED Display
Schematic

7-segment LED display pin 7.

Be careful with the resistors connected to P13 and P14. Look closely at the resistors
connected to P13 and P14 in Figure 6-12. There is gap between these two resistors. The
gap is shown because pin 8 on the 7-segment LED display is left unconnected. A resistor
connects /O pin P13 to 7-segment LED display pin 9. Another resistor connects P14 to

Digital Display - Page 177

- S Figure 6-12

oooooooon o .
oooooooon Wiring Diagram for

00000000 S = Figure 6-11

PPA

OoOooooooo

ooooooooOooono
OooooOoooo 213
= Use the segment letters

ooooooookEAG above this diagram as a
oooooooogd] reference.
O0000000pPYvVYY 5
O0000000YY RO]

A A \m)\ V)

Parallel Device: The 7-segment LED display is called a parallel device because the BASIC
Stamp has to use a group of I/O lines to send data (high and low information) to the device.
In the case of this 7-segment LED display, it takes 8 1/0 pins to instruct the device what to
display.

Parallel Bus: The wires that transmit the Hl GH LOWSsignals from the BASIC Stamp to the
7-segment LED display are called a parallel bus. Note that these wires are drawn as
parallel lines in Figure 6-11. The term “parallel” kind of makes sense given the geometry of
the schematic.

Programming the 7-Segment LED Display Test

The HI GH and Low commands will accept a variable as a Pin argument. To test each
segment, one at atime, simply place the H GH and LOwcommandsin aFOR. . . NEXT loop,
and use the index to set the 1/0 pin high, then low again.

v Enter and run SegmentTestWithHighLow.bs2.

v" Verify that every segment in the 7-segement LED display lights briefly, turning
on and then off again.

v Record alist of which segment each 1/O pin controls.

Page 178 - What's a Microcontroller?

Example Program: SegmentTestWithHighLow.bs2

' What's a Mcrocontrol |l er - Segnent Test Wt hH ghLow. bs2
" Individually test each segnent in a 7-Segnent LED displ ay.

' {$STAVP BS2}
' {$PBASI C 2. 5}

pi nCount er VAR Ni b

PAUSE 1000

DEBUG "I/ O Pin", CR
W "R

FOR pi nCounter = 8 TO 15

DEBUG DEC2 pi nCounter, CR
HI GH pi nCount er

PAUSE 1000

LOW pi nCount er

NEXT

Your Turn — A Different Pattern

Removing the command LOWpi nCount er will have an interesting effect:

v" Comment the LOWpi nCount er command by adding an apostrophe to the left of
it.
v Run the modified program and observe the effect.

ACTIVITY #3: DISPLAYING DIGITS

If you include the decimal point there are eight different BASIC Stamp 1/O pins that send

high/low signals to the 7-segment LED display. That's eight different H GH or LOW
commands just to display one number. If you want to count from zero to nine, that would

be a huge amount of programming. Fortunately, there are specia variables you can use
to set the high and low values for groups of 1/0 pins.

In this activity, you will use 8-digit binary numbers instead of HI GH and LOwcommands
to control the high/low signals sent by BASIC Stamp 1/O pins. By setting special
variables called DI RH and OUTH equal to the binary numbers, you will be able to control
the high/low signals sent by all the 1/O pins connected to the 7-segment LED display
circuit with asingle PBASIC command.

Digital Display - Page 179

8 bits: A binary number that has 8 digits is said to have 8 bits. Each bit is a slot where you
can store either a1 or a 0.

A byte is a variable that contains 8 bits. There are 256 different combinations of zeros and
ones that you can use to count from O to 255 with 8 bits. This is why a byte variable can
store a number between 0 and 255.

Parts and Circuit for Displaying Digits

Same as previous activity

Programming On/Off Patterns Using Binary Numbers

In this activity, you will experiment with the variables DI RHand OUTH. DI RHisavariable
that controls the direction (input or output) of 1/O pins P8 through P15. QUTH controls the
high or low signals that each of these 1/O pin sends. As you will soon see, QUTH is
especially useful because you can use it to set the high/low signals for eight different I/O
pins at once with just one command. Here is an example program that shows how these
two variables can be used to count from 0 to 9 on the 7-segment LED display without
using Hl GH and Lowcommands:

Example Program: DisplayDigits.bs2
This example program will cycle the 7-Segment LED display through the digits O
through 9.

v Enter and run DisplayDigits.bs2.
v" Verify that the digits O through 9 are displayed.

What's a Mcrocontroller - DisplayDigits. bs2
Display the digits O through 9 on a 7-segnent LED displ ay.

' {$STAVP BS2}
' {$PBASI C 2. 5}

DEBUG " Pr ogr am Runni ng! "

QUTH = %©0000000 ' QUTH initialized to | ow
DIRH = 941111111 ' Set P8-P15 to all output-|ow
' Digit:
BAFG. CDE
QUTH = 941100111 "0
PAUSE 1000
QUTH = 940000100 B

PAUSE 1000

Page 180 - What's a Microcontroller?

QUTH = 941010011 t2
PAUSE 1000

OQUTH = 941010110 '3
PAUSE 1000

QUTH = 940110100 ‘4
PAUSE 1000

QUTH = 991110110 "5
PAUSE 1000

QUTH = %©1110111 ‘6
PAUSE 1000

QUTH = 941000100 T
PAUSE 1000

OUTH = 941110111 '8
PAUSE 1000

QUTH = 941110110 "9
PAUSE 1000

DI RH = 990000000 ' 1/Opins to input,

' segnents off.
END

How DisplayDigits.bs2 Works

Figure 6-13 shows how you can use the DI RH and OUTH variables to control the direction
and state (high/low) of 1/0O pins P8 through P15.

\| 00000000
RNOOOOoOOOooo
o ooooooo
10000000
Oy 2 0oooooo

Vss

Vin

oooooooo Figure 6-13

OO00000000001 Using DIRH and OUTH

doooooooo to set all I/O Pins to
Oooo0ooooo Output-Low

vdd

N
x

X3
P15
P14
P13

N O
A A~ O ma
[a B a By a Wy a Ny a M a B a Wy a My a My a My a

T

%90000000
%d41111111

o
oo

QUTH
Dl RH

Digital Display - Page 181

The first command:

OQUTH = 40000000

...gets all the I/O pins (P8 through P15) ready to send the low signals. If they al send
low signals, it will turn al the LEDs in the 7-segment LED display off. If you wanted all
the 1/0O pinsto send a high signal, you could use OUTH = %41111111 instead.

What does %do? The % binary formatter is used to tell the BASIC Stamp Editor that the
/€y \ number is a binary number. For example, the binary number %00001100 is the same as the
\é/’ decimal number 12. As you will see in this activity, binary numbers can make many
programming tasks much easier.

The low signals will not actually be sent by the I/O pins until you use the DI RH variable
to change al the 1/O pins from input to output. The command:

DIRH = 941111111

...sets 1/O pins P8 through P15 to output. As soon as this command is executed, P8
through P15 al start sending low signals. This is because the command OUTH =
990000000 was executed just before this DI RH command. As soon as the DI RH command
set all the 1/O pins to output, they started sending their low signals. You can aso use
DI RH = 990000000 to change al the 1/O pins back to inputs.

Before 1/0 pins become outputs: Up until the I/O pins are changed from input to output,
they just listen for signals and update the | NH variable. This is the variable that contains
1 N8, | N9, up through | N15. These variables can be used the same way that | N3 and | N4
were used for reading pushbuttons in Chapter 3 Digital Input — Pushbuttons.

All BASIC Stamp I/O pins start out as inputs. This is called a default. You have to tell a
BASIC Stamp /O pin to become an output before it starts sending a high or low signal. Both
the H GH and LOWcommands automatically change a BASIC Stamp 1/O pin’s direction to
output. Placing a 1 in the DI RHvariable also makes one of the 1/O pins an output.

Always set values in a given OUT register before making them outputs with values in
the corresponding DIR register. This prevents briefly sending unintended signals. For
example, if DI R5 = 1 is followed by QUT5 = 1 at the beginning of a program, it will briefly
send an unintended low signal before switching to high because OUT5 stores 0 when the
program starts. (All PBASIC variables/registers initialize to 0.) If OUT5 = 1 is instead
followed by DI R5 = 1, the I/O pin will send a high signal as soon as it becomes an output.

Since the values stored by all variables default to 0 when the program starts, the
command OUTH = 990000000 is actually redundant.

Page 182 - What's a Microcontroller?

Figure 6-14 shows how to use the OUTH variable to selectively send high and low signals
to P8 through P15. A binary-1 is used to send a high signal, and a binary-0 is used to
send a low signal. This example displays the number three on the 7-segment LED

display:
' BAFG CDE
QUTH = 941010110

NO\NN DO OOO0O000o
\\ RO OCO0O00O0000
RO OOOOOOO
[

10000000
] | 100000o0oao

oooooooo|| Figure 6-14
Do NnEEE55558] using OUTH to Control

the High/Low Signals of
P8 — P15

‘ BAFG. CDE
QUTH = 941010110

The display is turned so that the three on the display is upside-down because it more
clearly shows how the values in QUTH line up with the 1/O pins. The command
OUTH= 941010110 uses binary zeros to set I/O pins P8, P11, and P13 low, and it uses
binary ones to set P9, P10, P12, P14 and P15 high. Theline just before the command is a
comment that shows the segment labels line up with the binary value that turns that
segment on/off.

Inside the H GHand LONcommands:

H GH 15 ...Is really the same as: QUT15 = 1
DIR15 = 1
Likewise, the command :
LOW 15 ...Is the same as: aQuTls = 0
DIR15 = 1

If you want to change P15 back to an input, use DI R15 = 0. You can then use | N15 to
detect (instead of send) high/low signals.

Digital Display - Page 183

Your Turn — Displaying A through F

v Figure out what bit patterns (combinations of zeros and ones) you will need to
display theletters A, b, C, d, E, and F.
v" Maodify DisplayDigits.bs2 so that it displays A, b, C, d, E, F.

Decimal vs. Hexadecimal The basic digits in the decimal (base-10) number system are:
0,1,23,4,5,6,7,8,9

In the hexadecimal (base-16) number system the basic digits are:
0,1,2,3,45,6,7,89,A,b,C,d, EF.

Base-16 is used extensively in both computer and microcontroller programming. Once you
figure out how to display the characters A through F, you can further modify your program to
count in hexadecimal from O to F.

Keeping Lists of On/Off Patterns

The LooKuP command makes writing code for 7-segment LED display patterns much
easier. The LOOKUP command lets you “look up” elements in a list. Here is a code
example that uses the LOOKUP command:

LOOKUP i ndex, [7, 85, 19, 167, 28], val ue

There are two variables used in this command, i ndex and val ue. If the i ndex is O,
val ue stores 7. If i ndex is1, val ue stores 85. In the next example program, i ndex is
set to 2, so the LOOKUP command places 19 into val ue, and that's what the Debug
Terminal displays.

Example Program: SimpleLookup.bs2

Enter and run Simplel ookup.bs2.

Run the program as-is, with thei ndex variable set equal to 2.

Try setting thei ndex variable equal to numbers between 0 and 4.

Re-run the program after each change to the i ndex variable and note which
value from the list gets placed in the val ue variable.

Optional: Modify the program by placing the LOOKUP command in a
FOR. . . NEXT loop that counts from O to 4.

AANENEN

\

Page 184 - What's a Microcontroller?

' What's a Mcrocontrol l er - SinpleLookup. bs2
Debug a val ue using an index and a | ookup tabl e.

' {$STAMP BS2}
' {$PBASI C 2. 5}

val ue VAR Byt e
i ndex VAR Ni b
index = 2

PAUSE 1000

DEBUG ? i ndex
LOOKUP index, [7, 85, 19, 167, 28], value
DEBUG ? val ue, CR

DEBUG " Change the index variable to a ", CR
"di fferent nunber(between 0 and 4).", CR CR

"Run the nodified programand ", CR
"check to see what nunber the", CR
"LOOKUP conmand pl aces in the", CR
"val ue variable."

END

Example Program: DisplayDigitsWithLookup.bs2

This example program shows how the LOOKUP command can come in really handy for
storing the bit patterns used in the QUTH variable. Again, the i ndex variable is used to
choose which binary value is placed into the QUTH variable. This example program
counts from 0 to 9 again. The difference between this program and DisplayDigits.bs2 is
that this program is much more versatile. It is much quicker and easier to adjust for
different number sequences using lookup tables.

v Enter and run DisplayDigitsWithLookup.bs2.

v' Veify that it does the same thing as the previous program (with much less
work).

v' Take alook at the Debug Terminal while the program runs. It shows how the
value of i ndex is used by the LOOKUP command to load the correct binary value
from thelist into OUTH.

Digital Display - Page 185

' What's a Mcrocontrol l er - DisplayDigitsWthLookup. bs2
' Use a | ookup table to store and display digits with a 7-segnment LED di spl ay.

' {$STAVP BS2}
' {$PBASI C 2. 5}

i ndex VAR Ni b

QUTH = %©0000000

DIRH = 941111111

PAUSE 1000

DEBUG "index OQUTH ", CR
oo "R

FOR index = 0 TO 9
LOOKUP i ndex, [941100111, 9%10000100, 9%11010011,
941010110, 910110100, %%91110110,
991110111, 9%1000100, 941110111, 911110110], OUTH

DEBUG " ", DEC2 index, " ", BIN8 QUTH, CR
PAUSE 1000
NEXT

DI RH = 990000000
END

Your Turn — Displaying 0 through F Again
v" Modify DisplayDigitswWithLookup.bs2 so that it counts from O through F in
hexadecimal. Don’t forget to update the FOR. . . NEXT loop’ s EndValue argument.
ACTIVITY #4: DISPLAYING THE POSITION OF A DIAL

In Chapter 5, Activity #4 you used the potentiometer to control the position of aservo. In
this activity, you will display the position of the potentiometer using the 7-segment LED

display.

Dial and Display Parts

(2) 7-segment LED display

(8) Resistors— 1 kQ (brown-black-red)
(1) Potentiometer — 10 kQ

(1) Resistor —220 Q (red-red-brown)
(1) Capacitor — 0.1 pF

(7) Jumper wires

Page 186 - What's a Microcontroller?

Building the Dial and Display Circuits

Figure 6-15 shows a schematic of the potentiometer circuit that should be added to the
project. Figure 6-16 shows a wiring diagram of the circuit from Figure 6-15 combined
with the circuit from Figure 6-11 on page 176.

v" Add the potentiometer circuit to the 7-segment LED display circuit as shown in
Figure 6-16.

P5 O AN L
Nc
220 Q

Pot _
10 kQ

- 0.1pF Figure 6-15
Schematic of
Potentiometer Circuit

J_ Added to the Project

Figure 6-16
Wiring Diagram for
Figure 6-15

Programming the Dial and Display

There is a useful command called LOOKDOWN, and yes, it is the reverse of the LOOKUP
command. While the LOOKUP command gives you a number based on an index, the
LOOKDOWN command gives you an index based on a number.

Digital Display - Page 187

Example Program: SimpleLookdown.bs2

This example program demonstrates how the LOOKDOWN command works.

v Enter and run SimplelL ookdown.bs2.

v" Run the program as-is, with the val ue variable set equa to 167, and use the
Debug Terminal to observe the value of i ndex.

v' Try setting the val ue variable equal to each of the other numbers listed by the
L OOKDOWN commiand: 7, 85, 19, 28.

v" Re-run the program after each change to the val ue variable and note which
value from the list gets placed in the i ndex variable.

— Trick question: What happens if your value is greater than 1672 This little twist in the
(? | LOOKDOWN command can cause problems because the LOOKDOAN command doesn’t make

‘@’ any changes to the index.

What's a M crocontroller - SinpleLookdown. bs2
Debug an index using a value and a | ookup table.

{ $STAMP BS2}
{ $PBASI C 2. 5}

val ue VAR Byt e
i ndex VAR Ni b

val ue = 167
PAUSE 1000
DEBUG ? val ue

LOOKDOM val ue, [7, 85, 19, 167, 28], index

DEBUG ? i ndex, CR

DEBUG " Change the value variable to a "
"different nunber in this list:", CR
"7, 85, 19, 167, or 28.", CR CR
"Run the nodified programand ", CR
"check to see what nunber the ", CR
" LOOKDOMN command places in the ", CR
"index variable."

END

Page 188 - What's a Microcontroller?

Unlessyou tell it to make a different kind of comparison, the LOOKDOWN command checks
to see if avalue is equal to an entry in the list. You can aso check to seeif avalueis
greater than, less than or equal to, etc. For example, to search for an entry that the val ue
variableislessthan or equal to, use the <= operator just before the first bracket that starts
the list. In other words, the operator returns the index of the first value in the list that
makes the statement in the instruction true.

v" Modify SimpleLookdown.bs2 by substituting this value and LOOKDOWN
statement in place of the existing ones:

value = 35
LOOKDOMN val ue, <= [7, 19, 28, 85, 167], index

v" Maodify the DEBUG command so that it reads:

DEBUG " Change the value variable to a ", CR
"different nunber in this range:", CR
"0 to 170.", CR, CR

"Run the nodified programand ", CR
"check to see what nunber the ", CR
"LOOKDOWN command places in the ", CR
"index variable."

v Experiment with different values and see if thei ndex variable displays what you
would expect.

Example Program: DialDisplay.bs2

This example program mirrors the position of the potentiometer’s knob by lighting
segments around the outside of the 7-segment LED display as shown in Figure 6-17.

Figure 6-17

Displaying the Potentiometer’s
Position with the 7-Segment LED
Display

Digital Display - Page 189

v Enter and run Dial Display.bs2.

v' Twist the potentiometer’s knob and make sure it works. Remember to press
down to keep the pot seated in the breadboard.

v When you run the example program, it may not be as precise as shown in Figure
6-17. Adjust the values in the LOOKDOWN table so that that the digital display
more accurately depicts the position of the potentiometer.

VWhat's a Mcrocontroller - Dial D splay. bs2
Di spl ay POT position using 7-segnent LED displ ay.

' {$STAVP BS2}
' {$PBASI C 2. 5}

PAUSE 1000
DEBUG " Pr ogr am Runni ng! "
i ndex VAR Ni b
tine VAR Wor d
OUTH = 990000000
DIRH = 941111111
DO
H GH 5
PAUSE 100

RCTIME 5, 1, time
LOOKDOWN tine, <= [40, 150, 275, 400, 550, 800], index

LOOKUP i ndex, [941100101, 911100001, 991100001,
%90100001, 990000001, 990000000], OUTH

LooP

How DialDisplay.bs2 Works

This example program takes an RCTI ME measurement of the potentiometer and storesit in
avariablenamed ti me.

HGH5
PAUSE 100
RCTIME 5, 1, tine

Page 190 - What's a Microcontroller?

Theti ne variable is then used in a LOOKDOWN table. The LOOKDOM table decides which
number in the list ti me is smaler than, and then loads the entry number (0 to 5 in this
case) into thei ndex variable.

LOOKDOMWN time, <= [40, 150, 275, 400, 550, 800], index

Next, thei ndex variableis used in a LOOKUP table to choose the binary value to load into
the QUTH variable.

LOOKUP i ndex, [941100101, 9%11100001, 9%®©1100001,
%9©0100001, 990000001, %©0000000], OUTH

Your Turn — Adding a Segment

DiaDisplay.bs2 only makes five of the six segments turn on when you turn the dial. The
sequence for turning the LEDs on in DialDisplay.bs2 isE, F, A, B, C, but not D.

v' Save DialDisplay.bs2 under the name DialDisplayY ourTurn.bs2.

v" Modify DiaDisplayYourTurn.bs2 so that it causes all six outer LEDs to turn on
in sequence as the potentiometer is turned. The sequence should be: E, F, A, B,
C,and D.

Tip: Leave your 7-segment LED circuit on your board. We’'ll be using the 7-segment LED
again along with other circuits in Chapter 7, Activity #4.

Digital Display - Page 191

SUMMARY

This chapter introduced the 7-segment LED display, and how to read a pin map. This
chapter also introduced some techniques for devices and circuits that have parallel inputs.
The DI RH and OUTH variables were introduced as a means of controlling the values of
BASIC Stamp I/O pins P8 through P15. The LOOKUP and LOOKDOAN commands were
introduced as a means for referencing the lists of values used to display letters and
numbers.

Questions

1. Ina7-segment LED display, what is the active ingredient that makes the display
readable when a microcontroller sends a high or low signal?

2. What does common cathode mean? What do you think common anode means?

3. What is the group of wires that conduct signals to and from a parallel device

called?
4. What are the names of the commands in this chapter that are used to handle lists
of values?
Exercises

1. Write an oUTH command to set P8, P10, P12 high and P9, P11, P13 low.
Assuming all your 1/O pins started as inputs, write the DI RH command that will
cause the 1/0 pins P8 through P13 to send high/low signals while leaving P14
and P15 configured asinputs.

2. Writethe values of OUTH required to make the letters. a, C, d, F, H, I, n, P, S.

Project

1. Spell “FISH CHIPS And dIP’ over and over again with your 7-segment LED
display. Make each letter last for 400 ms.

Solutions

Q1. Theactiveingredient isan LED.

Q2. Common cathode means that all the cathodes are connected together, i.e., they
share a common connection point. Common anode would mean that al the
anodes are connected together.

Q3. A pardld bus.

Q4. LOKUP and LOOKDOWN handle lists of values.

Page 192 - What's a Microcontroller?

E1. The first step for configuring QUTH is set to "1" in each bit position specified as
H GH. So bits 8, 10, and 12 get set to "1". Then put a"0" for each LOW so bits 9,
11, and 13 get a "0", as shown. To configure DI RH, the specified pins, 8, 10, 12,
9, 11, and 13 must be set as outputs by setting those bit to "1". 15 and 14 are
configured as inputs by placing zeroes in bits 15 and 14. The second step is to
translate this to a PBASIC statement.

Bit 15 14 13 12 11 10 9 8 Bit 15 14 13 12 11 10
1 0 1

9 8
QUtTH 0 0 0 1 O DRH 0O 0 1 1 1 1 1 1

OUTH = %00010101 DIRH = %90111111

E2. The key to solving this problem is to draw out each letter and note which
segments must be lit. Place al in every segment that isto be lit. Translate that
to the binary oUTH value. The BAFG.CDE segment list for bits in QUTH came
from Figure 6-14 on page 182.

Letter | LED Segments | BAFG.CDE | OUTH Vaue= Cormmen
a ef,abcg 11110101 |9%1110101 1092|376
C afed 01100011 | 991100011

d b,cdeg 10010111 |940010111

F afeg 01110001 |%1110001

H f,ebcg 10110101 |940110101

[f,e 00100001 | %0100001

n e4gcC 00010101 | %%0010101

P al butcandd 11110001 |941110001

S af,gcd 01110110 | 991110110 12345
From Figure 6-2 on page 170. (é‘;i";"ol?;‘

P1. Use the schematic from Figure 6-11 on page 176. To solve this problem, modify
DisplayDigitswithLookup.bs2, using the letter patterns worked out in
Exercise 2. In the solution, the letters have been set up as constants to make the
program more intuitive. Using the binary values is fine too, but more prone to
errors.

Digital Display - Page 193

What's a M crocontroller - Ch6Prj01_Fi shAndChi ps. bs2
Use a | ookup table to store and display digits with
' a 7-segnent display. Spell out the nessage: FISH CH PS And dI P

' {$STAMP BS2}
' {$PBASI C 2. 5}

Patterns of 7-Segment Display to create letters

A CON 941110101
C CON 991100011
d CON 940010111
F CON 291110001
H CON 940110101
| CON %90100001
n CON 990010101
P CON 241110001
S CON 291110110
space CON 290000000
i ndex VAR Byt e ' 19 chars in nmessage
OUTH = 990000000 ' Al off to start
DIRH = 941111111 ‘" Al LEDs must be outputs
PAUSE 1000 ' 1 sec. before 1st message
DO
DEBUG "i ndex OUTH , CR
B , CR
FOR index = 0 TO 18 ' 19 chars in nmessage
LOOKUP index, [F, I, S, H space, C H |, P, S space,
A, n, d, space, d, I, P, space], OUTH
DEBUG " ", DEC2 index, " ", BIN8 QUTH, CR
PAUSE 400 ' 400 nms between letters
NEXT

LooP

Page 194 - What's a Microcontroller?

Measuring Light - Page 195

Chapter 7: Measuring Light

DEVICES THAT CONTAIN LIGHT SENSORS

Earlier chapters introduced pushbuttons as contact/pressure sensors and potentiometers as
rotation/position sensors. Both of these sensors are common in electronic products—just
think of how many devices with buttons and dials you use on a daily basis. Another
common sensor found in many products is the light sensor. Here are a few examples of
devicesthat need light sensors to function properly:

Car headlights that automatically turn on when it's dark

Streetlights that automatically turn on when it gets dark

Outdoor security lights that turn on when someone walks by (but only at night)
Laptop displays that get brighter in well lit areas and dimmer in poorly lit areas
Cameras with automatic exposure settings

The sensor inside TVs, DVD players and other entertainment system
components that detects the infrared light from a handheld remote

The first three examples in the list are automatic lighting, and they depend on ambient
light sensors to distinguish day from night. The electronics inside those devices only
needs to know whether it's light or dark, so they can treat their light sensors as binary
outputs like pushbuttons. Laptop displays and camera auto exposures adjust to area
lighting conditions by getting information from their light sensors about how bright or
dark it is. They have to treat their light sensors as analog outputs that supply a number
that indicates how bright or dark it is, much like the Chapter 5 potentiometer examples
where numbers indicated the knob' s position.

The light sensors inside TV's and other entertainment system components detect infrared
(IR), which is a light that is not visible to the human eye, but can be detected by many
electronic devices. For example, if you look at the end of the remote that you point at a
TV or other entertainment devices, you will find a clear IR LED. When you press a
button on the remote, it sends coded signals to the entertainment system component by
flashing the IR LED on/off. Since we can't see infrared light, it doesn’t look like the
remote’s LED does anything when you press a button. However, if you try this while
looking at the LED through the lens of a digital camera, the LED will look almost white.
White light contains all the colors in the spectrum. The red green and blue sensorsinside
a camera chip all report that they detect light in response to white light. 1t so happens

Page 196 - What's a Microcontroller?

that the red/green/blue sensors al detect the infrared light from the remote’s IR LED as
well. So the camera also interprets light from an infrared LED as white.

More about infrared LEDs and detectors:

Robotics with the Boe-Bot has examples where the BASIC Stamp controlled Boe-Bot robot
uses the IR LED found inside TV remotes and the IR receiver found inside TV sets for
detecting objects in front of it. The Boe-Bot uses the IR LED as a tiny flashlight and the IR
receiver found inside TVs to detect the IR flashlights’ reflections off objects in front of it. IR
Remote for the Boe-Bot explains how TV remotes code the messages they send to TVs and
has examples of how to program the BASIC Stamp microcontroller to decode messages
from the remote so that you can send messages to your Boe-Bot robot, and even drive it
around, all with a TV remote.

The type of light a given device senses depends on what it's designed to do. For
example, light sensors for devices that adjust to ambient lighting conditions need to sense
visible light. The red, green and blue pixel sensors inside digita cameras are each
sensing the levels of specific colors for a digital image. The IR sensor insidea TV is
looking for infrared light that’s flashing on/off in the 40 kHz neighborhood. These are
just afew examples, and each application requires a different kind of light sensor.

Figure 7-1 shows a few examples of the many light sensors available for various light-
sensing requirements. From left to right, it shows a phototransistor, cadmium sulfide
photoresistor, linear light sensor, blue enhanced photodiode, light to frequency converter,
infrared phototransistor, and an infrared remote receiver fromaTV.

Figure 7-1 Examples of Light Sensors

Measuring Light - Page 197

About the Cadmium Sulfide (CdS) Cell or Photoresistor

The Cadmium Sulfide (CdS) cell or photoresistor was one of the most common ambient light
sensors in automatic lighting. With the advent of the European Union’s Restriction of use of
certain Hazardous Substances (RoHS) directive, cadmium sulfide photoresistors can no
longer be built into most devices imported into or manufactured in Europe. This has
increased the use of a number of photoresistor replacement products, including the
phototransistor and linear light sensor. As a result of these changes, this edition now
features a phototransistor for detecting light levels instead of a cadmium sulfide
photoresistor.

Documentation for each light sensor describes the type of light it detects in terms of
wavelength. Wavelength is the measure of distance between repeating shapes or cycles.
For example, picture a wave traveling through the ocean, bobbing up and down. The
wavelength of that wave would be the distance between each peak (or whitecap) of the
wave's cycle. The wavelength of light can be measured in a similar way, instead we're
measuring the distance between two peaks in the electromagnetic oscillations of light.
Each color of light has its own wavelength and is considered to be visible light, meaning
it can be detected by the human eye. Figure 7-2 shows wavelengths for visible light as
well as for some types of light the human eye cannot detect, including ultraviolet and
infrared. These wavelengths are measured in nanometers, abbreviated nm. One
nanometer is one billionth of a meter.

Figure 7-2 Wavelengths and their Corresponding Colors

Wavelength (nm) 10...380 450 495 570590 620 750...100,000
Color Violet Green Orange Infrared
Ultraviolet Blue Yellow Red

NOTE: If you are viewing this in the grayscale printed book, you may download a full-color PDF
from www.parallax.com/go/WAM.

Page 198 - What's a Microcontroller?

INTRODUCING THE PHOTOTRANSISTOR

A transistor islike avalve that alows a certain amount of electric current to pass through
two of its terminals. The third terminal of a transistor controls just how much current
passes through the other two. Depending on the type of transistor, the current flow can
be controlled by voltage, current, or in the case of the phototransistor, by light. Figure
7-3 shows the schematic and part drawing for the phototransistor in your What's a
Microcontroller kit. The more light that strikes the phototransistor’s base (B) terminal,
the more current it will conduct into its collector (C) terminal, which flows out of its
emitter (E) terminal. Conversely, less light shining on the base terminal results in less
current conducted.

Figure 7-3
Phototransistor Schematic Symbol
and Part Drawing

This phototransistor’s peak sensitivity is at 850 nm, which according to Figure 7-2, isin
the infrared range. It aso responds to visible light, thought it's somewhat less sensitive,
especially to wavelengths below 450 nm, which are left of blue in Figure 7-2. Light from
halogen and incandescent lamps, and especially sunlight, are much stronger sources of
infrared than fluorescent lamps. The infrared transistor responds well to all these sources
of light, but it is most sensitive to sunlight, then to halogen and incandescent lamps, and
somewhat less sensitive to fluorescent lamps.

Circuit designs using the transistor can be adjusted to work best in certain types of
lighting conditions, and the phototransistor circuits in this chapter are designed for indoor
use. Thereis one outdoor light sensing application, but it will use a different device that
might at first seem like an unlikely candidate for alight sensor: alight emitting diode.

Measuring Light - Page 199

ACTIVITY #1: BUILDING AND TESTING THE LIGHT METER

Chapter 5 introduced RC decay measurements with the RCTI ME command for measuring
the time it took a capacitor to lose its charge through the variable resistor inside a
potentiometer. With larger resistance (to the flow of electric current), the potentiometer
slowed down the rate the capacitor lost its charge, and smaller resistances sped up that
rate. The decay time measurement gave an indication of the potentiometer’ s resistance,
which in turn made it possible for the BASIC Stamp to know the position of the
potentiometer’s dial.

When placed in an RC decay circuit, a phototransistor, which conducts more or less
current when more or less light shines on it, behaves a lot like the potentiometer. When
more light shines on the phototransistor, it conducts more current, and the capacitor loses
its charge more quickly. With less light, the phototransistor conducts less current, and
the capacitor loses its charge less quickly. So the same RCTI ME measurement that gave
us an indication of the dial’s position with a potentiometer in Chapter 5 can now be used
to measure light levels with a phototransistor.

In this activity, you will build and test an RC decay circuit that measures the time it takes
a capacitor’s charge to decay through a phototransistor. The RC decay measurement will
give you an idea of the light levels sensed by the phototransistor’s light-collecting
surface. As with the potentiometer tests, the time values measured by the RCTI ME
command will be displayed in the Debug Terminal.

Light Detector Test Parts

(1) Phototransistor

(1) Resistor — 220 Q (red-red-brown)
(2) Capacitors—0.01 uF (labeled 103)
(1) Capacitor — 0.1 pF (labeled 104)
(1) Jumper wire

Building the RC Time Circuit with a Phototransistor

Figure 7-4 shows a schematic and wiring diagram of the RC-time circuit you will usein
this chapter. This circuit is different from the potentiometer circuit from Chapter 5,
Activity #3 in two ways. First, the 1/O pin used to measure the decay time is different
(P2). Second, the potentiometer has been replaced with a phototransistor.

Page 200 - What's a Microcontroller?

Tip: Leave your 7-segment LED connected, and add the phototransistor circuit to
your board. We'll use the 7-segment LED with the phototransistor in Activity #4.

v/ Build the circuit shown in Figure 7-4.
v" Make sure the phototransistor’s collector and emitter (C and E) terminals are
connected as shown in the wiring diagram.

P2
0.01 uF
Figure 7-4
Phototransistor RC-time
Circuit Schematic and
P15 Wiring Diagram
P14
P13
P12 Start with the 0.01 pF
E% capacitor, labeled 103.
P9 Longer pin
P8 (C) terminal
P7
P6
P5
P4 Flat spot
Eg (E) terminal
P1 —
PO ‘

Programming the Phototransistor Test

The first example program (TestPhototransistor.bs2) is really just a dlightly revised
version of ReadPotWithRcTime.bs2 from Chapter 5, Activity #3. The potentiometer
circuit from Chapter 5 was connected to I/O pin P7. The circuit in this activity is
connected to P2. Because of this difference, the example program has to have two
commands updated to make it work. The H GH 7 command from the previous example
program is now HI GH 2 since the phototransistor circuit is connected to P2 and not P7.

Measuring Light - Page 201

For the same reason, the command that was RCTI ME 7, 1, time has been changed to
RCTIME 2, 1, tine.

Example Program: TestPhototransistor.bs2

The phototransistor’s light collecting surface is at the top of its clear plastic dome, which
is the base (B) terminal shown in Figure 7-3. A small black square should be visible
through that dome. That black square is the actual phototransistor, atiny piece of silicon.
Therest of the device is packaging, including plastic case, lead frame, and leads.

Instead of twisting the potentiometer’ s knob like we did in Chapter 5, this circuit is tested
by exposing the phototransistor’s light collecting surface to different light levels. When
the example program is running, the Debug Termina should display small values for
bright light conditions and large values for low light conditions.

Avoid direct sunlight! The circuit and program you are using is designed to detect
variations in indoor lighting and do not work in direct sunlight. Leave the indoor lights on,
but close the blinds if sun is streaming in through nearby windows.

v Enter and run TestPhototransistor.bs2.

v' Make anote of theti me variable on the Debug Terminal under normal lighting
conditions.

v' Cast a shadow over the circuit with your hand and check the ti me variable
again. It should be alarger number.

v" Cup your hand over the circuit to cast a darker shadow; the Debug Terminal
should display asignificantly larger valuefor ti ne.

' What's a Mcrocontroller - TestPhototransistor.bs2
Read phototransistor in RC-time circuit using RCTI ME comrand.

' {$STAMP BS2}
' {$PBASI C 2. 5}

tinme VAR Wor d
PAUSE 1000

DO

H GH 2

PAUSE 100

RCTIME 2, 1, tinme

DEBUG HOME, “time = ", DEC5 tine
LOOP

Page 202 - What's a Microcontroller?

Your Turn — Using a Different Capacitor for Different Light Conditions

The time measurements with a 0.1 pF capacitor will take ten times as long as those with
the 0.01 pF capacitor, which means the value of the ti ne variable displayed by the
Debug Terminal should be ten times as large. Replacing the 0.01 pF capacitor with a 0.1
uF capacitor can be useful for more brightly lit rooms where you will typically see
smaller measurements with the 0.01 pF capacitor. For example, let’s say the lighting
conditions are very bright, and the measurements are only ranging from 1 to 13 with 0.01
uF capacitor. If you replace it with a 0.1 pF capacitor, your measurements will instead
range from 1 to 130, and your application will be more sensitive to light variations within
the room.

v" Madify the circuit by replacing the 0.01 pF capacitor with a 0.1 pF capacitor
(labeled 104).

v" Rerun TestPhototransistor.bs2 and verify that the RC-time measurements are
roughly ten times their former values.

The longest time interval the RCTI ME command can measure is 65535 units of 2 ps each,
which corresponds to a decay time of: 65535 x 2 us = 131 ms = 0.131 s. If the decay
time exceeds 0.131 seconds, the RCTI ME command returns O to indicate that the
maxi mum measurement time was exceeded.

v" Can you cast a dark enough shadow over the phototransistor to exceed the
maximum 65535 measurement and make the RCTI M= command return 0?

The next activity will rely on the smaller of the two capacitors.

v' Before you move on to the next activity, return the circuit to the original one
shown in Figure 7-4 by removing the 0.1 pF capacitor and replacing it with the
0.01 uF capacitor.

ACTIVITY #2: TRACKING LIGHT EVENTS

One of the more useful features of the BASIC Stamp modul€e's program memory is that
you can disconnect power to the board without losing your program. As soon as power is
reconnected, the program will start running again from the beginning. Since the code for
your application typically doesn’t fill up the BASIC Stamp module’'s memory, any
portion that is not used for the program can be used to store data. This memory is
especially good for storing data that you do not want the BASIC Stamp to forget. While

Measuring Light - Page 203

the values stored by variables get erased when the power gets disconnected, the BASIC
Stamp will still remember all the values stored in its program memory when the power
gets reconnected.

What is datalogging? Datalogging is what a microcontroller does when it records and
stores periodic sensor measurements for a certain amount of time. Datalogging devices, or
) dataloggers, are especially useful in scientific research. For example, instead of posting a
(?) person in a remote location to take weather measurements, a datalogging weather station
‘@’ can be deployed. It records periodic measurements, and scientists visit the station every so
often to collect the data, or in some cases, it uploads its measurements to a computer by
cell phone, radio, or satellite.

The chip on the BASIC Stamp that stores program memory and data is shown in Figure
7-5. This chip is cdled an EEPROM, which stands for Electricaly Erasable
Programmable Read-Only Memory. That's quite a mouthful, and pronouncing each of
the first letters in EEPROM is till a lot of work. So, when people talk about an
EEPROM, they usually pronounceit: “ E-E-Prom”.

2 KB EEPROM

stores your Figure 7-5

C"fcﬁs'c source EEPROM Chip on BASIC
: Stamp Module

This EEPROM stores
your program code and
any other data your
program places there,
even when power is
disconnected.

Figure 7-6 showss the BASIC Stamp Editor’'s Memory Map window. Y ou can view this
window by clicking the BASIC Stamp Editor’s Run menu and selecting Memory Map.

The Memory Map uses different colors to show how both the BASIC Stamp module's
RAM (variables in random access memory) and EEPROM (program memory) are being
used. The red sguare in the scroll bar at the far left indicates what portion of the
EEPROM is visible in the EEPROM Map. You can click and drag this square up and
down to view various portions of the EEPROM memory. By dragging that red square
down to the bottom, you can see how much EEPROM memory space is used by
TestPhototransistor.bs2 from Activity #1. The bytes that contain program tokens are

Page 204 - What's a Microcontroller?

highlighted in blue, and only 35 bytes out of the 2048 byte EEPROM are used for the
program. The remaining 2013 bytes are free to store data.

Figure 7-6
Memory Map

To view this
window, click
Run, and select

Memory Map.

The EEPROM Map shows the addresses as hexadecimal values, which were discussed
briefly in the Decimal vs. Hexadecimal box on page 183. The values along the left side
show the starting address of each row of bytes. The numbers along the top show the byte
number within that row, from O to F in hexadecimal, which is 0 to 15 in decimal. For
example, in Figure 7-6, the hexadecimal value C1 is stored at address 7EQ. CC is stored
at address 7E1, 6D is stored at address 7E2, and so on, up through E8, which is stored at
address 7EF. If you scroll up and down with the scroll bar, you'll see that the largest
memory addresses are at the bottom of the EEPROM Map, and the smallest addresses are
at the top, with the very top row starting at 000.

PBASIC programs are always stored at the largest addresses in EEPROM, which are
shown at the bottom of the EEPROM Map. So, if your program is going to store datain
EEPROM, it should start with the smallest addresses, starting with address 0. This helps
ensure that your stored data won't overwrite your PBASIC program, which will usually
result in a program crash. In the case of the EEPROM Map shown in Figure 7-6, the
PBASIC program resides in addresses 7FF through 7DD, starting at the largest address
and building to smaller addresses. So your application can store data from address 000
through 7DC, building from the smallest to the largest. In decimal, that’'s addresses 0
through 2012.

If you plan on storing data to EEPROM, it is important to be able convert from
hexadecimal to decimal in order to calculate the largest writable address. Below is the

Measuring Light - Page 205

math for converting the number 7DC from hexadecimal to decimal. Hexadecima is a
numerical system with a base of 16, meaning it uses 16 different digits to represent its
values. The digits 0-9 represent the first 10 values, and the letters A-F represent values
10-15. When converting to from hexadecimal to decimal, each digit from the right
represents a larger power of sixteen. The rightmost digit is the number of ones, which is
the number of 16%. The next digit from the right is the number of 16s, which is the
number of 16's. The third digit is the number of 256s, which is the number of 16°.
Hexadecimal 7DC (7 x 16%) + (D x 16" + (C x 16%)
(7 x 16%) + (13 x 16") + (12 x 16°)
(7 x 256) + (13 x 16) + (12 x 1)
1792 + 208 + 12
2012 (decimal value)

This conversion approach works the same in other bases, including base 10 decimal
values. For example:

2102 = (2 x 10%) + (1 x 10%) + (0 x 10" + (2 x 10°)
=(2x1000) + (1 x 100) + (0 x 10) + (2 x 1)

2048 bytes = 2 KB.

Although both the upper case “K” and the lower-case “k™ are called “kilo,” they are slightly
different. In electronics and computing, the upper-case K is used to indicate a binary
kilobyte, which is 1 x 2'° = 1024. When referring to exactly 1000 bytes, use the lower-case
k, which stands for kilo and is 1 x 10% = 1000 in the metric system.

Also, the upper-case “B™ stands for bytes, while the lower-case “b” stands for bits. This can
make a big difference because 2 Kb means 2048 bits, which is 2048 different numbers, but
each number is limited to a value of either 0 or 1. In contrast, 2 KB, is 2048 bytes, each of
which can store a value in the 0 to 255 range.

Using the EEPROM for data storage can be very useful for remote applications. One
example of a remote application would be a temperature monitor placed in a truck that
hauls frozen food. It could track the temperature during the entire trip to see if it dways
stayed cool enough to make sure none of the shipment thawed. A second example is a
weather monitoring station. One of the pieces of data a weather station might store for
later retrieva is light levels. This can give an indication of cloud cover at times of day,
and some studies use it to monitor the effects of pollution and airplane condensation trails
(con trails) on light levels that reach the Earth’ s surface.

Page 206 - What's a Microcontroller?

With light level tracking in mind, this activity introduces a technique for storing
measured light levels to the EEPROM and then retrieving them again. In this activity,
you will run one PBASIC example program that stores a series of light measurements in
the BASIC Stamp module’s EEPROM. After that program is finished, you will run a
second program that retrieves the values from EEPROM and displays them in the Debug
Terminal.

Programming Long Term Data Storage

The WRI TE command is used to store values in the EEPROM, and the READ command is
used to retrieve those values.

The syntax for the WRl TE command is:
WRITE Location, {WORD} Value

For example, if you want to write the value 195 to address 7 in the EEPROM, you could
use the command:

WRI TE 7, 195

Word values can be anywhere from 0 to 65565 while byte values can only contain
numbers from 0 to 255. A word value takes the space of two bytes. |f you want to write
aword size value to EEPROM, you have to use the optional Wor d modifier. Be careful
though. Since aword takes two bytes, you have to skip one of the byte size addressesin
EEPROM before you can write another word. Let's say you heed to save two word
values to EEPROM: 659 and 50012. If you want to store the first value at address 8, you
will have to write the second value to address 10.

WRI TE 8, Word 659
WRI TE 10, Word 50012

Measuring Light - Page 207

Is it possible to write over your program? Yes, and if you do, the program is likely to
either start behaving strangely or stop running altogether. Since the PBASIC program
tokens reside in the largest EEPROM addresses, it's best to use the smallest Location
values for storing numbers with the WRI TE command.

How do | know if the Location I'm using is too large? You can use the Memory Map to
figure out the largest value not used by your PBASIC program. The explanation after Figure
7-6 on page 204 describes how to calculate how many memory addresses are available. As
a shortcut for converting hexadecimal to decimal, you can use the DEBUG command’s DEC
formatter and the $ hexadecimal formatter like this:

DEBUG DEC $7DC

Your program will display the decimal value of hexadecimal 7DC because the $
hexadecimal formatter tells the DEBUG command that 7DC is a hexadecimal number. Then,
the DEC formatter makes the DEBUG command display that value in decimal format.

Example Program: StoreLightMeasurementsinEeprom.bs2

This example program demonstrates how to use the WRI TE command by taking light
measurements every 5 seconds for 2 %2 minutes and storing them in EEPROM. Like the
previous activity’s example program, it displays the measurements in the Debug
Terminal, but it also stores each measurement in EEPROM for later retrieval by a
different program that uses the READ command.

v
v

v

Enter and run StorelLightM easurementsl nEeprom.bs2.

Record the measurements displayed by the Debug Terminal so that you can
verify the measurements read back from the EEPROM.

Gradually increase the shade over the phototransistor during the 2 %2 minute test
period for meaningful data.

Especialy if you have a USB board, reconnecting it to the computer could reset the
BASIC Stamp and restart the program, in which case, it would start taking a new set of
measurements.

v' After StorelLightMeasurementsinEeprom.bs2 has completed, disconnect power

from your board immediately and leave it disconnected until you are ready to run
the next example program: ReadL ightM easurementsiFromEeprom.bs2.

Page 208 - What's a Microcontroller?

You can change the pauses in the FOR..NEXT loop. This example program has 5 second
pauses, which emphasize the periodic measurements that datalogging devices take. They
might seem kind of long, so, you can reduce the PAUSE 5000 to PAUSE 500 to make the
program execute ten times more quickly for testing.

What's a M crocontroller - StoreLight Measurenent sl nEeprom bs2
' Wite light neasurenments to EEPROM

{ $STAMP BS2}
{$PBASI C 2. 5}

tine VAR Wor d
eepromAddress VAR Byt e
PAUSE 1000
DEBUG "Starting nmeasurements...", CR CR
" Measur enment Val ue", CR
w_ " CR
FOR eepromAddress = 0 TO 58 STEP 2
H GH 2
PAUSE 5000

RCTIME 2, 1, tinme
DEBUG DEC2 eepr omAddr ess,
" ", DECtine, CR
WRI TE eepr omAddr ess, Word tine
NEXT

DEBUG "Al |l done. Now, run:", CR

" ReadLi ght Measur enent sFr onEepr om bs2"
END

How StoreLightMeasurementsinEeprom.bs2 Works

The FOR. . . NEXT loop that measures the RC-time values and stores them to EEPROM
has to count in steps of 2 because word values are written into the EEPROM.

FOR eepromAddress = 0 to 58 STEP 2

The RCTI ME command loads the decay time measurement into the word size time
variable.

RCTIME 2, 1, tine

Thevaluethet i ne variable storesis copied to the EEPROM address given by the current
value of the eepr omAddr ess variable each time through the loop. Remember, that the
address for a WRI TE command is always in terms of bytes. So, the eepr omAddr ess

Measuring Light - Page 209

variable is incremented by two each time through the loop because a wor d variable takes
up two bytes.

WRI TE eepronmAddress, Wrd tinme
NEXT
Programming Data Retrieval

To retrieve the values you just recorded from EEPROM, you can use the READ command.
The syntax for the READ command is:

READ Location, {WORD} Variable

While the WRI TE command can copy a value from either a constant or a variable to
EEPROM, the READ command has to copy the value stored at an address in EEPROM to
avariable, so asits name suggests, the variable argument hasto be avariable.

Keep in mind that variables are stored in the BASIC Stamp module’s RAM. Unlike
EEPROM, RAM values get erased whenever the power disconnected and also whenever
the Reset button on your board gets pressed.

The BASIC Stamp 2 has 26 bytes of RAM, shown on the right side of the Memory Map in
Figure 7-6 on page 204. If you declare a word variable, you are using up two bytes. A byte
variable declaration uses one byte, a nibble uses half a byte, and one bit uses 1/8 of a byte.

Let's say that eepr onval ueA and eepr onval ueB are Wr d variables, andlittl eEEisa
Byt e variable. These variables would have to be defined at the beginning of a program
with VAR variable declarations. Here are some commands to retrieve the values that were
stored at certain EEPROM addresses earlier with WRI TE commands, maybe even in a
different program.

READ 7, littleEE
READ 8, Word eepronVal ueA
READ 10, Word eepronVal ueB

The first command retrieves a byte value from EEPROM address 7 and copies it to the
variable named 1ittl eEE. The next command copies the word occupying EEPROM
byte addresses 8 and 9 and stores it in the eepr omval ueA word variable. The last of the
three commands copies the word occupying EEPROM byte addresses 10 and 11 and
storesit in the eepr onval ueB variable.

Page 210 - What's a Microcontroller?

Example Program: ReadLightMeasurementsFromEeprom.bs2

This example program demonstrates how to use the READ command to retrieve the light
measurements that were stored in EEPROM by Storel ightM easurementsl nEeprom.bs2.

v Reconnect power to your board.

v Enter ReadLightM easurementsFromEeprom.bs2 into the BASIC Stamp Editor.

v' If you have disconnected power from your board, when you reconnect,
immediately click the BASIC Stamp Editor's Run button to download the
program into the BASIC Stamp.

Don’t wait longer than 6 seconds between reconnecting power and loading
ReadLightMeasurementsFromEeprom.bs2 into the BASIC Stamp or the program that’s still
in the program memory (StoreLightMeasurementsinEeprom.bs2) will start recording over
previous measurements. Also, if you reduced the PAUSE command’s Duration from
5000 to 500, you will only have 1.5 seconds!

v" Compare the Debug Terminal table that is displayed by this program with the
one displayed by StoreLightMeasurementsinEeprom.bs2, and verify that the
values are the same.

What's a Mcrocontroll er - ReadLi ght Measur enent sFr omEepr om bs2
' Read |ight measurenents from EEPROM

{ $STAMP BS2}
{$PBASI C 2. 5}

tine VAR Wor d
eepromAddress VAR Byt e
PAUSE 1000

DEBUG "Retri evi ng neasurenents", CR CR
" Measur enment Val ue", CR
B ", CR

FOR eepromAddress = 0 TO 58 STEP 2

READ eepr omAddr ess, Word tine
DEBUG DEC2 eepr omAddr ess, " ", DEC tine, CR

NEXT

END

Measuring Light - Page 211

How ReadlLightMeasurementsFromEeprom.bs2 Works

As with the WRI TE command, the READ command relies on byte addresses. Since we
want to read word values from EEPROM, the eepr omAddr ess variable has to have 2
added to it each time through the FOR. . . NEXT loop.

FOR eepromAddress = 0 to 58 STEP 2

The READ command gets the word size value at eepr omAddr ess, and the value gets
copied tothet i me variable.

READ eepr omAddress, Wrd tine

The values of theti me and eepr omAddr ess variables are displayed in adjacent columns
as atablein the Debug Terminal.

DEBUG DEC2 eepromAddress, " ", DEC time, CR
NEXT

Your Turn — More Measurements

v" Modify StorelightMeasurementslnEeprom.bs2 so that it takes and records twice
as many measurements in the same amount of time.

v" Modify ReadLightMeasurementsFromEeprom.bs2 so that it displays all of the
measurements from the just-modified Storel ightM easurementslnEeprom.bs2.

ACTIVITY #3: GRAPHING LIGHT MEASUREMENTS (OPTIONAL)

Lists of measurements like the ones in Activity #2 can be tedious to analyze. Imagine
reading through hundreds of those numbers looking for when the sun set. Or maybe
you're looking for a particular event, like when the light sensor was briefly covered. You
might even be looking for a pattern in how frequently the light sensor was covered. This
information could be useful if the light sensor is placed in an area where a person or
animal walks over it, or an object passing over it on a conveyer belt needs to be recorded
and analyzed. Regardless of the application, if al you have to work with isalong list of
numbers, finding those events and patterns can be a difficult and time-consuming task.

If you instead make a graph of the list of measurements, it makes finding events and
patterns alot easier. The person, animal or object passing over the light sensor will show
up as a high point or spike in the measurements. Figure 7-7 shows an example of a graph
that might indicate that rate at which objects on a conveyer belt are passing over the
sensor. The spikes in the graph occur when the measurements get large. In the case of a

Page 212 - What's a Microcontroller?

conveyer belt, it would indicate that an object passed over the sensor casting a shadow.
This graph makes it easy to see at a glance that an object passes over the sensor roughly
every 7 seconds, but that the object we were expecting at 28 seconds was wasn't there.

Figure 7-7 Graph of Phototransistor Light Measurements

Decay Time Vs. Time
for Phototransistor RC Circuit

9000

8000

7000 - W M w
’§ 6000 » ? » '
)
o 5000
E
4000 -
&
@ 3000 -
[a]

2000 L J 1

1000 9 40904 20000 009002 9009009000009 (00020 (90900 (P00%0¢

0 T
0 10 20 30 40 50 60
—e— "Decay Time" Time (s)

The graph in Figure 7-7 was generated by copying and pasting values in the Debug
Terminal to a text file which was then imported into a Microsoft Excel spreadsheet.
Some graphing utilities can take the place of the Debug Terminal and plot the values
directly instead of displaying them as lists of numbers. Figure 7-8 shows an example of
one of these utilities, called StampPlot LITE.

Measuring Light - Page 213

Figure 7-8 StampPlot LITE

In this optional activity, you can go to www.paralax.com/go/WAM and then follow the
Data Plotting link to try a number of activities that demonstrate how to plot values using
various spreadsheets and graphing utility software packages.

Page 214 - What's a Microcontroller?

ACTIVITY #4: SIMPLE LIGHT METER

Light sensor information can be communicated in a variety of ways. The light meter you
will work with in this activity changes the rate that the display flickers depending on the
light intensity it detects.

Light Meter Parts

(1) Phototransistor

(1) Resistor — 220 Q (red-red-brown)
(2) Capacitors—0.01 uF (labeled 103)
(1) Capacitor — 0.1 pF (labeled 104)
(1) 7-segment LED display

(8) Resistors— 1 kQ (brown-black-red)
(6) Jumper wires

Building the Light Meter Circuit

Figure 7-9 shows the 7-segment LED display and phototransistor circuit schematics that
will be used to make the light meter, and Figure 7-10 shows a wiring diagram of the
circuits. The phototransistor circuit is the same one you have been using in the last two
activities, and the 7-segment LED display circuit is the same one from Figure 6-11 on
page 176.

v Build the circuit shown in Figure 7-9 and Figure 7-10.

v' Test the 7-segment LED display to make sure it is connected properly, using the
program SegmentTestWithHighLow.bs2 from Chapter 6, Activity #2, which
starts on page 175.

P15

P14

P13

P12

P11

P10
P9
P8

P2 O MW\
2200

N

—— 0.01pF

oefoooor

E%DD[

Measuring Light - Page 215

Figure 7-9
Light Meter Circuit
Schematic

Figure 7-10
Wiring Diagram for
Figure 7-9

Page 216 - What's a Microcontroller?

Using Subroutines

Most of the programs you have written so far operate inside a DO. . . LOOP. Since the
entire program’'s main activity happens inside the DO. . . LOOP, it is usually called the
main routine. Asyou add more circuits and more useful functions to your program, it can
get kind of difficult to keep track of all the code in the main routine. Y our programs will
be much easier to work with if you instead organize them into smaller segments of code
that do certain jobs. PBASIC has some commands that you can use to make the program
jump out of the main routine, do ajob, and then return right back to the same spot in the
main routine. Thiswill allow you to keep each segment of code that does a particular job
somewhere other than your main routine. Each time you need the program to do one of
those jobs, you can write a command inside the main routine that tells the program to
jump to that job, do it, and come back when the job is done. The jobs are called
subroutines and this process is calling a subroutine.

Figure 7-11 shows an example of a subroutine and how it's used. The command GOSUB
Subr out i ne_Name causes the program to jump to the Subr out i ne_Nane: label. When
the program gets to that label, it keeps running and executing commands until it getsto a
RETURN command. Then, the program goes back to command that comes after the
GosuB command. In the case of the example in Figure 7-11, the next command is:
DEBUG " Next conmand".

DO
GOSUB Subrouti ne_Name
DEBUG " Next command”
LOOP

Figure 7-11
gr outi ne_Nane: How Subroutines Work

DEBUG "This is a subroutine..."
PAUSE 3000
RETURN

Measuring Light - Page 217

What's a label? A label is a nhame that can be used as a placeholder in your program.
GOSUB is one of the commands you can use to jump to a label. Some others are GOTO, ON
A= GOTO, and ON GOSUB. A label must end with a colon, and for the sake of style, separate
(\ ? \ words with the underscore character so they are easy to recognize. When picking a name
@’ for a label, make sure not to use a reserved word or a name that is already used in a
variable or constant. The rest of the rules for a label name are the same as the ones for
naming variables, which are listed in the information box on page 43.

Example Program: SimpleSubroutines.bs2

This example program shows how subroutines work by sending messages to the Debug
Terminal.

v" Examine SimpleSubroutines.bs2 and try to guess the order in which the DEBUG
commands will be executed.

v Enter and run the program.

v Compare the program’s actual behavior with your predictions.

' What's a Mcrocontrol l er - SinpleSubroutines. bs2
' Denonstrate how subroutines worKk.

{$STAVP BS2}
' {$PBASI C 2.5}

PAUSE 1000

DO
DEBUG CLS, "Start main routine.", CR
PAUSE 2000

GOSUB Fi rst_Subroutine
DEBUG "Back in main.", CR

PAUSE 2000
GOSUB Second_Subr outi ne
DEBUG "Repeat main...", CR
PAUSE 2000

LOOP

Fi rst _Subrouti ne:
DEBUG " Executing first
DEBUG "subroutine.", CR
PAUSE 3000

RETURN

Page 218 - What's a Microcontroller?

Second_Subr out i ne:

DEBUG " Executing second "
DEBUG "subroutine.", CR
PAUSE 3000

RETURN

How SimpleSubroutines.bs2 Works

Figure 7-12 shows how the Fi r st _Subr out i ne call in the main routine (the DO. . . LOOP)
works. The command GOSUB First_Subroutine sends the program to the
First_Subroutine: label. Then, the three commands inside that subroutine are
executed. When the program gets to the RETURN command, it jumps back to the
command that comes right after GOSUB Fi r st _Subr out i ne, which iSDEBUG "Back in
Main.", CR

\ What's a subroutine call? When you use the GOSUB command to make the program jump
\é} to a subroutine, it is called a subroutine call.

PAUSE 2000

GOSUB Fi rst _Subroutine
DEBUG "Back in rm@
gi rst_Subrouti ne: Figure 7-12

DEBUG " Executing first " First Subroutine Call
DEBUG "subroutine.", CR
PAUSE 3000

RETURN

Figure 7-13 shows a second example of the same process with the second subroutine call
(GoSUB Second_Subrout i ne).

Measuring Light - Page 219

PAUSE 2000

GOSUB Second_Subr outi ne

DEBUG " Repeat nmai n. E

CSecond_Subr outi ne: Figure 7-13

DEBUG Executing second " Second Subroutine Call
DEBUG "subr outi ne", CR
PAUSE 3000

RETURN

Your Turn — Adding and Nesting Subroutines
You can add subroutines after the two that are in the program and call them from within
the main routine.

v' Add the subroutine shown in Figure 7-11 on page 216 to SimpleSubroutines.bs2.
v' Make any necessary adjustments to the DEBUG commands so that the display
looks right with all three subroutines.

Y ou can also call one subroutine from within ancther. Thisis called nesting subroutines.

v" Try moving the GosuB command that calls Subr out i ne_Nane into one of the
other subroutines, and see how it works.

When nesting subroutines the rule is no more than four deep. See the BASIC Stamp
Manual or the BASIC Stamp Editor's Help for more information. Look up GOSUB and
RETURN.

Light Meter Using Subroutines

The next program, LightMeter.bs2 uses subroutines to control the display of the 7-
Segment LED depending on the level of light detected by the phototransistor. The
display’s segments cycle on and off in a circular pattern that gets faster when the light on
the phototransistor gets brighter. When the light gets dimmer, the circular pattern cycling
goes dlower. The LightMeter.bs2 example program uses a subroutine named
Updat e_Di spl ay to control the order in which the light meter segments advance.

Page 220 - What's a Microcontroller?

The program that runs the light meter will deal with three different operations:
1. Read the phototransistor.
2. Cadculate how long to wait before updating the 7-segment LED display.
3. Update the 7-segment LED display.

Each operation is contained within its own subroutine, and the main DO. . . LOOP routine
will call each onein sequence, over and over again.

Example Program: LightMeter.bs2

Controlled lighting conditions make a big difference! For best results, conduct this test
in a room lit by fluorescent lights with little or no direct sunlight (close the blinds). For
information on how to calibrate this meter to other lighting conditions, see the Your Turn
section.

v Enter and run LightMeter.bs2.

v' Verify that the cycling speed of the circular pattern displayed by the 7-segment
LED is controlled by the lighting conditions the phototransistor is sensing. Do
this by casting a shadow over it with your hand or a piece of paper and verify
that the rate of the circular display pattern slows down.

' What's a Mcrocontrol l er - LightMeter.bs2
" Indicate light l|evel using 7-segnent display.

' {$STAMP BS2}
' {$PBASI C 2. 5}

PAUSE 1000

DEBUG " Pr ogr am Runni ng! "

i ndex VAR Ni b ' Variabl e decl arati ons.
tinme VAR Wor d
QUTH = %©0000000 " Initialize 7-segnment display.

DIRH = 941111111

DO
GOSUB Get _Rc_Ti ne
GOSUB Del ay
GOSUB Updat e_Di spl ay

LOoP

Get _Rc_Ti ne:

H GH 2
PAUSE 3
RCTIME 2, 1, tine

RETURN
Del ay:
PAUSE tine / 3
RETURN
Updat e_Di spl ay:
IF index = 6 THEN i ndex = 0
' BAFG. CDE
LOOKUP i ndex, [991000000,
%4.0000000,
%©0000100,
%9©0000010,
%9©0000001,
290100000], QUTH
index = index + 1

RETURN

How LightMeter.bs2 Works

The first two lines of the program declare variables.

Measuring Light - Page 221

Mai n routi ne.

Subr out i nes

RC-ti nme subroutine

Del ay subrouti ne.

Di spl ay updating subroutine.

It doesn't matter whether these

variables are used in subroutines or the main routine, it's always best to declare variables

(and constants) at the beginning of your program.

Since this is such a common practice, this section of code has a name, “Variable
declarations.” This name is shown in the comment to the right of the first variable

declaration.

index VAR N b
time VAR Word

Vari abl e decl arati ons.

Page 222 - What's a Microcontroller?

Many programs aso have things that need to get done once at the beginning of the
program. Setting all the 7-segment 1/0 pins low and then making them outputs is an
example. This section of a PBASIC program also has a name, “Initialization.”

QUTH
DI RH

290000000 " Initialize 7-segnent display.
941111111

The next segment of code is caled the main routine. The main routine cals the
Get _Rc_Ti me subroutine first. Then, it calls the Del ay subroutine, and after that, it calls
the Updat e_Di spl ay subroutine. Keep in mind that the program goes through the three
subroutines as fast asit can, over and over again.

DO ' Main routine.
GOSUB Get _Rc_Ti me
GOSUB Del ay
GOSUB Updat e_Di spl ay

LOOP

All subroutines are usually placed after the main routine. The first subrouting’s name is
Get _Rc_Ti ne:, and it takes the RC-time measurement on the phototransistor circuit.
This subroutine has a PAUSE command that charges up the capacitor. The Duration of this
command is small because it only needs to pause long enough to make sure the capacitor
is charged. Note that the RCTI ME command sets the value of the ti me variable. This
variable will be used by the second subroutine.

Subr out i nes
Get _Rc_Ti ne: ' RC-tinme subroutine
H GH 2
PAUSE 3
RCTIME 2, 1, tine
RETURN

The second subrouting's name is Del ay, and all it contains is PAUSE tine / 3. The
PAUSE command allows the measured decay time (how bright the light is) to control the
delay between turning on each light segment in the 7-segment LED’s revolving circular
display. The value to the right of the divide / operator can be made larger for faster
rotation in lower light conditions or smaller to dow the display for brighter light
conditions. You could also use * to multiply the ti me variable by a value instead of
dividing to make the display go alot slower, and for more precise control over the rate,
don't forget about the*/ operator. More on this operator in the Y our Turn section.

Measuring Light - Page 223

Del ay:
PAUSE tine / 3
RETURN

The third subroutine is named Update Display. The LOOKUP command in this
subroutine contains a table with six bit patterns that are used to create the circular pattern
around the outside of the 7-segment LED display. By adding 1 to the i ndex variable
each time the subroutine is called, it causes the next bit pattern in the sequence to get
placed in OUTH. There are only six entries in the LOOKUP table for i ndex values from 0O
through 5. What happens when the value of i ndex gets to 6? The LOOKUP command
doesn’'t automatically know to go back to the first entry, but you can usean I F. . . THEN
statement to fix that problem. The command | F i ndex = 6 THEN index = 0 resets
the value of i ndex to 0 each time it getsto 6. It also causes the sequence of bit patterns
placed in OUTH to repeat itself over and over again. This, in turn, causes the 7-segment
LED display to repeat its circular pattern over and over again.

Updat e_Di spl ay:

IF index = 6 THEN i ndex = 0

' BAFG. CDE

LOOKUP i ndex, [9©1000000,
9%4.0000000,
290000100,
990000010,
290000001,
990100000], OQUTH

index = index + 1

RETURN

Your Turn — Adjusting the Meter’s Hardware and Software

There are two ways to change the sensitivity of the meter. First the “software,” which is
the PBASIC program, can be changed to adjust the speed. As mentioned earlier, dividing
thetime variablein the Del ay subroutine's PAUSE tinme / 3 command by numbers
larger than 3 will speed up the display, and smaller numbers will dow it down. To realy
slow it down, time can also be multiplied by values with the multiply * operator, and for
finetuning, there'sthe*/ operator.

When you connect capacitors in parallel, their values add up. So, if you plug in a second
0.01 pF capacitor right next to the first one as shown in Figure 7-14 and Figure 7-15, the

Page 224 - What's a Microcontroller?

capacitance will be 0.02 pF. With twice the capacitance, the decay measurement for the
same light level will take twice as long.

v Connect the second 0.01 uF capacitor right next to the first one in the light
sensor portion of the light meters circuit in Figure 7-14 and Figure 7-15.
v" Run LightMeter.bs2 and observe the result.

Since the time measurements will be twice as large, the 7-segment LED’ s circular pattern
should rotate half as fast.

P2 O MV

0.01 yF == 0.01 pF Figure 7-14

Two 0.01 pyF Capacitors
in Parallel = 0.02 yF

Figure 7-15

Light Meter Circuits with
Two 0.01 pyF Capacitors
in Parallel

Instead of half the speed of a0.01 uF capacitor, how about one tenth the speed? You can
do this by replacing the two 0.01 uF capacitors with a0.1 uF capacitor. It will work okay
in brightly lit rooms, but will likely be alittle slow for normal lighting. Remember that
when you use a capacitor that is ten times as large, the RC-time measurement will take
ten times as long.

Measuring Light - Page 225

Replace the 0.01 pF capacitors with a 0.1 uF capacitor.

Run the program and see if the predicted effect occurred.

Before continuing, restore the circuit to one 0.01 pF capacitor in parallel with
the phototransistor as shown in Figure 7-9 and Figure 7-10, starting on page 215.
v' Test your restored circuit to verify that it works before continuing.

AN

Which is better, adjusting the software or the hardware? You should always try to use
the best of both worlds. Pick a capacitor that gives you the most accurate measurements
(%\ over the widest range of light levels. Once your hardware is the best it can be, use the
\éj software to automatically adjust the light meter so that it works well for the user under the
widest range of conditions. This takes a considerable amount of testing and refinement, but
that’s all part of the product design process.

ACTIVITY #5: ON/OFF PHOTOTRANSISTOR OUTPUT

Before microcontrollers were common in products, photoresistors were used in circuits
that varied in their voltage output. When the voltage passed below a threshold value
indicating nighttime, other circuits in the device turned the lights on. When the voltage
passed above the threshold, indicating daytime, the other circuits in the device turned the
lights off. This binary light switch behavior can be emulated with the same BASIC
Stamp and the RC decay circuit by simply modifying the PBASIC program.
Alternatively, the circuit can be modified so that it sendsa 1 or 0 to an 1/O pin depending
on the amount of voltage supplied to the pin, similar to the way a pushbutton does. In
this activity, you will try both these approaches.

Adjusting the Program for On/Off States

PhototransistorAnalogToBinary.bs2 takes the range of phototransistor measurements and
compares it to the half way point between the largest and smallest measurements. If the
measurement is above the half way point, it displays “Turn light on”; otherwise, it
displays “Turn light off.” The program uses constant directives to define the largest and
smallest measurements the program should expect from the phototransistor circuit.

val Max CON 4000
val M n CON 100

Page 226 - What's a Microcontroller?

The program also uses M N and MAX operators to ensure that values stay within these
limits before using them to make any decisions. If ti ne is greater than val Max (4000 in
the example program), the statement setsti me to val Max = 4000. Likewiseif tine is
less than val M n (100 in the example program), the statement sets time to valM n =
100.

tinme = tine MAX val Max M N val M n

An I F... THEN. .. ELSE statement converts the range of digitized analog values into a
binary output that takes the form of light-on or light-off messages.

IF time > (valMax - valMn) / 2 THEN
DEBUG CR, "Turn light on "

ELSE
DEBUG CR, "Turn light off"

ENDI F

Before this program will work properly, you have to calibrate your lighting conditions as
follows:

v Check your phototransistor circuit to make sure it has just one 0.01 pF capacitor
(labeled 103).

v" Enter PhototransistorAnalogToBinary.bs2 into the BASIC Stamp Editor. Make

sure to add an extra space after the "n" in the "Turn light on " message.

Otherwise, you'll get a phantom "f* from the "Turn light off" message, which

has one more character in it.

L oad the program into the BASIC Stamp.

Watch the Debug Terminal as you apply the darkest and brightest lighting

conditions that you want to test, and make notes of the resulting maximum and

minimum time values.

v Enter those values into the program’ sval Max and val M n CON directives.

AN

Now, your program is ready to run and test.

v Load the modified program into the BASIC Stamp.
v' Test to verify that dim lighting conditions result in the “Turn Light on” message
and bright lighting conditions result in the “ Turn light off” message.

Measuring Light - Page 227

' What's a Mcrocontroll er - Phototransi storAnal ogToBi nary. bs2
Change digitized anal og phototransi stor nmeasurenent to a binary result.

' {$STAWP BS2}
' {$PBASI C 2. 5}

val Max CON 4000
val M n CON 100
tine VAR Wor d
PAUSE 1000
DO

H GH 2

PAUSE 100

RCTIME 2, 1, tine
time = tinme MAX val Max M N val M n

DEBUG HOME, "tinme = ", DEC5 tine
IF time > (val Max - valMn) / 2 THEN
DEBUG CR, "Turn light on "
ELSE
DEBUG CR, "Turn light off"
ENDI F

LOOP

Your Turn — Different Thresholds for Light and Dark

If you try to incorporate PhototransistorAnalogToBinary.bs2 into an automatic lighting
system, it has a potential defect. Let's say it's dark enough outside to cause the ti e
measurement to pass above (val Max — val M n) / 2, sothelight turnson. But if the
sensor detects that light, it would cause the measurement to pass back below (val Max —
val M n) / 2, so the light would turn off again. This lights-on/lights-off cycle could
repeat rapidly all night!

Page 228 - What's a Microcontroller?

Figure 7-16 shows how this could work in a graph. Asthe light level drops, the value of
the ti me variable increases, and when it crosses the threshold, the automatic lights turn
on. Then, since the phototransistor senses the light that just turned on, the tinme
variable's measurement drops back below the threshold, so the lights turn off. Then, the
ti me variable' s value increases again, and it passes above the threshold, so the lights turn
on, and thet i me variable drops below the threshold again, and so on...

valMax
“Turn lighton "
Figure 7-16
(valMax -valMin) /2 = = === o/ = =Ag-=== Oscillations
Above/Below a
Threshold

"Turn light off"
valMin

One remedy for this problem is to add a second threshold, as illustrated in Figure 7-17.
The “Turn light on” threshold only turns the light on after it’s gotten pretty dark, and the
“Turn light off” threshold only turns the light back off after it's gotten pretty bright.
With this system, the light comes on after ti me passed into the “Turn light on” range.
The light turning on made it brighter, so ti me dropped slightly, but since it didn’t fall
clear down past the “Turn light off” threshold, nothing changed, and the light stays on as
it should. The term hysteresis is used to describe this type of system, which has two
different input thresholds that affect its output along with a no-transition zone between
them.

valMax

"Turn light on "
(valMax - valMin) /4 *3 = = = = = 2L = =Ag - == —--—==== Figure 7-17

No transition Using Different High

and Low Thresholds
(valMax -valMin) /4=—=—-—-—-—-—-—-—~—~—-——-——————~ to Prevent
"Turn light off" Oscillations

valMin

Measuring Light - Page 229

You can implement this two-threshold system in your PBASIC code by modifying
PhotransistorAnalogToBinary.bs2's | F... THEN. .. ELSEI F statement. Here is an
example:

IF time > (valMax - valMn) / 4 * 3 THEN
DEBUG CR, "Turn light on "

ELSEIF time < (valMax - valMn) / 4 THEN
DEBUG CR, "Turn light off"

ENDI F

Thefirst 1 F. .. THEN code block displays "Turn lights on " when thet i e variable stores
a vaue that's more than % of the way to the highest time (lowest light) value. The
ELI SI F code block only displays "Turn lights off" when the t i ne variable stores a value
that’ s less than ¥ of the way above the smallest time (brightest) value.

v Save PhototransistorAnalogToBinary.bs2 as PhotransistorHysteresis.bs2.

v" Before modifying PhotransistorHysteresis.bs2, test it to make sure the existing
threshold works. If the lighting has changed, repeat val M n and val Max
calibration steps (before the Phototransi storAnalogToBinary.bs2 example code).

v" Replace PhotransistorHysteresis.bs2’s | F. . . ELSE. . . ENDI F statement with the

| F...ELSEIF...END F just discussed.

Load the PhotransistorHysteresis.bs2 into the BASIC Stamp.

Test and verify that the “Turn light on” threshold is darker, and the “Turn light

off” threshold is lighter.

NN

If you add an LED circuit and modify the code so that it turns the LED on and off, some
interesting things might happen. Especialy if you put the LED right next to the
phototransistor, you might still see that on/off behavior when it gets dark, even with the
hysteresis programmed. How far away from the phototransistor does the LED have to be
to get the two thresholds to prevent the on/off behavior? Assuming that val M n and
val Max are the same in both programs, how much farther away does the LED have to be
for the unmodified PhototransistorAnalogToBinary.bs2 to work properly?

Page 230 - What's a Microcontroller?

TTL Vs. Schmitt Trigger

Your BASIC Stamp I/O pin sends and receives signals using transistor-transistor logic (TTL).
As an output, the 1/O pin sends a 5 V high signal or a 0 V low signal. The left side of Figure
7-18 shows how the 1/O pin behaves as an input. The I/O pin’s | Nregister (I NO, | N1, | N2,
etc.) stores a 1 if the voltage applied is above 1.4 V, or a O if it's below 1.4 V. These are
shown as Logic 1 and Logic 0 in the figure.

A Schmitt trigger is a circuit represented by the symbol in the center of Figure 7-18. The
right side of Figure 7-18 shows how an I/O pin set to input would behave if it had a Schmitt
trigger circuit built-in. Like the PBASIC code with two thresholds, the Schmitt trigger has
hysteresis. The input value stored by the I/O pin’s | Nx register doesn’t change from 0 to 1
until the input voltage goes above 4.25 V. Likewise, it doesn’t change from 1 to O until the
input voltage passes below 0.75 V. The BASIC Stamp 2px has a PBASIC command that
allows you to configure its input pins to Schmitt trigger.

Figure 7-18 TTL Vs. Schmitt Trigger Thresholds and Symbol

TTL Schmitt Trigger Schmitt Trigger
Threshold Symbol Threshold
5V m—m/m/m8M8 5V
Logic 1
425V mmmmmmmmemeeeeeeae
Logic 1
<l>~ No Change
=14V et s SEEEESS
Logic 0
=075V s
Logic O
oV oV

Adjusting the Circuit for On/Off States

As mentioned in Chapter 5, Activity #2, the voltage threshold for aBASIC Stamp /O pin
is 1.4 V. When an I/O pin is set to input, voltages above 1.4 V applied to the 1/0 pin
result in a binary 1 and voltages below 1.4 V result in a binary 0. The Vo node in the
circuit shown in Figure 7-19 varies in voltage with light. This circuit can be connected to
a BASIC Stamp 1/O pin, and with low light, the voltage will pass below the BASIC
Stamp’s 1.4 V threshold, and the 1/O pin’s input register will store a 0. In bright light
conditions, Vo rises above 1.4 V, and the 1/O pin’sinput register will storea 1.

Measuring Light - Page 231

Vdd

Figure 7-19
Vo Voltage Output Light
Circuit

The reason the voltage at Vo changes with light levels is because of Ohm’s Law, which
states that the voltage across a resistor (V in Figure 7-19) is equa to the current passing
through that resistor (1) , multiplied by the resistor’ sresistance (R).

V=1xR

Remember that a phototransistor lets more current pass through when exposed to more
light, and less current when exposed to less light. Let’s take a closer ook at the example
circuit in Figure 7-19 and calculate how much current would have to pass though the
resistor to create a 1.4 V drop across theresistor. First, we know the value of the resistor
is 10 kQ, or 10,000 Q. We aso know that we want the voltage to be equal to 1.4 V, so
we need to modify Ohm’'s Law to solve for I. To do this, divide both sides of the
V =1 x R equation by R, which resultsin | =V + R. Then, substitute the values you
know (V =14V and R = 10 kQ), and solvefor I.

[V+R
1.4V +10kQ
1.4V + 10,000 Q
0.00014 V/IQ
0.00014 A
0.14 mA

Page 232 - What's a Microcontroller?

Now, what if the transistor allows twice that much current through because it's bright,
and what would the voltage be across the resistor? For twice the current, | = 0.28 mA,
and the resistance is still 10 kQ, so now we are back to solving V from the origina V = |
x R equation with | =0.28 mA and R = 10 kQ:

Y | xR
0.28 mA x 10 kQ
0.00028 A x 10,000 Q
28AQ
28V

With 2.8 V applied to an I/O pin, its input register would store a 1 since 2.8 V is above
the /O pin's 1.4 V threshold voltage.
Your Turn — More calculations

What if the phototransistor allowed half the threshold voltage current (0.07 mA) through
the circuit, what would the voltage across the resistor be? Also, what would the I/O pin’s
input register store?

Test the Binary Light Sensor

Testing the binary light sensor circuit is a lot like testing the pushbutton circuit from
Chapter 3. When the circuit is connected to an /O pin, the voltage will either be above
or below the BASIC Stamp /O pin’s 1.4 V threshold, which will result ina 1 or a 0,
which can then be displayed with the Debug Terminal.

Analog to Binary Light Sensor Parts

(1) Phototransistor

(1) Resistor — 220 Q (red-red-brown)

(1) Resistor — 10 kQ (brown-black-orange)
(1) Resistor — 2 kQ (red-black-red)

(1) Resistor —4.7 kQ (yellow-violet-red)

(1) Resistor — 100 kQ (brown-black-yellow)
(2) Jumper wires

Measuring Light - Page 233

Analog to Binary Light Sensor Circuit

With the circuit shown in Figure 7-20, the circuit behaves like a shadow controlled
pushbutton. Shade resultsinin2 = 0, bright light resultsinin2 = 1. Keepin mind
that an 1/0 pin set to input does not affect the circuit it monitors because it doesn’t source
or sink any current. This makes both the 1/0 pin and 220 Q resistor essentially invisible
to the circuit. So, the voltage results of our circuit calculations from the previous section
will be the same with or without the 220 Q resistor and /O pin connected.

v Build the circuit shown in Figure 7-20.

Figure 7-20: Schematic and Wiring Diagram for Analog to Binary Light Sensor Circuit
connected to an 1/O pin

Vdd Nid Vin Vsg
X3
pisfl| DOONO O0OOOO0
N oMl 0000y 00000
pia| DOOO0 ooooo
pof| ODOO0OO0\ |0000O0
-1 DoooO\ |ooooo
riof| Doooo|\ ooooo
o ooooo| \ooooo
P2 ba ooooo| \ooooo
o ooooo \[EI=]s]s)
220 Q . ooooo oooog
be ooooo N\
10 kQ o ooooo NS0
] O O
Ps PO Jd o
[)
P2M oooool Two l:.}”\
—= o ooooo oogd >/
Vss o 00000 ORZ

Analog to Binary Light Sensor Test Code

TestBinaryPhototransistor.bs2 is a modified version of ReadPushbuttonState.bs2 from
Chapter 3, Activity #2. Aside from adjusting the comments, the one change to the actual
program is the DEBUG ? | N2 line, which was DEBUG ? | N3 in the pushbutton example
program because the pushbutton was connected to P3 instead of P2.

v" Review Chapter 3, Activity #2 (page 65).

v' Use TestBinaryPhototransistor.bs2 below to verify that bright light on the
phototransistor resultsin a 1 while darkness resultsin 0. Y ou might need pretty
bright light. If your indoor lighting still resultsin a0, try sunlight or a flashlight
up close. An alternate remedy for low lighting is to replace the 10 kQ resistor
with a 100 kQ resistor.

Page 234 - What's a Microcontroller?

' What's a Mcrocontrol l er - TestBi naryPhot ot ransi stor. bs2
' Check the phototransistor circuit's binary output state every 1/4 second.

' {$STAWP BS2}
' {$PBASI C 2. 5}

DO
DEBUG ? | N2
PAUSE 250
LOOP

Testing Series Resistance

Take alook at the V = | x R calculations earlier in this activity. If the series resistor is
1/5 the value, the voltage across the resistor will be 1/5™ the value for the same light
conditions. Likewise, aresistor that is 10 times as large will cause the voltage to be ten
timesaslarge.

What does this do for your circuit? A 100 kQ resistor in place of a 10 kQ resistor means
the phototransistor only has to conduct 1/10" the current to cross the BASIC Stamp 1/0
pin's 1.4 V threshold, which in turn means it takes less light to get trigger a binary 1 in
the I/O pin’'s input register. This might work as a sensor in an environment that is
supposed to stay dark since it will be sensitive to small amounts of light. In contrast, 1/5
the resistance value means that the phototransistor has to conduct 5 times as much current
to get the voltage across the resistor to cross the 1.4 V threshold, which in turn means that
it takes more light to trigger the binary 1 in the I/O pin’s input register. So, this circuit
would be better for detecting brighter light.

v Experiment with 2 kQ, 4.7 kQ, 10 kQ, and 100 k< resistors and compare the
changesin sensitivity to light with each resistor.

Your Turn — Low Light Level Indicator

v Choose aresistor with the best 1/0 response to low light levelsin your work area.

v" Add the LED featured in Chapter 3, Activity #3 to your phototransistor threshold
circuit.

v Put something between the LED and phototransistor so that the phototransistor
cannot “see” the LED. This eliminates potential crosstalk between the two
devices.

v" Maodify the program so that it makes the light blink when a shadow is cast over
the phototransistor.

Measuring Light - Page 235

ACTIVITY #6: FOR FUN—MEASURE OUTDOOR LIGHT WITH AN LED

As mentioned earlier, the circuit introduced in Activity #1 is designed for indoor light
measurements. What if your application needs to take light measurements outdoors?
One option would be to find a phototransistor that generates less current for the same
amount of light. Another option would be to use a one of the other light sensors in the
What's a Microcontroller kit. They are disguised as LEDs, and they perform particularly
well for bright light measurements.

When electric current passes through the LED, it emits light, so what do you think
happens when light shines on an LED? Yes indeed, it can cause eectric current to flow
through a circuit. Figure 7-21 shows an LED circuit for detecting light levels outdoors,
and in other very brightly light areas. While the phototransistor allows current to pass
through provided electrical pressure (voltage) is applied, the LED ismore like atiny solar
panel and it creates its own voltage to supply the current. As far as the RC decay circuit
is concerned, the result with an LED is about the same. The LED conducts more current
and drains the capacitor of its charge more quickly with more light, and it conducts less
current and drains the capacitor less quickly with lesslight.

I/0 Pin & AN o
220 Q
A .
4 e Figure 7-21
Yellow . .
LED Schematic for LED in
Light-Sensing RC-Time
Circuit
Vgs

Why is the LED plugged in backwards? In Chapter 2, the LED’s anode was connected to
— the 220 Q resistor, and the cathode was connected to ground. That circuit made the LED
(e\ emitlight as a result of electric current passing through the LED when voltage was applied
\\"f to the circuit. When light is shining on the LED, it will create a small voltage that generates a
small current in the opposite direction. So, the LED has to be plugged in backwards so that

the current it conducts allows the capacitor to drain through it for RC decay measurements.

Page 236 - What's a Microcontroller?

LED Light Sensor Parts

(1) LED —yellow

(1) LED —green

(1) LED —red

(1) Resistor — 220 Q (red-red-brown)
(1) Jumper wire

LED Light Sensor Circuit

One major difference between the LED and phototransistor is that the LED conducts
much less current for the same amount of light, so it takes very bright light for the LED
to conduct enough current to discharge the capacitor quickly enough for the RCTI ME
measurement. Remember that the maximum time measurement the RCTI ME can measure
is65535 x 2 us~ 131 ms. So for good RC decay measurements with the BASIC Stamp,
amuch smaller capacitor is needed. In fact, the circuit works better without any external
capacitor. The LED has a small amount of capacitance inside it, called junction
capacitance, and the metal clips that hold wires you plug into the breadboard also have
capacitance. Reason being, a capacitor is two metal plates separated by an insulator
called adielectric. So two metal clips inside the breadboard separated by plastic and air
forms a capacitor. The combination of the LED’s junction capacitance and the
breadboard’ s clip capacitance makes it so that you can use the LED without any externa
capacitor, as shown in Figure 7-22.

v Build the circuit shown in Figure 7-22 and Figure 7-23, using the yellow LED.
Make sure to observe the polarity shown in the figures!

P2
2200 g Figure 7-22
Yellow LED RCTIME Circuit
LED Schematic

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
PO

X2

Measuring Light - Page 237

Vdd Vin

<
0
0

X3

ooogooog
OooNODoOoood

Flat spot and
shorter cathode pin Figure 7-23

LED RCTIME Circuit
Wiring Diagram

Ooooooooo
ONOOooooood

O
O
O
O
O
Ooooooooooooo
O

ooooo [m]

ooogoog
ooogoog
Ooo0omoog
O ood
O oogd
o110
ooooon
m]] O

O
RO

Longer anode pin

Testing LED Light Sensor with Code

The LED light sensing circuit can be tested in a brightly lit room or outdoors during the

day. In
RCTI VE

adimly lit room the measurement times are likely to exceed 65535, in which case
will store zero in ther esul t variable. For most situations, the code is the same

code from Activity #1, TestPhototransistor.bs2.

If you arein abrightly lit room try this:

v
v
v

Run TestPhototransistor.bs2 from Activity #1.

Point the LED at the brightest light source by facing your board toward it.
Gradually rotate the board away from the brightest light source in the room; the
values displayed by the Debug Terminal should get larger as the light gets
dimmer.

If you have abright flashlight, try this:

Run TestPhototransistor.bs2 from Activity #1.

Eliminate most bright light sources such as sunlight streaming into the windows.
Turn on the flashlight and point it into the top of the LED at a distance of about 4
inches (about 10 cm). If possible, turn off some of the fluorescent lights so that
the ambient light levels are low.

Watch the measurements the Debug Terminal displays as you gradually increase
the distance of the flashlight from the top of the LED. It will alow you to
determine the flashlight’ s distance from the LED.

Page 238 - What's a Microcontroller?

If you are in aroom with only fluorescent lights and no bright light sources:

v
v

v

Run TestPhototransistor.bs2 from Activity #1.

Eliminate most bright light sources such as sunlight streaming into the windows.
If possible, turn off some of the fluorescent lights so that the light levels are low.
Point the LED into your computer monitor so that it is amost touching the
monitor, and see if the measurements make it possible to distinguish between
various colors on the display.

Outdoor tests:

AN NN N NANAN

Run StorelightM easurementsl nEeprom.bs2 from Activity #2.

Disconnect the programming cable and take your board outside.

Face your board so that the LED is pointing directly at the sun.

Press and release your board’ s Reset button to restart the datal ogging program.
Gradually rotate your board away from the sun over 2 ¥2 minutes.

Take your board back inside and reconnect to the PC.

Run ReadLightMeasurementsFromEeprom.bs2, and examine the light
measurements. Since you gradually turned the LED away from the sun,
successive measurements should get larger.

Your Turn — Can your BASIC Stamp Tell Red from Green?

In Figure 7-2, green is in the middle of the spectrum, and red is to the right. If you
download the color PDF version of this textbook from www.parallax.com, you can place
the green and then the red LED against the screen and record light measurements across
the color spectrum. Then, by comparing the lowest measurements with each LED, you
can detect whether the LED is placed against green or red on the screen.

v
v

v

Start with agreen LED in the Figure 7-22 and Figure 7-23 light detection circuit.
Download the PDF verson of What's a Microcontroller? from
www.parallax.com/go/WAM.

Display the color spectrum shown in Figure 7-2 (page 197) on your monitor, and
zoom in on the image.

With the TestPhototransistor.bs2 program displaying measurements in the
Debug Terminal, hold your board so that the green LED’s dome is pointing
directly into the monitor over the color spectrum. For best results, the dome of
the LED should be just barely touching the monitor, and the light levels in the
room should be fairly low.

Measuring Light - Page 239

v Slide the green LED dlowly along the spectrum bar displayed on the monitor,
and note which color resulted in the lowest measurement.

v" Repeat with thered LED. Did the red LED report its lowest measurements over
red while the green LED reported its lowest measurements over green?

The lowest red LED measurements should occur over the red color on the display, and
the lowest measurements for the green LED should occur over green.

SUMMARY

This chapter introduced light sensors and described how they are used in a variety of
products. Different light sensors detect different kinds of light, and their datasheets
describe their sensitivities in terms of light's wavelength. This chapter focused on the
phototransistor, a device that controls the current through its collector and emitter
terminals by the amount of light shining on its base terminal. Because light can control
the amount of current a phototransistor conducts, the technique for measuring the
position of a potentiometer’s knob in the Chapter 5 RC circuit also works for measuring
the light shining on a phototransistor. The time it takes for a capacitor to lose its charge
through the phototransistor results in an RCTI ME measurement that provides a number
that corresponds to the brightness of the light shining on the phototransistor.

Datalogging by storing light measurements in the unused portion of the BASIC Stamp
module’'s EEPROM program memory was also introduced. WRI TE and READ commands
were used to store values to and retrieve values from the BASIC Stamp module’'s
EEPROM. The volume of numbers involved in datalogging can be difficult to analyze,
but graphing the data makes it alot easier to see patterns, trends and events. Logged data
can be transferred to conventional spreadsheets and graphed, and certain graphing
utilities can even stand in for the Debug Terminal, and plot the values the BASIC Stamp
sends instead of displaying them as text. A light meter example application was aso
developed, which demonstrated how light measurements can be used to control another
process, in this case, the rate of a circular pattern displayed by a 7-segment LED. This
application also used subroutines to perform three different jobs for the light meter
application.

The BASIC Stamp can be programmed to convert an RC decay time measurement to a
binary value with | F..THEN statements. Additionally, the program can take arange of RC
decay measurements and apply hysteresis with a “light on” threshold that’s in the darker
range of measurements and a “light off” threshold that’'s in the lighter range. This can
help prevent on/off oscillations that might otherwise occur when the sensor reports

Page 240 - What's a Microcontroller?

darkness and the device turns on an area light. Without hysteresis, the device might
sense thislight, turn back off, and repeat this cycle indefinitely.

A hardware approach to sensing on/off light states is applying power to the
phototransistor in series with a resistor. In keeping with Ohm's Law, the amount of
current the phototransistor conducts affects the voltage across the resistor. This variable
voltage can be connected to an 1/0O pin, and will result in abinary 1 if the voltage is above
the 1/O pin's 1.4 V threshold, or abinary 0 if it's below the threshold.

The LED (light emitting diode) that emits light when current passes through it aso
behaves like atiny solar panel when light strikes it, generating a small voltages which in
turn can cause electric current in circuits. The currents the LED generates are small
enough that a combination of the LED’s own junction capacitance and the capacitance
inherent to the clips inside the breadboard provides enough capacitance for an RC decay
circuit with no external capacitor. While the phototransistor in the What's a
Microcontroller kit performs better indoors, the LED is great for outdoor and bright light
measurements.

uestions

1. What are some examples of automatic lighting applications that depend on
ambient light sensors?

2. What are some examples of products that respond to changes in the brightness of
the ambient light?

3. What wavelength range does the visible light spectrum fall into?

4. What are the names of the phototransistor’s terminals, and which one controls
how much current the device allows through?

5. What does EEPROM stand for?

6. How many bytes can the BASIC Stamp module’s EEPROM store? How many
bits can it store?

7. What command do you use to store a value in EEPROM? What command do
you use to retrieve avalue from EEPROM? Which one requires a variable?

8. Whatisalabel?

9. What is asubrouting?

10. What command is used to call a subroutine? What command is used to end a
subroutine?

Measuring Light - Page 241

Exercises

1. Draw the schematic of a phototransistor RC-time circuit connected to P5.

2. Modify TestPhototransistor.bs2 to so that it works on a circuit connected to P5
instead of P2.

3. Explain how you would modify LightMeter.os2 so that the circular pattern
displayed by the 7-segment LED display goesin the opposite direction.

Projects

1. Make a small prototype of a system that automatically closes the blinds when it
gets too bright and opens them again when it gets less bright. Use the servo for a
mechanical actuator. Hint: For code, you can add two servo control commands
to PhototransistorAnalogToBinary.bs2, and change the PAUSE 100 command to
PAUSE 1. Make sureto follow the instructions in the text for calibrating for area
light conditions before you test.

2. For extra credit, enhance your solution to Project 1 by incorporating the
hysteresis modifications discussed in Activity #5.

Solutions

QL. Car headlights, streetlights, and outdoor security lights that automatically turn on
when it's dark.

Q2. Laptop displays and cameras with auto exposure.

Q3. 380 nm to 750 nm according to Figure 7-2 on page 197.

Q4. Collector, base, and emitter. The base controls how much current passes into the
collector and back out of the emitter.

Q5. Electrically Erasable Programmable Read-Only Memory.

Q6. 2048 bytes. 2048 x 8 = 16,384 hits.

Q7.To store a vaue — WRI TE ; To retrieve a value — READ; The READ command
requires avariable.

Q8. A label isaname that can be used as a placeholder in aPBASIC program.

Q9. A subroutine is asmall segment of code that does a certain job.

Q10. Cadling: GosuB; ending: RETURN

Page 242 - What's a Microcontroller?

E1. Schematic based on Figure 7-4 on page 200, with P2 changed to P5.

P5 &

— 0.01pF

E2. The required changes are very similar to those explained on page 200.

DO

HGH5

PAUSE 100

RCTIME 5, 1, tine

DEBUG HOVE, "tine = ", DEC5 tinme
LOOP

E3. To go in the opposite direction, the patterns must be displayed in the reverse
order. This can be done by switching the patterns around inside the LOOKUP
statement, or by reversing the order they get looked up. Here are two solutions
made with alternative Updat e_Di spl ay subroutines.

Solution 1 Solution 2
Updat e_Di spl ay: Index = 5 '<<Add after |ndex variable
IF index = 6 THEN i ndex = 0O
' BAFG. CDE Updat e_Di spl ay:
LOOKUP i ndex, [991000000, ' BAFG CDE
940000000, LOOKUP i ndex, [%©1000000,
990000100, 940000000,
990000010, 990000100,
990000001, 990000010,
990100000 1], 290000001,
OUTH 990100000], OUTH
index = index + 1 I'F (index = 0) THEN
RETURN index = 5
ELSE
index = index - 1
ENDI F
RETURN

Measuring Light - Page 243

P1. Phototransistor from Figure 7-4 on page 200, servo schematic for your board
from Chapter 4, Activity #1.

What's a M crocontroller - ChO7Prj01_Blinds_Control.bs2
Control servo position with |ight.

{ $STAMP BS2}
{$PBASI C 2. 5}

val Max CON 4000
val M n CON 100
tinme VAR Wor d
PAUSE 1000
DO
H GH 2
PAUSE 1 ' PAUSE 100 -> PAUSE 1
RCTIME 2, 1, tine
DEBUG HOVE, “time = ", DEC5 tine

time = tine MAX val Max M N val M n

IF time > (val Max - valMn) / 2 THEN

DEBUG CR, "QOpen blinds " ' Modify
PULSOUT 14, 500 ' Add
ELSE
DEBUG CR, "d ose blinds" ' Modify
PULSOUT 14, 1000 ' Add
ENDI F
LOOP

P2. Hysteresis functionality added for extra credit:

What's a M crocontroller - ChO7Prj02_Blinds_Control Extra.bs2
' Control servo position with Iight including hysteresis.

{ $STAVP BS2}
{$PBASI C 2. 5}

val Max CON 4000
val M n CON 100
tinme VAR Wor d
PAUSE 1000

DO

Page 244 - What's a Microcontroller?

H GH 2

PAUSE 1 ' PAUSE 100 -> PAUSE 1
RCTIME 2, 1, tine

DEBUG HOME, “"tine = ", DEC5 tine

time = tinme MAX val Max M N val M n

IF time > (val Max - valMn) / 4 * 3 THEN

DEBUG CR, "QOpen blinds " ' Modify

PULSOUT 14, 500 ' Add
ELSEIF time < (valMax - valMn) / 4 THEN

DEBUG CR, "d ose blinds" ' Modify

PULSOUT 14, 1000 ' Add
ENDI F

LOOP

Frequency and Sound - Page 245

Chapter 8: Frequency and Sound

YOUR DAY AND ELECTRONIC BEEPS

Here are a few examples of beeps you might hear during a normal day: The microwave
oven beeps when it’s done cooking your food. The cell phone plays different tones of
beeps resembling songs to get your attention when a call is coming in. The ATM
machine beeps to remind you not to forget your card. A store cash register beeps to let
the teller know that the bar code of the grocery item passed over the scanner was read.
Many calculators beep when the wrong keys are pressed. Y ou may have started your day
with a beeping alarm clock.

MICROCONTROLLERS, SPEAKERS, AND ON/OFF SIGNALS

Just about all of the electronic beeps you hear during your daily routine are made by
microcontrollers connected to speakers. The microcontroller creates these beeps by
sending rapid high/low signals to various types of speakers. The rate of these high/low
signalsis called the frequency, and it determines the tone or pitch of the beep. Each time
a high/low repeats itself, it is called acycle. You will often see the number of cycles per
second referred to as hertz, and it is abbreviated Hz. For example, one of the most
common frequencies for the beeps that help machines get your attention is 2 kHz. That
means that the high/low signals repeat at 2000 times per second.

Introducing the Piezoelectric Speaker

In this activity, you will experiment with sending a variety of signals to acommon, small,
and inexpensive speaker caled a piezoelectric speaker. A piezoelectric speaker is
commonly referred to as a piezo speaker or piezo buzzer, and piezo is pronounced “pE-
A-z0.” Its schematic symbol and part drawing are shown in Figure 8-1.

Figure 8-1

Piezoelectric Speaker Part Drawing
\ and Schematic Symbol
)

Page 246 - What's a Microcontroller?

ACTIVITY #1: BUILDING AND TESTING THE SPEAKER
In this activity, you will build and test the piezoel ectric speaker circuit.

Speaker Circuit Parts

(1) Piezoelectric speaker
(2) Jumper wires

Building the Piezoelectric Speaker Circuit

The negative terminal of the piezoelectric speaker should be connected to Vss, and the
positive terminal should be connected to an 1/0O pin. The BASIC Stamp will then be
programmed to send high/low signals to the piezoel ectric speaker’ s positive terminal.

v If your piezo speaker has asticker on it, just remove it (no washing needed).
v Build the circuit shown in Figure 8-2.

Vdd Vin Vss

X3

P15]
P14
P13
P12
P11

c0ood
oood
oog

O

O

O

O

[l

P10|
P9
P8

Figure 8-2
Piezoelectric Speaker
Circuit Schematic and

P7
P6
P5
P4
P3
P2
P1
PO
X2

Wiring Diagram

Oo00o00ooooooooyaoo
OJ000oooooogooooooo

Oooooooooo
Ooooooood

Oooooooooo

How the Piezoelectric Speaker Circuit Works

When a guitar string vibrates, it causes changes in air pressure. These changes in air
pressure are what your ear detects as atone. The faster the changes in air pressure, the
higher the pitch, and the slower the changes in air pressure, the lower the pitch. The
element inside the piezo speaker’s plastic case is called a piezoelectric element. When
high/low signals are applied to the speaker’s positive terminal, the piezoelectric element
vibrates, and it causes changes in air pressure just as a guitar string does. As with the
guitar string, your ear detects the changes in air pressure caused by the piezoelectric
speaker, and it typically sounds like a beep or atone.

Frequency and Sound - Page 247

Programming Speaker Control

The FREQOUT command is a convenient way of sending high/low signals to a speaker to
make sound. The BASIC Stamp Manual shows the command syntax asthis:

FREQOUT Pin, Duration, Freql {, Freq2}

As with most of the other commands used in this book, Pin is a value you can use to
choose which BASIC Stamp 1/O pin to use. The Duration argument is a value that tells
the FREQOUT command how long the tone should play, in milliseconds. The Freq1
argument is used to set the frequency of the tone, in hertz. There is an optiona Freq2
argument that can be used to play two different tones at the same time.

Here is how to send atone to I/O pin P9 that lasts for 1.5 seconds and has a frequency of
2 kHz:

FREQQUT 9, 1500, 2000

Example Program: TestPiezoWithFreqout.bs2

This example program sends the 2 kHz tone to the speaker on /O pin P9 for 1.5 seconds.
You can use the Debug Terminal to see when the speaker should be beeping and when it
should stop.

v Enter and run TestPiezoWithFregout.bs2.
v' Veify that the speaker makes a clearly audible tone during the time that the
Debug Terminal displays the message “Tone sending...”

' What's a Mcrocontroll er - TestPi ezoWthFreqout. bs2
' Send a tone to the piezo speaker using the FREQOUT conmand.

' {$STAWP BS2}
' {$PBASI C 2. 5}

PAUSE 1000
DEBUG " Tone sending...", CR
FREQOUT 9, 1500, 2000

DEBUG " Tone done."

Page 248 - What's a Microcontroller?

Your Turn — Adjusting Frequency and Duration

Save TestPiezoWithFreqout.bs2 under a different name.

Try some different values for the Duration and Freq1 arguments.

After each change, run the program and make a note of the effect.

As the Freql argument gets larger, does the tone's pitch go up or down? Try
values of 1500, 2000, 2500 and 3000 to answer this question.

ANANENRN

ACTIVITY #2: ACTION SOUNDS

Many toys contain microcontrollers that are used to make “action sounds.” Action
sounds tend to involve rapidly changing the frequency played by the speaker. You can
aso get some interesting effects from playing two different tones together using the
FREQOUT command’ s optional Freq2 argument. This activity introduces both techniques.

Programming Action Sounds

Action and appliance sounds have three different components:

1. Pause
2. Duration
3. Frequency

The pause is the time between tones, and you can use the PAUSE command to create it.
The duration is the amount of time a tone lasts, which you can set using the FREQOUT
command’'s Duration argument. The frequency determines the pitch of the tone. The
higher the frequency, the higher the pitch, the lower the frequency, the lower the pitch.
Thisis, of course, determined by the FREQOUT command'’ s Freql argument.

Example Program: ActionTones.bs2

ActionTones.bs2 demonstrates a few different combinations of pause, duration, and
frequency. The first sequence of tones sounds similar to an electronic alarm clock. The
second one sounds similar to something a familiar science fiction movie robot might say.
The third is more the kind of sound effect you might hear in an old video game.

v' Enter and run ActionTones.bs2.

' What's a Mcrocontroller - ActionTones. bs2
' Denobnstrate how different conbinations of pause, duration, and frequency
' can be used to nake sound effects.

Frequency and Sound - Page 249

' {$STAMP BS2}
' {$PBASI C 2. 5}

duration VAR Wor d
frequency VAR Wor d
PAUSE 1000
DEBUG "Alarm ..", CR
PAUSE 100
FREQOUT 9, 500, 1500
PAUSE 500
FREQOUT 9, 500, 1500
PAUSE 500
FREQOUT 9, 500, 1500
PAUSE 500
FREQOUT 9, 500, 1500
PAUSE 500
DEBUG "Robot reply...", CR
PAUSE 100

FREQOUT 9, 100, 2800
FREQOUT 9, 200, 2400
FREQOUT 9, 140, 4200
FREQOUT 9, 30, 2000
PAUSE 500

DEBUG " Hyperspace...", CR
PAUSE 100
FOR duration = 15 TO 1 STEP 1
FOR frequency = 2000 TO 2500 STEP 20
FREQQUT 9, duration, frequency
NEXT
NEXT

DEBUG " Done", CR

END

How ActionTones.bs2 Works

The “Alarm” routine sounds like an alarm clock. This routine plays tones at a fixed
frequency of 1.5 kHz for duration of 0.5 s with fixed delays between tones of 0.5 s. The
“Robot reply” routine uses various frequencies for brief durations.

The “Hyperspace” routine uses no delay, but it varies both the duration and frequency.
By using FOR. . . NEXT loops to rapidly change the f r equency and dur ati on variables,
you can get some interesting sound effects. When one FOR. . . NEXT |loop executes inside
another one, it is called a nested loop. Here is how the nested FOR. . . NEXT loop shown

Page 250 - What's a Microcontroller?

below works. The dur ati on variable starts at 15, then the FOR frequency... loop
takes over and sends frequencies of 2000, then 2020, then 2040, and so on, up through
2500 to the piezo speaker. When the FOR frequency... loop is finished, the FOR
duration... loop has only repeated one of its 15 passes. So it subtracts 1 from the
value of dur at i on and repeatsthe FOR frequency. .. loop all over again.

FOR duration = 15 TO 1
FOR frequency = 2000 TO 2500 STEP 15
FREQOUT 9, duration, frequency
NEXT
NEXT

Example Program: NestedLoops.bs2

To better understand how nested FOR. .. NEXT loops work, NestedlLoops.bs? uses the
DEBUG command to show the value of a much less complicated version of the nested loop
used in ActionTones.bs2.

v Enter and run NestedL oops.bs2.
v' Examine the Debug Termina output and verify how the duration and
frequency variables change each time through the loop.

' What's a Mcrocontroller - NestedLoops. bs2
Denmonstrate how the nested | oop in ActionTones. bs2 works.

' {$STAWP BS2}
' {$PBASI C 2. 5}

duration VAR Wor d
frequency VAR Wor d
PAUSE 1000

DEBUG " Dur at i on Frequency", CR

FOR duration = 4000 TO 1000 STEP 1000
FOR frequency = 1000 TO 3000 STEP 500
DEBUG " ", DEC5 duration,
" , DEC5 frequency, CR
FREQQUT 9, duration, frequency
NEXT
DEBUG CR
NEXT

END

Frequency and Sound - Page 251

Your Turn — More Sound Effects

There is pretty much an endless number of ways to modify ActionTones.bs2 to get
different sound combinations. Hereisjust one modification to the “Hyperspace” routine:

DEBUG "Hyperspace jump...", CR
FOR duration = 15 TO 1 STEP 3
FOR frequency = 2000 TO 2500 STEP 15
FREQOQUT 9, duration, frequency
NEXT
NEXT
FOR duration = 1 TO 36 STEP 3
FOR frequency = 2500 TO 2000 STEP 15
FREQQUT 9, duration, frequency
NEXT
NEXT

v/ Save your example program under the name ActionTonesY ourTurn.bs2.
v Have fun with this and other modifications of your own creation.

Two Frequencies at Once

You can play two frequencies at the same time. Remember the FREQOUT command's
syntax from Activity #1.

FREQOUT Pin, Duration, Freql {, Freq2}

You can use the optional Freq2 argument to play two frequencies with a single FREQOUT
command. For example, you can play 2 kHz and 3 kHz like this:

FREQQUT 9, 1000, 2000, 3000

Each touchtone keypad tone is also an example of two frequencies combined together. In
telecommunications, that is called DTMF (Dual Tone Multi Frequency). There is also a
PBASIC command called DTMFOUT that is designed just for sending phone tones. Look up
this command in the BASIC Stamp Manual or Help for examples.

Example Program: PairsOfTones.bs2

This example program demonstrates the difference in tone that you get when you play 2
and 3 kHz together. It aso demonstrates an interesting phenomenon that occurs when
you add two sound waves that are very close in frequency. When you play 2000 Hz and
2001 Hz at the same time, the tone will fade in and out once every second (at a frequency

Page 252 - What's a Microcontroller?

of 1 Hz). If you play 2000 Hz with 2002 Hz, it will fade in and out twice a second
(2H2z), and so on.

Beat is when two tones very close in frequency are played together causing the tone you
hear to fade in and out. The frequency of that fading in and out is the difference between
the two frequencies. If the difference is 1 Hz, the tone will fade in and out at 1 Hz. If the
difference is 2 Hz, the tone will fade in and out at 2 Hz.

The variations in air pressure made by the piezoelectric speaker are called sound waves.
When the tone is loudest, the variations in air pressure caused by the two frequencies are
adding to each other (called superposition). When the tone is at its quietest, the variations
in air pressure are canceling each other out (called interference).

v" Enter and run PairsOf Tones.bs2.
v' Keep an eye on the Debug Termina as the tones play, and note the different
effects that come from mixing the different tones.

' What's a Mcrocontroller - PairsO Tones. bs2
' Denpnstrate sone of the things that happen when you m x two tones.

' {$STAVP BS2}
' {$PBASI C 2. 5}

PAUSE 1000

DEBUG " Fr equency CR

FREQOUT 9, 4000,

= 2000",
2000

DEBUG " Fr equency CR
FREQOUT 9, 4000,

= 3000",
3000
DEBUG " Fr equency =

2000 + 3000", CR

FREQOUT 9, 4000,

DEBUG " Fr equency
FREQQOUT 9, 4000,

DEBUG " Fr equency
FREQOUT 9, 4000,

DEBUG " Fr equency
FREQOUT 9, 4000,

DEBUG " Fr equency
FREQOUT 9, 4000,

2000, 3000

= 2000 + 2001",
2000, 2001

= 2000 + 2002",
2000, 2002

= 2000 + 2003",
2000, 2003

= 2000 + 2005",
2000, 2005

CR

CR

CR

CR

Frequency and Sound - Page 253

DEBUG " Frequency = 2000 + 2010", CR
FREQOUT 9, 4000, 2000, 2010

DEBUG " Done", CR
END

Your Turn — Condensing the Code

PairsOf Tones.bs2 was written to demonstrate some interesting things that can happen
when you play two different frequencies at once using the FREQOUT command’ s optional
Freqg2 argument. However, it isextremely inefficient.

v" Maodify PairsOf Tones.bs2 so that it cycles through the Freq2 arguments ranging
from 2001 to 2005 using aword variable and aloop.

ACTIVITY #3: MUSICAL NOTES AND SIMPLE SONGS

Figure 8-3 shows the rightmost 25 keys of a piano keyboard. It aso shows the
frequencies at which each wire inside the piano vibrates when that piano key is struck.

Figure 8-3: Rightmost Piano Keys and Their Frequencies

[ce] < o < N~ (o)) o N (2]

o < o O o ~— [ce] © AN N

— N < © © N < (@] ™ N~

~ ~ ~ ~ ~ N N N (90) o
O < o O o o Lo ™)] N » O O < (o]
< N~ o D © (o] N~ [*2] < ™ o o n o©
o - «@ ™ Yo} N~ » o [s¢] o N~ ~ n o -
~ ~ ~ - ~— -~ N N N N o o o <

comeFoU
To@SsH*FOTM
ToOX>SHOG
cowWs H*HOO>
o~NOSH*HNO
TNMe#*#= N0
oNwWeHENID>

C6|D6|E6|F6|G6|A6|B6|C7|D7|E7|F7|G7|A7|B7|C8

Page 254 - What's a Microcontroller?

The keys and their corresponding notes are labeled C6 through C8. These keys are
separated into groups of 12, made up of 7 white keys and 5 black keys. The sequence of
notes repeats itself every 12 keys. Notes of the same letter are related by frequency,
doubling with each higher octave. For example, C7 istwice the frequency of C6, and C8
istwice the frequency of C7. Likewise, if you go one octave down, the frequency will be
half the value; for example, A6 is half the frequency of A7.

If you've ever heard a singer practice his’/her notes by singing the Solfege, “Do Re Mi Fa
Sol LaTi Do,” the singer is attempting to match the notes that you get from striking the
white keys on a piano keyboard. These white keys are called natural keys, and the name
“octave” relates to the frequency doubling with every eighth natural key. A black key on
apiano can either be called sharp or flat. For example, the black key between the C and
D keys is either called C-sharp (C) or D-flat (D). Whether akey is called sharp or flat
depends on the particular piece being played, and the rules for that are better |eft to the
music classes.

Internet search for “musical scale”: By using the words "musical scale" you will find lots
of fascinating information about the history, physics and psychology of the subject. The 12
note per octave scale is the main scale of western music. Other cultures use scales that
contain 2 to 35 notes per octave.

Tuning Method: The keyboard in Figure 8-3 uses a method of tuning called equal
temgerament. The frequencies are determined using a reference note, then multiplying it by
22 for values of n = 1, 2, 3, etc. For example, you can take the frequency for A6, and
multiply by 2**? to get the frequency for A6#. Multiply it by 2%*? to get the frequency for
B6, and so on. Here is an example of calculating the frequency for B6 using A6 as a
reference frequency:

The frequency of A6 is 1760
201 = 1.1224
1760 X 1.224 = 1975.5

1975.5 is the frequency of B6

Programming Musical Notes

The FREQOUT command is also useful for musical notes. Programming the BASIC Stamp
to play music using a piezospeaker involves following a variety of rules used in playing
music using any other musical instrument. These rules apply to the same elements that
were used to make sound effects: frequency, duration, and pause. This next example
program plays some of the musical note frequencies on the piezospeaker, each with a
duration of half a second.

Frequency and Sound - Page 255

Example Program: DoReMiFaSolLaTiDo.bs2
v Enter and run DoReMiFaSolLaTiDo.bs2

' What's a Mcrocontroller - DoReM FaSol LaTi Do. bs2

Send an octave of half second notes using a piezoelectric speaker.
' {$STAMP BS2}
' {$PBASI C 2. 5}

PAUSE 1000

' Sol f ege Tone Not e
DEBUG "Do...", CR FREQQUT 9, 500, 1047 ' C6
DEBUG "Re...", CR FREQQOUT 9, 500, 1175 ' D6
DEBUG "M ...", CR FREQOUT 9, 500, 1319 ' E6
DEBUG "Fa...", CR FREQQOUT 9, 500, 1396 ' F6
DEBUG “Sol ..", CR FREQOUT 9, 500, 1568 e
DEBUG "La...", CR FREQQOUT 9, 500, 1760 ' A6
DEBUG "Ti...", CR FREQOUT 9, 500, 1976 ' B6
DEBUG "Do...", CR FREQQOUT 9, 500, 2093 ' Cr
END

Your Turn — Sharp/Flat Notes

v" Use the frequencies shown in Figure 8-3 to add the five sharp/flat notes to
DoReMiFaSolLaTiDo.bs2

v" Maodify your program so that it plays the next octave up. Hint: Save yourself
some typing and just use the * 2 operation after each Freql argument. For
example, FREQOUT 9, 500, 1175 * 2 will multiply D6 by 2 to give you D7,
the D note in the 7" octave.

Storing and Retrieving Sequences of Musical Notes

A good way of saving musical notes is to store them using the BASIC Stamp module's
EEPROM. Although you could use many WRI TE commands to do this, a better way isto
use the DATA directive. Thisisthe syntax for the DATA directive:

{Symbol} DATA {Word} Dataltem {, {Word} Dataltem, ... }

Page 256 - What's a Microcontroller?

Here is an example of how to use the DATA directive to store the characters that
correspond to musical notes.

Not es DATA "C',"C',"G',"G',"A","A","G

You can use the READ command to access these characters. The letter “C” is located at
address Not es + 0, and a second letter “C” islocated at Not es + 1. Then, there's aletter
“G” at Notes + 2, and so on. For example, if you want to load the last letter “G” into a
byte variable called not eLet t er , use the command:

READ Notes + 6, notelLetter

You can aso store lists of numbers using the DATA directive. Frequency and duration
values that the BASIC Stamp uses for musical notes need to be stored in word variables
because they are usually greater than 255. Here is how to do that with a DATA directive.

Frequenci es DATA Wrd 2093, Wrd 2093, Wrd 3136, Wrd 3136,
Word 3520, Word 3520, Word 3136

Because each of these values occupies two bytes, accessing them with the READ
command is different from accessing characters. The first 2093 is at Fr equenci es + 0,
but the second 2093 is located at Frequencies + 2. The first 3136 is located at
Frequenci es + 4, and the second 3136 is located at Fr equenci es + 6.

The values in the Frequenci es DATA directive correspond with the musical notes in
the Not es DATA directive.

Here is a FOR .. NEXT loop that places the Notes DATA into a variable named
not eLet t er, then it placesthe Fr equenci es DATA into avariable named not eFr eq.

FOR index = 0 to 6
READ Notes + index, noteletter
READ Frequencies + (index * 2), Wrd noteFreq
DEBUG noteLetter, " ", DEC noteFreq, CR

NEXT

Frequency and Sound - Page 257

What does the (index * 2) do?

Each value stored in the Frequenci es DATA directive takes a word (two bytes), while
—_ each character in the Not es DATA directive only takes one byte. The value of i ndex
(% | increases by one each time through the FOR. .. NEXT loop. That's fine for accessing the
\é/’ note characters using the command READ Not es + index, noteletter. The problem
is that for every one byte in Not es, the i ndex variable needs to point twice as far down the
Frequenci es list. The command READ Frequencies + (index * 2), Wrd
not eFr eq, takes care of this.

The next example program stores notes and durations using DATA, and it uses the
FREQOUT command to play each note frequency for a specific duration. The result is the
first few notes from the children’s song “Twinkle Twinkle Little Star.”

The “Alphabet Song” used by children to memorize their “ABCs” uses the same notes as
“Twinkle Twinkle Little Star.”

Example Program: TwinkleTwinkle.bs2

This example program demonstrates how to use the DATA directive to store lists and how
to use the READ command to access the valuesin thellists.

v Enter and run TwinkleTwinkle.bs2
v' Verify that the notes sound like the song “ Twinkle Twinkle Little Star.”
v' Usethe Debug Termina to verify that it works as expected.

What's a Mcrocontroller - Tw nkl eTwi nkl e. bs2
Play the first seven notes from Twi nkle Twinkle Little Star.

' {$STAVP BS2}
' {$PBASI C 2. 5}

Not es DATA "C',"C',"G "G, "A", "A" "G

Frequenci es DATA Word 2093, Word 2093, Wrd 3136, Wrd 3136,
Word 3520, Word 3520, Word 3136

Dur at i ons DATA Word 500, Word 500, Word 500, Word 500,
Word 500, Word 500, Werd 1000

i ndex VAR N b

notelLetter VAR Byt e

not eFr eq VAR Word

not eDur ati on VAR Wrd

Page 258 - What's a Microcontroller?

PAUSE 1000

DEBUG "Note Duration Frequency", CR
B T ", CR

FOR index = 0 TO 6

READ Notes + index, noteletter
DEBUG " ", notelLetter

READ Durations + (index * 2), Wrd noteDuration
DEBUG " ", DEC4 noteDuration

READ Frequencies + (index * 2), Wrd noteFreq
DEBUG " ", DEC4 noteFreq, CR

FREQQOUT 9, noteDuration, noteFreq
NEXT

END

Your Turn — Adding and Playing More Notes

This program played the first seven notes from Twinkle Twinkle Little Star. The words
go “Twin-kle twin-kle lit-tle star.” The next phrase from the song goes “How | won-der
what you are” and itsnotesare F, F, E, E, D, D, C. Aswith the first phrase, the last note
is held twice as long as the other notes. To add this phrase to the song from
TwinkleTwinkle.bs2, you will need to expand each DATA directive appropriately. Don’t
forget to change the FOR. . . NEXT loop so that it goes from 0 to 13 instead of from O to 6.

v" Modify TwinkleTwinkle.bs2 so that it plays the first two phrases of the song
instead of just the first phrase.

ACTIVITY #4: MICROCONTROLLER MUSIC

Note durations are not recorded on sheet music in terms of milliseconds. Instead, they
are described as whole, half, quarter, eight, sixteenth, and thirty-second notes. As the
name suggests, a half note lasts half as long as a whole note. A quarter note lasts one
fourth the time a whole note lasts, and so on. How long is a whole note? It depends on
the piece of music being played. One piece might be played at a tempo that causes a
whole note to last for four seconds, another piece might have a two second whole note,
and yet another might have some other duration.

Frequency and Sound - Page 259

Rests are the time between notes when no tones are played. Rest durations are also
measured as whole, half, quarter, eighth, sixteenth and thirty-second.

More about microcontroller music: After completing this activity, you will be ready to learn
how to write PBASIC musical code from sheet music. See the Playing Sheet Music with the
Piezospeaker tutorial and its accompanying video primer at www.parallax.com/go/WAM.

A Better System for Storing and Retrieving Music

You can write programs that store twice as much music in your BASIC Stamp by using
bytes instead of words in your DATA directives. You can also modify your program to
make the musical notes easier to read by using some of the more common musica
conventions for notes and durations. This activity will start by introducing how to store
musical information in a way that relates to the concepts of notes, durations, and rests.
Tempo is aso introduced, and it will be revisited in the next activity.

Here is one of the DATA directives that stores musical notes and durations for the next
example program. When played, it should resemble the song “Frere Jacques.” Only the
note characters are stored in the Not es DATA directive because LOOKUP and LOOKDOMWN
commands will be used to match up lettersto their corresponding frequencies.

Not es DATA NG D TR G TG D TE, O, T E T E
"G,"E","F","G","Q
Dur at i ons DATA 4, 4, 4, 4, 4, 4, 4, 4, 4, A4,
2, 4, 4, 2
Whol eNot e CON 2000

The first number in the Dur ati ons DATA directive tells the program how long the first
notein the Not es Dat a directive should last. The second duration is for the second note,
and so on. The durations are no longer in terms of milliseconds. Instead, they are much
smaller numbers that can be stored in bytes, so there is no Word prefix in the DATA
directive. Compared to storing values in terms of milliseconds, these numbers are more
closely related to sheet music.

Page 260 - What's a Microcontroller?

Hereisalist of what each duration means.

1-—whole note

2 —half note

4 — quarter note

8 —eighth note

16 — sixteenth note

32 —thirty-second note

After each value is read from the Durati ons DATA directive, it is divided into the
Wiol eNot e value to get the Duration used in the FREQOUT command. The amount of time
each note lasts depends on the tempo of the song. A faster tempo means each note lasts
for less time, while a slower tempo means each note lasts longer. Since al the note
durations are fractions of awhole note, you can use the duration of awhole note to set the

tempo.

What does the "Q' in Not es DATA mean? " Q' is for quit, and a DO UNTI L. .. LOOP
checks for " Q' each time through the loop and will repeat until it is found.

How do | play a rest? You can insert a rest between notes by inserting a " P". The Your
Turn section has the first few notes from Beethoven’s 5" Symphony, which has a rest in it.

How do | play sharp/flat notes? NotesAndDurations.bs2 has values in its lookup tables for
sharp/flat notes. When you use the lower-case version of the note, it will play the flat note.
For example, if you want to play B-flat, use “b” instead of “B”. Remember that this is the
same frequency as A-sharp.

Example Program: NotesAndDurations.bs2

v" Enter and run NotesAndDurations.bs2.
v" How doesit sound?

Frequency and Sound - Page 261

What's a Mcrocontroller - NotesAndDurations. bs2
Play the first few notes from Frere Jacques.

' {$STAVP BS2}
' {$PBASI C 2. 5}

DEBUG " Pr ogr am Runni ng! "

Not es DATA c',"p',"g","c,"c',"p","g","C","E","F",
"G UEFL UG Q
Dur at i ons DATA 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
2, 4, 4, 2

Wol eNot e CON 2000

i ndex VAR Byt e

of f set VAR Ni b

notelLetter VAR Byt e

not eFr eq VAR Wor d

not eDur ati on VAR Wor d

DO UNTIL notelLetter = "Q'

READ Notes + index, noteletter

LOOKDOWN not eLetter, ["A', "b*, "B", "C', "d",

"D, "e', "E', "F', "g",

"G, "a", "P', "Q], offset
LOOKUP of f set, [1760, 1865, 1976, 2093, 2217,

2349, 2489, 2637, 2794, 2960,

3136, 3322, 0, 0], noteFreq

READ Durations + index, noteDuration
not eDur ati on = Wol eNote / noteDuration
FREQOUT 9, noteDuration, noteFreq
index = index + 1

LOooP

END

Page 262 - What's a Microcontroller?

How NotesAndDurations.bs2 Works

The Not es and Dur at i ons DATA directives were discussed before the program. These
directives combined with the Wol eNot e constant are used to store all the musical data
used by the program.

The declarations for the five variables used in the program are shown below. Even
though a FOR . . NEXT loop is no longer used to access the data, there still has to be a
variable (i ndex) that keeps track of which DATA entry is being read in Notes and
Durations. The of fset variable is used in the LOOKDOAN and LOOKUP commands to
select a particular value. The not eLett er variable stores a character accessed by the
READ command. LOOKUP and LOOKDOWN commands are used to convert this character into
a frequency vaue. This value is stored in the not eFreq variable and used as the
FREQOUT command's Freql argument. The not eDur ati on variable is used in a READ
command to receive a value from the Dur at i ons DATA. It is also used to calculate the
Duration argument for the FREQOUT command.

i ndex VAR Byte
of f set VAR Ni b

not eLetter VAR Byte
not eFr eq VAR Word
not eDuration VAR Wrd

The main loop keeps executing until the letter “Q” isread from the Not es DATA.

DO UNTIL notelLetter = "Q'

A READ command gets a character from the Not es DATA, and storesitinthenot eLet t er

variable. Thenot eLett er variable isthen used in a LOOKDOWN command to set the value
of the of f set variable. Remember that of f set storesalif “b” isdetected, a2 if “B” is
detected, a 3 if “C” is detected, and so on. This of f set value is then used in a LOOKUP
command to figure out what the value of the not eFr eq variable should be. If of f set is
1, not eFreq will be 1865, if of fset is 2, noteFreq will be 1976, if of fset is 3,
not eFr eq is2093, and so on.

READ Not es + index, notelLetter

LOOKDOWN notelLetter, ["A", "b", "B", "C', "d",
o, e, CELOF, g
"G, "a", P, "Q], offset

Frequency and Sound - Page 263

LOOKUP of f set, [1760, 1865, 1976, 2093, 2217,
2349, 2489, 2637, 2794, 2960,
3136, 3322, 0, 0], noteFreq

The note’s frequency has been determined, but the duration still has to be figured out.
The READ command uses the value of i ndex to place a value from the Dur at i ons DATA
into not eDur at i on.

READ Dur ations + index, noteDuration

Then, notebDuration is set equal to the whol eNote constant divided by the
not eDur ati on. If noteDuration starts out as 4 from a READ command, it becomes
2000 + 4 =500. If not eDur ati on is8, it becomes 2000 + 8 = 250.

not eDurati on = Whol eNote / noteDuration

Now that not eDur at i on and not eFr eq are determined, the FREQOUT command plays the
note.

FREQOUT 9, noteDuration, noteFreq

Each time through the main loop, the i ndex value must be increased by one. When the
main loop gets back to the beginning, the first thing the program does is read the next
note, using thei ndex variable.

index = index + 1

LOoOoP

Your Turn — Experimenting with Tempo and a Different Tune

The length of time that each note lasts is related to the tempo. Y ou can change the tempo
by adjusting the Whol eNot e constant. If you increase it to 2250, the tempo will decrease,
and the song will play slower. If you decrease it to 1750, the tempo will increase and the
song will play more quickly.

v Save NotesAndDurations.bs2 under the name NotesAndDurationsY ourTurn.bs2.

v" Modify the tempo of NotesAndDurationsY ourTurn.bs2 by adjusting the value of
Whol eNot e. Try values of 1500, 1750, 2000, and 2250.

v" Re-run the program after each modification, and decide which one sounds best.

Page 264 - What's a Microcontroller?

Entering musical data is much easier when all you have to do is record notes and
durations. Here are the first eight notes from Beethoven's Fifth Symphony.

Not es DATA "G',"G',"G","e","P","F","F","F","
Durations DATA 8, 8, 8, 2, 8 8 8 8 2

Whol eNot e CON 2000

v Save your modified program as Beethoven’ sFifth.bs2.

v" Replace the Not es and Dur at i ons DATA directives and the Whol eNot e constant
declaration with the code above.

v" Runthe program. Does it sound familiar?

Adding Musical Features

The example program you just finished introduced notes, durations, and rests. It aso
used the duration of a whole note to determine tempo. Here are three more features we
can add to a music-playing program:

o Play “dotted” notes
e Determine the whole note duration from the tempo
e Play notes from more than one octave

The term dotted refers to a dot used in sheet music to indicate that a note should be
played 1 % times as long as its normal duration. For example, a dotted quarter note
should last for the duration of a quarter note, plus an eighth note. A dotted half note lasts
for a half plus a quarter note’s duration. Y ou can add a data table that stores whether or
not a note is dotted. In this example, a zero means there is no dot while a 1 means there
isadot:

Dot s DATA o, o o0 ©O0 O O 1, 0 0 O, O,
1

Music-playing programs typically express the tempo for a song in beats per minute. This
is the same as saying quarter notes per minute.

Beat sPer M n CON 200

Figure 8-4 is arepeat of Figure 8-3 from page 253. It shows the 6™ and 7" octaves on the
piano keyboard. These are the two octaves that sound the clearest when played by the

Frequency and Sound - Page 265

piezospeaker. Here is an example of a DATA directive you will use in the Your Turn
section to play notes from more than one octave using the Not es DATA directive.

Cct aves DATA 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6,

Figure 8-4: Rightmost Piano Keys and Their Frequencies

0o < o < N~ (o] o (o]

o Y o O o — [¢¢e] [N N

~ AN < © © AN < D M~

~ ~ ~ ~ ~ AN AN AN o« o™
[(e] <t [ce] (o] [se] o Lo (92 2] N~ M O O v (o]
< N~ ~— (@] (o] (o] N~ (@] <t o o o n o©
o — ™ ™ Yo N~ o] o ™ © N~ n o -
~— ~— ~— ~— ~— ~— ~— N N N N oo oo o <

coUOsHoOO
comes#F=o O
co@®OsFEOT
ToOX>SHOG
co WS Ho >
OCNOSHNO
OT~NMS#F~NO
TNI>SHND
o~NwWe HND>

C6|D6|E6|F6|G6|A6|B6|C7|D7|E7|F7|G7|A7|B7|C8

]

Example Program: MusicWithMoreFeatures.bs2

This example program plays the first few notes from “For He's a Jolly Good Fellow.”
All the notes come from the same (7") octave, but some of the notes are dotted. In the
Your Turn section, you will try an example that uses notes from more than one octave,
and dotted notes.

v Enter and run MusicWithMoreFeatures.bs2.

v" Count notes and see if you can hear the dotted (1 2 duration) notes.

v" Also listen for notes in octave 7. Try changing one of those notes to octave 6.
The change in the way the music soundsis pretty drastic.

Page 266 - What's a Microcontroller?

What's a Mcrocontroller - Misi cWthMreFeat ures. bs2

Pl ay the begi nning of For He's a Jolly Good Fell ow.
' {$STAMP BS2}
' {$PBASI C 2. 5}

DEBUG " Pr ogr am Runni ng! "

Not es DATA c',"e","e","e","D","E","F","E","E","D","D",
“p,"c,"D',"E","C,"Q
Cct aves DATA 7 7, 1, 7, 1, 7, 1, 7, 71, 71, 1,
7, 7, 7, 1, 7
Dur at i ons DATA 4, 2, 4, 4, 4, 4, 2, 2, 4, 2, 4,
4, 4, 4, 2, 2
Dot s DATA o, o o0 O O O 1, 0, O, 0, O
o, 0 0 1, O
Beat sPer M n CON 320
i ndex VAR Byt e
of f set VAR Ni b
notelLetter VAR Byt e
not eFr eq VAR Wor d
not eDur ati on VAR Wor d
not eCct ave VAR Ni b
not eDot VAR Bi t
whol eNot e VAR Wor d
whol eNot e = 60000 / BeatsPerMn * 4
DO UNTIL notelLetter = "Q'
READ Not es + index, noteletter
LOOKDOMW not eLetter, ["C', "d*, "D', "e", "E',
"R ngh "G, tat., A
npr. o wR, P, QY 1. offset
LOOKUP of f set, [4186, 4435, 4699, 4978, 5274,
5588, 5920, 6272, 6645, 7040,
7459, 7902, 0, 0], noteFreq

READ Cct aves + index, noteCctave
noteCctave = 8 - noteCctave
not eFreq = noteFreq / (DCD not eCct ave)

READ Dur ati ons + index, noteDuration
not eDur ati on = Whol eNote / noteDuration

READ Dots + index, noteDot
IF noteDot = 1 THEN noteDuration = noteDuration * 3 / 2

Frequency and Sound - Page 267

FREQQOUT 9, noteDuration, noteFreq
index = index + 1
LOOP

END

How MusicWithMoreFeatures.bs2 Works

Below isthe musical data for the entire song. For each note in the Not es DATA directive,
there is a corresponding entry in the Cct aves, Durati ons, and Dots DATA directives.
For example, the first note is a C note in the 7 octave; it's a quarter note and it's not
dotted. Here is another example: the second from the last note (not including “Q”) is an
E note, in the 7" octave. 1t's a half note, and it is dotted. Thereis also a Beat sPer M n
constant that sets the tempo for the song.

Not es DATA "c¢',"g',"Ee","Eg","D',"E","F","E","E","D","D",
"p,tCcL, DL tE, e, Q!

Cct aves DATA 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7

Dur ati ons DATA 4, 2, 4, 4, 4, 4, 2, 2, 4, 2, 4,
4, 4, 4, 2, 2

Dot s DATA o, o o0 O O O 1, O o0 o0, O,
o, 0 0 1, O

Beat sPerM n CON 320

In the previous example program, Wol eNot e was a constant. This time, it's a variable
that will hold the duration of a whole note in ms. After this value is calculated,
Wol eNot e will be used to determine all the other note durations, just like in the previous
program. Thei ndex, of f set, not eLet t er, and not eDur at i on variables are also used
in the same manner they were in the previous program. The not eFreq variable is
handled a little differently since now it has to be adjusted depending on the octave the
note is played in. The not eCct ave and not eDot variables have been added to handle
the octave and dot features.

whol eNot e VAR Wrd
i ndex VAR Byte
of f set VAR N b

not eLetter VAR Byte
not eFr eq VAR Word

Page 268 - What's a Microcontroller?

noteDuration VAR Word
not eCct ave VAR N b
not eDot VAR Bit

The whol eNot e variable is calculated using Beat sPer M n. The tempo of the song is
defined in beats per minute, and the program has to divide Beat sPer M n into 60000 ms,
then multiply by 4. Theresult isthe correct value for awhole note.

whol eNot e = 60000 / BeatsPerMn * 4

Math executes from left to right. In the calculation whol eNote = 60000 /
beat sPerM n * 4, the BASIC Stamp first calculates 60000 / beat sPer M n. Then, it
multiplies that result by 4.

Parentheses can be used to group operations. If you want to divide 4 into beatsPerMin
first, you can do this: whol eNot e = 60000 / (beatsPerMn * 4).

Thisisal the same as the previous program:
DO UNTIL notelLetter = "Q'

READ Not es + index, notelLetter

LOOKDOWN not eLetter, ["C', "d", D', "e", "E,
ELtgh, UG, A, A
"pb*, "B", "P', "Q], offset

Now that octaves are in the mix, the part of the code that figures out the note frequency
has changed. The LOOKUP command’ s table of values contains note frequencies from the
8" octave. These values can be divided by 1 if you want to play notes in the 8" octave,
by 2 if you want to play notes in the 7" octave, by 4 if you want to play notes in the 6™
octave and by 8 if you want to play notes in the 5" octave. The division happens next.
All this LOOKUP command does is place a note from the 8" octave into the not eFr eq
variable.

LOOKUP of f set, [4186, 4435, 4699, 4978, 5274,
5588, 5920, 6272, 6645, 7040,
7459, 7902, 0, 0], noteFreq

Here is how the not eFr eq variable is adjusted for the correct octave. First, the READ
command grabs the octave value stored in the Cct aves DATA. This could be a value
between 5 and 8.

Frequency and Sound - Page 269

READ Cct aves + index, noteCctave

Depending on the octave, we want to divide not eFr eq by either 1, 2, 4, or 8. That means
that the goal is really to divide by 2° = 1, 2* = 2, 22 = 4, or 2° = 8. The statement below
takes the value of not eCct ave, which could be a value between 5 and 8, and subtracts
that value from 8. If not eCct ave was 8, now it's 0. If not eCct ave was 7, now it's 1.
If not eCct ave was 6, now it's 2, and if not eQct ave was 5, now it's 3.

noteCctave = 8 - noteCctave

Now, not eCct ave isavalue that can be used as an exponent of 2, but how do you raise 2
to a power in PBASIC? One answer is to use the DCD operator. DCD0is1, DCD 1 is 2,
DCD 2 is 4, and DCD 3 is 8. Dividing not eFreq by DCD not eCct ave means you are
dividing by 1, 2, 4, or 8, which divides not eFr eq down by the correct value. The end
result is that not eFr eq is set to the correct octave. You will use the Debug Terminal in
the Your Turn section to take a closer look at how this works.

noteFreq = noteFreq / (DCD noteCctave)

How am | supposed to know to use the DCD operator? Keep learning and practicing.
Every time you see a new command, operator, or any other keyword used in an example,
look it up in the BASIC Stamp manual. Read about it, and try using it in a program of your
own design.

)

‘W’ Get in the habit of periodically reading the BASIC Stamp Manual and trying the short
example programs. That's the best way to get familiar with the various commands and
operators and how they work. By doing these things, you will develop a habit of always
adding to the list of programming tools you can use to solve problems.

The first two lines of code for determining the note duration are about the same as the
code from the previous example program. Now, however, any note could be dotted,
which means the duration might have to be multiplied by 1.5. A READ command is used
to access vaues stored in EEPROM by the Dots DATA directive. An | F... THEN
statement is used to multiply by 3 and divide by 2 whenever the value of the not eDot
variableis 1.

READ Dur ations + index, noteDuration
not eDurati on = Whol eNote / not eDuration

READ Dots + index, noteDot
I|F noteDot = 1 THEN noteDuration = noteDuration * 3/ 2

Page 270 - What's a Microcontroller?

Integer math The BASIC Stamp does not automatically process a number like 1.5. When
performing math, it only works with integers: ..., -5, -4, -3, -2, -1, 0, 1, 2, 3, ... The best
solution for multiplying by 1.5 is to multiply by 3/2. First, multiply by 3, and then divide by 2.

There are many ways to program the BASIC Stamp to handle fractional values. You can
program the BASIC Stamp to use integers to figure out the fractional portion of a number.
This is introduced in the Basic Analog and Digital Student Guide. There are also two
operators that make fractional values easier to work with, and they are: ** and */. These
are explained in detail in the Applied Sensors Student Guide and in the BASIC Stamp
Manual.

The remainder of this example program works the same way that it did in the previous
example program:

FREQOUT 9, noteDuration, noteFreq
index = index + 1

LooP

END

Your Turn — Playing a Tune with More than One Octave

MusicWithMoreFeatures.bs?2 made use of rests, but it stayed in one octave. The tune
“Take Me Out to the Ball Game” shown below plays most of its notes in the 6™ octave.
There are two notes in the 7" octave, and they make a big difference to the way it sounds.

v' Save acopy of the program as MusicWithMoreFeaturesY ourTurn.bs2.
v" Modify the program by replacing the four data directives and one constant
declaration with these:
Not es DATA "c',"C',"A","G',"E","G,"D',"P","C","C","A",
"G',"E',"G',"Q

Cct aves DATA , T, , 6, 6, 6, 6, 6, 6, 7, 6,

Durations DATA

Dot s DATA

coArNOOD
cCorA
RPONRMOO

:b

:b

N

N

:b

N

>

>

Beat sPer M n CON 240

v Run the program and verify that it sounds right.

Frequency and Sound - Page 271

Those two notes in the 7" octave are essential for maki ng the tune sound right. It's
interesting to hear what happens if those 7 values are changed to 6.

v' Try changing the two 7 values in the Cct aves DATA directive so that they are 6.
Keep in mind, thiswill make “ Take Me out to the Ball Game” sound weird.

v" Run the program, and listen to the effect of the wrong octaves on the song.

v' Changethe Cct aves DATA back to itsorigina state.

v" Run the program again and listen to see if it sounds correct again.

ACTIVITY #5: RINGTONES WITH RTTTL

Older cell phones used to play ringtones with a piezospeaker. Ringtones were
downloaded from the web to a computer, and then uploaded from the computer to the cell
phone's microcontroller. At the time, one of the most widely used ways of composing,
recording and posting ringtones was one that featured strings of text with characters that
describe each note in the song. Here is an example of how the first few notes from
“Beethoven’s 5™ |ook in one of these strings:

Beet hoven5: d=8, 0=7, b=125: g, g, g, 2d#, p,f,f,f, 2d

This format for storing musical data is called RTTTL, which stands for Ringing Tone
Text Transfer Language. The great thing about RTTTL files at the time was that they
were widely shared via the World Wide Web. Many sites had RTTTL files available for
free download. There were also free software programs that could be used to compose
and emulate these files as well as upload them to your cell phone. The RTTTL
specification is still published online. Appendix C summarizes how an RTTTL file stores
notes, durations, pauses, tempo, and dotted notes.

This activity introduces some PBASIC programming techniques that can be used to
recognize different elements of text. The ability to recognize different characters or
groups of characters and take action based on what those characters contain is extremely
useful. In fact, it's the key to converting an RTTTL format ringtone (like Beethoven5
above) into music. At the end of this activity, there is an application program that you
can useto play RTTTL format ringtones.

Selecting which Code Block to Execute on a Case by Case Basis

The SELECT. . . CASE statement is probably the best programming tool for recognizing
characters or values. Keep in mind that thisis one of the tools used to convert an RTTTL
ringtone into musical notes.

Page 272 - What's a Microcontroller?

In general, SELECT. . . CASE is used to:

e Select avariable or expression.
Evaluate that variable or expression on a case by case basis.

o Execute different blocks of code depending on which case that variable's value
fitsinto.

Hereisthe syntax for SELECT. . . CASE: SELECT expression
CASE condition(s)

statement(s)
{ CASE ELSE
statement(s) }
ENDSELECT

You can try the next two example programs to see how SELECT. .. CASE works.
SelectCaseWithValues.bs2 takes numeric values you enter into the Debug Terminal and
tells you the minimum variable size you will need to hold that value.
SelectCaseWithCharacters.bs2 tells you whether the character you entered into the Debug
Terminal is upper or lower case, adigit, or punctuation.

Remember to use the Transmit windowpane in the Debug Terminal to send the characters
you type to the BASIC Stamp. The Transmit and Receive windowpanes are shown in
Figure 8-5.

Windowpanes Figure 8-5
_ Sending Messages
Transmit — to the BASIC Stamp

Click the Transmit
) (upper) windowpane
Receive — and enter the value
or characters you
want to transmit to
the BASIC Stamp.

Example Program: SelectCaseWithValues.bs2

v' Enter and run SelectCaseWithValues.bs2.
v" In the Debug Terminal, make sure that the Echo Off checkbox is clear (no
checkmark).

Frequency and Sound - Page 273

v Click the Debug Terminal’s Transmit windowpane.
v Enter avalue between 0 and 65535, and press the Enter key.

What happens if you enter a number larger than 655357 If you enter the number 65536,
the BASIC Stamp will store the number 0. If you enter the number 65537, the BASIC
Stamp will store the number 1, and so on. When a number istoo large for the variable it
fitsinto, it is called overflow.

v Use Table 8-1 to verify that the example program makes the right decisions
about the size of the numbers you enter into the Debug Terminal.

Table 8-1: Variable Types and Values They Can Store
Variable type Range of Values

Bit Oto1l

Nib 0to 15

Byte 0 to 255

Word 0 to 65535

' What's a Mcrocontroller - Sel ectCaseWthVal ues. bs2
Enter a value and see the minimum vari able size required to hold it.

' {$STAWP BS2}
' {$PBASI C 2. 5}

val ue VAR Wor d
PAUSE 1000

DEBUG "Enter a value from', CR
"0 to 65535: "

DO
DEBUG N DEC val ue
SELECT val ue
CASE 0, 1
DEBUG "Bit", CR
PAUSE 100
CASE 2 TO 15

DEBUG "Ni b (Nibble)”, CR
PAUSE 200

Page 274 - What's a Microcontroller?

CASE 16 TO 255
DEBUG "Byte", CR
PAUSE 300
CASE 256 TO 65535
DEBUG "Word", CR
PAUSE 400
ENDSELECT
DEBUG CR, "Enter another value: "

LooP
How SelectCaseWithValues.bs2 Works
A word variable is declared to hold the values entered into the Debug Terminal.

val ue VAR Word

The DEBUG N command takes the number you enter and placesit into the val ue variable.

DEBUG N DEC val ue

The SELECT statement chooses the value variable as the one to evaluate cases for.

SELECT val ue

Thefirst caseis if the value variable equals either 0 or 1. If value equals either of those
numbers, the DEBUG and PAUSE commands that follow it are executed.

CASE 0, 1
DEBUG "BI T, CR
PAUSE 100

The second case isif value equals any number from 2 to 15. If it does equal any of those
numbers, the DEBUG and PAUSE commands below it are executed.

CASE 2 to 15

DEBUG "NIB (Nibble)", CR
PAUSE 200

When all the cases are done, the ENDSELECT keyword is used to complete the
SELECT. . CASE statement.

ENDSELECT

Frequency and Sound - Page 275

Example Program: SelectCaseWithCharacters.bs2

This example program evaluates each character you enter into the Debug Terminal’s
Transmit windowpane. It can recognize upper and lower case characters, digits, and
some punctuation. If you enter a character the program does not recognize, it will tell
you to try again (entering a different character).

Enter and run SelectCaseWithCharacters.bs2.

Make sure the Echo Off checkbox is clear (no checkmark).

Click the Debug Terminal’ s Transmit windowpane to place the cursor there.
Enter charactersinto the Transmit windowpane and observe the results.

ANANENEN

What's a Mcrocontroller - Sel ectCaseWthCharacters. bs2
Program that can identify some characters: case, digit, punctuation.

' {$STAVP BS2}
' {$PBASI C 2. 5}

charact er VAR Byt e
PAUSE 1000

DEBUG "Enter a character: ", CR
DO

DEBUG N char act er
SELECT char act er

CASE "A" TO "Z"
DEBUG CR, "Upper case", CR

CASE "a" TO "z"
DEBUG CR, "Lower case", CR

CASE "0" TO "9"
DEBUG CR, "Digit", CR

CASE "1™, "o, . v oo
DEBUG CR, "Punctuation", CR

CASE ELSE
DEBUG CR, "Character not known.", CR,
"Try a different one."

ENDSELECT

DEBUG CR, "Enter another character", CR
LOOP

Page 276 - What's a Microcontroller?

How SelectCaseWithCharacters.bs2 Works

When compared to SelectCaseWithVaues.bs?, this example program has a few
differences. First, the name of the val ue variable was changed to char act er, and its
size was changed from word to byte. Thisis because all characters in PBASIC are byte
size. The SELECT statement chooses the char act er variable for case-by-case evaluation.

SELECT char act er

The quotation marks are used to tell the BASIC Stamp Editor that you are referring to
characters. We can treat the following groups of characters and punctuation marks the
same way as a range of numbers, since the BASIC Stamp recognizes them by their ASCII
numeric equivalents—see the ASCII chart in the BASIC Stamp Editor Help.

SELECT char act er

CASE "A" TO "Z"
DEBUG CR, "Upper case", CR

CASE "a" TO "z"
DEBUG CR, "Lower case", CR

CASE "0" TO "9"
DEBUG CR, "Digit", CR

CASE "!", "o2", ".or,om)
DEBUG CR, "Punctuation", CR
Thereis also one different CASE statement that was not used in the previous example:

CASE ELSE
DEBUG CR, "Character not known.", CR,
"Try a different one."

This CASE statement tells the SELECT code block what to do if none of the other cases are
true. You can get this case to work by entering a character such as % or $.

Your Turn — Selecting Special Characters

v" Maodify the SELECT. . . CASE statement in SelectCaseWithCharacters.bs2 so that
it displays “Special character” when you enter one of these characters: @, #, $,
%1 W il &1 *1 (1)1_1 Or +'

Frequency and Sound - Page 277

RTTTL Ringtone Player Application Program

Below isthe RTTTL file that contains the musical information used in the next example
program. There are five more RTTTL_Fi | e DATA directives that you can try in the Y our
Turn section. This program plays a tune called “Reveille” which is the bugle cal played
at military camps first thing in the morning. You may have heard it in any number of
movies or television shows.

RTTTL_File DATA "Reveil | e: d=4, 0=7, b=140: 896, 8c, 16e, 16c, 896, 8e, ",
"8c, 16e, 16c¢, 896, 8¢, 8c, 16e€, 16¢, 8a6b, 8c, e, 8c, 896, ",
"8c, 16e, 16¢c, 896, 8e, 8c, 16e, 16c, 896, 8e, 8c, 16e, ",
"16c, 896, 8e, c, p, 8e, 8e, 8e, 8¢, g, 8¢, 8¢, 8e, 8¢, 8¢, 8¢, ",
"e, 8c, 8e, 8e, 8¢, 8¢, 8¢, g, 8¢, 8¢, 8¢, 8c, 896, 8g6,cC."

Example Program: MicroMusicWithRtttl.bs2

This application program is pretty long, and it's a good idea to download the latest
version from the www.parallax.com/go/WAM page. Downloading the program and
opening it with the BASIC Stamp Editor should save you a significant amount of time.
The dternative, of course, isto hand enter and debug four pages of code.

v' With the BASIC Stamp Editor, open your downloaded MicroMusicWithRtttl.bs2
file, or hand enter the example below very carefully.

v" Run the program, and verify that the piece is recognizable as the Reveille bugle
call.

v' Go to the Your Turn section and try some more tunes (RTTTL_Fi |l e DATA
directives).

' What's a Mcrocontroller - McroMiusicWthRtttl.bs2
Pl ay Nokia RTTTL format ringtones using DATA.

' {$STAMP BS2}
' {$PBASI C 2. 5}
DEBUG " Pr ogr am Runni ng! "

count er VAR Wor d ' General purpose counter.
char VAR Byt e ' Variable stores characters.
i ndex VAR Wor d ' Index for pointing at data.

Page 278 - What's a Microcontroller?

notelLetter VAR
not eFr eq VAR
not eCct ave VAR
duration VAR
t enpo VAR
defaul t _d VAR
default_o VAR
default_b VAR

RTTTL_Fil e DATA
Done DATA
Not es DATA
Cct ave8 DATA

Initialization]

counter = 0
GOSsuUB
GOSuUB
GOSuUB
GOSuUB
GOsuUB
GOsuUB

Fi ndEqual s
ProcessDurati on
Fi ndEqual s
ProcessCct ave
Fi ndEqual s

Get Tenpo

DO UNTIL char = "qg"
GOSUB ProcessDurati on
GOSUB ProcessNot e
GOSUB CheckFor Dot
GOSUB ProcessCct ave
GOSUB Pl ayNot e

LOOP

END

Byt e
Wor d !
Wor d !

Wor d
Wor d

Byt e
Byt e
Wrd

not e character.
note frequency.
not e octave.

St ores
Stores
St ores

note duration.
t enpo.

St ores
Stores

default duration.
default octave.
def aul t beat s/ m n.

St ores
St ores
St ores

"Revei |l | e: d=4, 0=7, b=140: 896, 8c, 16e, 16¢c, 896, 8e, ",
"8c, 16e, 16¢, 896, 8¢, 8c, 16e, 16¢, 8ab, 8c, e, 8c, 896, ",
"8c, 16e, 16¢, 896, 8e, 8c, 16e, 16c, 896, 8¢, 8c, 16e, ",

"16c¢, 896, 8¢, c, p, 8e, 8e, 8¢, 8¢, g, 8e, 8¢, 8¢, 8¢, 8¢, 8¢, "

"e, 8c, 8e, 8e, 8e, 8¢, 8e, g, 8¢, 8¢, 8¢, 8c, 896, 8g6,c. "

 q,
"p", "ar
"c", "H
et ",
" g
Wrd O, Wrd 3520,

Word 4186, Word 4435,
Word 5274, Wrd 5588,
Word 6645

" "b",
", "H
ngp "y
Word 3729, Word 3951,
Word 4699, Word 4978,
Word 5920, Word 6272,
Initialize counter.
Find first '=" in file.
Get default duration.
Find next '=".
CGet default octave.
Find last '=".

Get default tenpo.

Loop until 'q" in DATA
Get note duration.

CGet i ndex val ue of note.
If dot, 3/2 duration.
Cet oct ave.

Get freq, play note,
End of main | oop.

next .

End of program

[Subroutine - Find Equals Character]

Fi ndEqual s:

DO

READ RTTTL_File + counter
counter =

char
counter + 1

LOOP UNTIL char = "="

RETURN

[Subroutine -

Read Tenpo from RTTTL Header]
Each keyboard character has a uni que nunber called an ASCI
The characters 0, 1, 2,...9 have ASCI
You can al ways convert fromthe character

Frequency and Sound - Page 279

CGo through characters in
' RTTTL file | ooking for
v I ncrenment counter
‘=" is found, then

'

unt i
return.

val ue

val ues of 48, 49, 50,...57
representing a digit to

to its value by subtracting 48 fromthe variable storing the digit.
You can exanine this by conpari ng DEBUG DEC 49 and DEBUG 49

Get Tenpo:

def
DO

READ RTTTL_File + counter

ault_ b =0

char
F char = THEN

default _b = default_b / 10
counter = counter + 1

EXIT

ENDI F

default _b = default_b + char - 48
counter = counter + 1

default_b = default_b * 10

LOOP UNTIL char = ":"

RETURN

[Subroutine - Look up Cctave]

ProcessCct ave

READ RTTTL_File + counter, char
SELECT char
CASE "5" TO "8"
not eCct ave = char - "0O"
counter = counter + 1
CASE ELSE
not eCctave = default_o
ENDSELECT
| F default_o = 0 THEN
default_o = noteCctave
ENDI F

' Parse RTTTL file for Tenpo.
Convert characters to
digits by subtracting 48
fromeach character's ASCl
value. Iteratively nultiply
' each digit by 10 if there
is another digit, then add
the nost recent digit to
one's col um.

For example, the string

' "120" is (1 X 10 X 10)

' '+ (2 X10) + 0. The '1

' is converted first, then
mul tiplied by 10. The '2
is then converted/ added

0 is converted/ added, done

Cctave may or may not be
included in a given note
' because any note that is
pl ayed in the default

oct ave does not specify
the octave. |If a char

' from'5' to '8 then use
" it, else use default_o
Characters are converted
to digits by subtracting
' '0', which is the sanme as
' subtracting 48. The first
time this subroutine is
called, default o is O

Page 280 - What's a Microcontroller?

RETURN

B [Subroutine - Find | ndex of Note]

ProcessNot e:

READ RTTTL_File + counter
SELECT char
CASE " p"
index = 0
counter = counter + 1
CASE "a" TO "g"
FOR index = 1 TO 12
READ Notes + index, noteletter
I F noteLetter = char THEN EXI T
NEXT
counter = counter + 1

char

READ RTTTL_Fil e + counter, char
SELECT char
CASE "#"
index = index + 1
counter = counter + 1
ENDSELECT
ENDSELECT
RETURN

B [Subroutine - Determ ne Note Duration]

ProcessDur ati on

READ RTTTL_File + counter, char
SELECT char
CASE "1", "2", "3", "4", "8"
duration = char - 48
counter = counter + 1
READ RTTTL_File + counter
SELECT char
CASE "6", "2"

char

duration = duration * 10 + char

counter = counter + 1
ENDSELECT
CASE ELSE
duration = default_d
ENDSELECT

| F default_d <> 0 THEN

duration = 60000/ default_b/durati on*3

ELSE
default _d = duration
ENDI F

1

If 0, then set default_o.

Set index value for | ookup
of note frequency based on
note character. If 'p',
index is 0. If 'a to'qg',
read character values in
DATA table and find match
Record i ndex val ue when
match is found. |[|f next
char is a sharp (#), add

1 to the index value to

i ncrease the index (and
frequency) by 1 notch

As with other subroutines
increnent counter for each
character that is processed

Check to see if characters
form1, 2, 4, 8, 16 or 32
If yes, then convert from
ASClI | character to a val ue
by subtracting 48. In the
case of 16 or 32, multiply
by 10 and add the next
digit to the ones col um.

48

If no duration, use
use defaul t.

I f default_d not defined
(if default_d = 0), then
set default_d = to the
duration fromthe d=#.

Frequency and Sound - Page 281

RETURN
----- [Subroutine - Check For '.' Indicating 1.5 Duration J-------------
CheckFor Dot : ' Check for dot indicating
"'multiply duration by 3/2.
READ RTTTL_File + counter, char " If dot found, multiply by
SELECT char ' 3/2 and increnent counter,
CASE "." ' else, do nothing and
duration = duration * 3/ 2 ' return.
counter = counter + 1
ENDSELECT
RETURN

[Subroutine - Find Comma and Play Note/Duration]J-----------------

Pl ayNot e: ' Find last comm in the
' current note entry. Then,
READ RTTTL_File + counter, char ' fetch the note frequency
SELECT char ' fromdata, and play it, or
CASE ", " ' pause if frequency = 0.

counter = counter + 1
READ Cctave8 + (index * 2), Word noteFreq
not eCctave = 8 - noteCctave
not eFreq = noteFreq / (DCD noteCct ave)
IF noteFreq = 0 THEN
PAUSE dur ati on
ELSE
FREQOUT Speaker Pi n, duration, noteFreq
ENDI F

ENDSELECT

RETURN

How MicroMusicWithRtttl.bs2 Works

This example program is fun to use, and it shows the kind of code you will be able to
write with some practice. However, it was included in this text more for fun than for the
coding concepts it employs. If you examine the code briefly, you might notice that you
have aready used al of the commands and operators in the program, except one!

Page 282 - What's a Microcontroller?

Hereisalist of the elementsin this program that should, by now, be familiar:

Comments to help explain your code

Congtant and variable declarations

DATA declarations

READ commands

I F...ELSE...END F blocks

DO. . . LOOP both with and without WHI LE and UNTI L
Subroutines with GosUB, |abels, and RETURN

FOR. . . NEXT loops

LOOKUP and LOOKDOWN commands

The FREQOUT and PAUSE commands

The SELECT. . . CASE command

EXI T is new, but it simply allows the program to “exit” a loop before it is
finished, andisoftenusedin| F. . . THEN statements.

Your Turn — Different Tunes

v' Try replacing the RTTTL_Fi | e DATA directive in MicroMusicWithRTTTL.bs2
with each of the five different music files below.

Only one RTTTL_Fi | e DATA directive at a time! Make sure to replace, not add, your
new RTTTL_Fi | e DATA directive.

v Run MicroMusicWithRTTTL.bs2 to test each RTTTL file.

RTTTL_Fil e DATA "Twi nkl eTwi nkl e: d=4, 0=7, b
"f,e, e d,d 2c,9,0,f,f, e e
"g,0,a,a,29,f,f,e e dd 1

120:c,c,9,9,a,4a,2g,f,",
2d,9,9,f,f,e, e, 2d,c,c,",

n
)

RTTTL_File DATA "FrereJacques: d=4, 0=7, b=125:c, d, e, c,c,d, e, c, e, f",
", 29, e,f, 20, 8q, 8a, 8q, 8f, e, c, 8g, 8a, 8qg, 8f, e, c, c,g6",
",2c,c, g6, 2c"

RTTTL_File DATA " Beet hoven5: d=8, 0=7, b=125: g, g, g, 2d#, p, f, f, f, 2d"
RTTTL_File DATA "ForHe' sAJol | yGoodFel | ow. d=4, 0=7, b=320: c, 2e, e, e, "

"d, e, 2f., 2e,e,2d,d,d,c,d,2e., 2c,d, 2e,e, e, d,e,2f,",
"g,2a,a,9,0,9, 2f, d, 2c"

Frequency and Sound - Page 283

RTTTL_File DATA "TakeMeQut ToTheBal | gane: d=4, 0=7, b=225: 2c6, c, a6, ",
" g6, e6, 2g. 6, 2d6, p, 2c6, c, a6, g6, eb6, 2g. 6, g6, p, p, ab",
", g#6, a6, e6, f 6, g6, a6, p, f 6, 2d6, p, 2a6, a6, a6, b6, c, ",
"d, b6, a6, g6"

Downloading RTTTL Files: There are RTTTL files available for download from various
sites on the World Wide Web. These files are contributed by ring-tone enthusiasts, many of
whom are not music experts. Some phone tones are pretty good, others are barely
recognizable. If you want to download and play some more RTTTL files, make sure to
remove any spaces from between characters, then insert the text file between quotes.

SUMMARY

This chapter introduced techniques for making sounds and musical tones with the BASIC
Stamp and a piezoelectric speaker. The FREQOUT command can be used to send a
piezoelectric speaker high/low signals that cause it to make sound effects and/or musical
notes. The FREQOUT command has arguments that control the 1/0O Pin the signal is sent
to, the Duration of the tone, and the frequency of the tone (Freq1l). The optiona Freq2
argument can be used to play two tones at once.

Sound effects can be made by adjusting the frequency and duration of tones and the
pauses between them. The value of the frequency can aso be swept across a range of
valuesto create avariety of effects.

Making musical notes also depends on frequency, duration, and pauses. The value of the
FREQOUT command’s Duration argument is determined by the tempo of the song and the
duration of the note (whole, half, quarter, etc.). TheFreq1 value of the note is determined
by the note’s letter and octave. Rests between notes are used to set the duration of the
PAUSE command.

Playing simple songs using the BASIC Stamp can be done with a sequence of FREQOUT
commands, but there are better ways to store and retrieve musical data. DATA directives
along with their optional Ssymbol labels were used to store byte values using no prefix and
word values using the word prefix. The READ command was used to retrieve values
stored by DATA directives. In this chapter’'s examples, the READ command’s Location
argument always used the DATA directive' s optional Symbol label to differentiate between
different types of data. Some the Symbol labels that were used were Not es, Dur at i ons,
Dot s, and Cct aves.

Page 284 - What's a Microcontroller?

Musical data can be stored in formats that lend themselves to trandation from sheet
music. The sheet music style data can then be converted into frequencies using the
LOOKUP and LOOKDOAN commands. Mathematic operations can aso be performed on
variable values to change the octave of a note by dividing its frequency by a power of
two. Mathematic operations are also useful for note durations given either the tempo or
the duration of awhole note.

SELECT. . . CASE was introduced as a way of evaluating a variable on a case by case
basis. SELECT. .. CASE is particularly useful for examining characters or numbers when
there are many choices as to what the variable could be and many different sets of actions
that need to be taken based on the variable's value. A program that converts strings of
characters that describe musical tones for older cell phones (called RTTTL files) was
used to introduce a larger program that makes use of all the programming techniques
introduced in thistext. SELECT. . . CASE played a prominent role in this program because
it is used to examine characters selected in an RTTTL file on a case-by-case basis.

Questions
1. What causes a tone to sound high-pitched? What causes a tone to sound |ow-
pitched?
2. What does FREQQUT 15, 1000, 3000 do? What effect does each of the
numbers have?

3. How can you modify the FREQOUT command from Question 2 so that it sends
two frequencies at once?

4. If you strike apiano’s B6 key, what frequency does it send?

5. How do you modify a DATA directive or READ command if you want to store and
retrieve word values?

6. Can you have more than one DATA directive? If so, how would you tell a READ
command to get data from one or the other DATA directive?

7. If you know the frequency of a note in one octave, what do you have to do to
that frequency to play it in the next higher octave?

8. What does SELECT. . . CASE do?

Exercises

1. Modify the “Alarm...” tone from ActionTones.bs2 so that the frequency of the
toneit playsincreases by 500 each time the tone repeats.

2. Explain how to modify MusicWithMoreFeatures.bs2 so that it displays an aert
message in the Debug Terminal each time a dotted note is played.

Frequency and Sound - Page 285

Project

1. Build a pushbutton-controlled tone generator. If one pushbutton is pressed, the
speaker should make a 2 kHz beep for 1/5 of asecond. If the other pushbutton is
pressed the speaker should make a 3 kHz beep for 1/10 of a second.

Solutions

QL. Our ears detect changes in air pressure as tones. A high-pitched tone is from
faster changes in air pressure, a low pitched tone from slower changes in air
pressure.

Q2. FREQQUT 15, 1000, 3000 sends a 3000 Hz signa out P15 for one second
(1000 ms). The effect of each number: 15 — I/O pin P15; 1000 — duration of tone
equals 1000 ms or one second; 3000 — the frequency of the tone, in hertz, so this
sends a 3000 Hz tone.

Q8. Use the optional Freq2 argument. To play 3000 Hz and say, 2000 Hz, we simply
add the second frequency to the command, after acomma:

FREQOQUT 15, 1000, 3000, 2000

Q4. 1975.5 Hz, see Figure 8-3 on page 253.

Q5. Use the optional wr d modifier before each dataitem.

Q6. Yes. Each DATA directive can have a different optional Symbol parameter. To
specify which DATA directive to get the data from, include the Symbol parameter
after the READ keyword. For example: READ Notes, notelLetter. In this
example, Not es isthe Symbol parameter.

Q7. To get agiven note in the next higher octave, multiply the frequency by two.

Q8. SELECT. . . CASE selects a variable or expression, evaluates it on a case by case
basis, and executes different blocks of code depending on which case the
variable's value fitsinto.

Page 286 - What's a Microcontroller?

EL

E2.

P1.

This prablem can be solved either by manually increasing each tone by 500, or
by utilizing aFOR. . . NEXT loop with a STEP value of 500.
Utilizing FOR. . . NEXT loop: Manually increasing tone:
DEBUG "I ncreasing alarm..", CR DEBUG "Increasing Alarm..",CR
PAUSE 100 PAUSE 100
FOR frequency = 1500 TO 3000 STEP 500 FREQOUT 9, 500, 1500
FREQOUT 9, 500, frequency PAUSE 500
PAUSE 500 FREQOUT 9, 500, 2000
NEXT PAUSE 500
FREQOUT 9, 500, 2500
PAUSE 500
FREQOUT 9, 500, 3000
PAUSE 500

Modify the lines that check for the dotted note:
READ Dots + index, noteDot
IF noteDot = 1 THEN noteDuration = noteDuration * 3/ 2

Add a DEBUG command to the | F. . . THEN. Don't forget the ENDI F.

READ Dots + index, noteDot

IF noteDot = 1 THEN
noteDuration = noteDuration * 3/ 2
DEBUG "Dotted Note!", CR

ENDI F

Use the piezospeaker circuit from Figure 8-2 on page 246; pushbutton circuits
from Figure 4-26 on page 130.

What's a M crocontroller - Ch8Prj01 PushButtonToneGenerat or. bs2
' P4 Pressed: 2 kHz beep for 1/5 second. 2 kHz = 2000 Hz.
! 1/5 s = 1000 / 5 ms = 200 ns

P3 Pressed: 3 kHz beep for 1/10 second. 3 kHz = 3000 Hz.
' 1/10 s = 1000 / 10 ns = 100 ns
' {$STAMP BS2}
' {$PBASI C 2. 5}

DEBUG " Pr ogr am Runni ng! "

DO
IF (IN4 = 1) THEN
FREQOUT 9, 200, 2000 ' 2000 Hz for 200 ms
ELSEIF (IN3 = 1) THEN
FREQOUT 9, 100, 3000 ' 3000 Hz for 100 ns
ENDI F

LooP

Electronic Building Blocks - Page 287

Chapter 9: Electronic Building Blocks

THOSE LITTLE BLACK CHIPS

You need look no further than your BASIC Stamp (see Figure 9-1) to find examples of
“those little black chips.” Each of these chips has a specia function. The upper-right
chip is the voltage regulator. This chip takes the battery voltage and converts it to almost
exactly 5.0 V, which is what the rest of the components on the BASIC Stamp need to run
properly. The upper-left chip is the BASIC Stamp module's EEPROM. PBASIC
programs are condensed to numbers called tokens that are downloaded to the BASIC
Stamp. These tokens are stored in the EEPROM, and you can view them by clicking Run
and then Memory Map in the BASIC Stamp Editor. The largest chip is caled the
Interpreter chip. It is a microcontroller pre-programmed with the PBASIC Interpreter
that fetches the tokens from the EEPROM and then interprets the PBASIC command that
the token represents. Then, it executes the command, fetches the next token, and so on.
This processis called fetch and execute.

5V Regulator
converts input

2K EEPROM stores voltage to
PBASIC code and logged regulated 5
data volts
— «—

Figure 9-1
Integrated
Circuits on
the BASIC
Stamp 2

PBASIC Interpreter chip
(a pre-programmed
microcontroller)

N

Page 288 - What's a Microcontroller?

People use the term “integrated circuit” (IC) to talk about little black chips. The
integrated circuit is actually atiny silicon chip that’s contained inside the black plastic or
ceramic case. Depending on the chip, it may have anywhere between hundreds and
millions of transistors. A transistor is the basic building block for integrated circuits, and
you will have the opportunity to experiment with a transistor in this chapter. Other
familiar components that are designed into silicon chips include diodes, resistors and
capacitors.

Take a moment to think about the activities you've tried in this book so far. The list
includes switching LEDs on and off, reading pushbuttons, controlling servos, reading
potentiometers, measuring light, controlling displays, and making sounds. Even though
that's just the beginning, it's still pretty impressive, especially considering that you can
combine these activities to make more complex gadgets. The core of the system that
made all those activities possible is comprised of just the three integrated circuits shown
in Figure 9-1 and afew other parts. It just goes to show how powerful integrated circuits
can be when they are designed to work together.

EXPAND YOUR PROJECTS WITH PERIPHERAL INTEGRATED CIRCUITS

There are thousands of integrated circuits designed to be used with microcontrollers.
Sometimes different integrated circuit manufacturers make chips that perform the same
function. Sometimes each chip’s features differ dightly, and other times the chips are
almost identical but one might cost a little less than the other. Each one of the thousands
of different integrated circuits can be used as a building block for a variety of designs.
Companies publish information on how each of their integrated circuits work in
documents called datasheets and make them available on their web sites. These
manufacturers also publish application notes, which show how to use their integrated
circuit in unique or useful ways that make it easier to design products. The integrated
circuit manufacturers give away this information in hopes that engineers will use it to
build their chip onto the latest must-have toy or appliance. If thousands of toys are sold,
it means the company sells thousands of their integrated circuits.

In this chapter, you will experiment with a transistor, and a special-purpose integrated
circuit caled a digital potentiometer. As mentioned earlier, the transistor is the basic
building block for integrated circuits. It's also a basic building block for lots of other
circuits aswell. The digital potentiometer also has a variety of uses. Keep in mind that
for each activity you have done, there are probably hundreds of different ways that you
could use each of these integrated circuits.

Electronic Building Blocks - Page 289

ACTIVITY #1: CONTROL CURRENT FLOW WITH A TRANSISTOR

In this activity, you will use atransistor as away to control the current passing through an
LED. You can use the LED to monitor the current since it glows more brightly when
more current passes through it and less brightly when less current passes throughit.

Introducing the Transistor

Figure 9-2 shows the schematic symbol and part drawing of the 2N3904 transistor. There
are many different types of transistors. This one is called NPN, which refers to the type
of materials used to manufacture the transistor and the way those materials are layered on
the silicon. The best way to get started thinking about a transistor is to imagine it as a
valve that is used to control current. Different transistors control how much current
passes through by different means. This transistor controls how much current passes into
C (collector) and back out of E (emitter). It usesthe amount of current allowed into the B
(base) terminal to control the current passing from C through E. With a very small
amount of current allowed into B, a current flow of about 416 times that amount flows
through the transistor into C and out of E.

C
C B Figure 9-2
B 2N3904 Transistor
E 2N3904

E

The 2N3904 Part Datasheet: As mentioned earlier, semiconductor manufacturers publish
documents called datasheets for the parts they make. These datasheets contain
information engineers use to design the part into a product. To see an example of a part
datasheet for the 2N3904: Go to www.fairchildsemi.com. Enter “2N3904" into the Search
field on Fairchild Semiconductor's home page, and click Go. One of the search results
should be a link to the 2N3904 product information. Follow it and look for a Datasheet link.
Most web browsers display the datasheet by opening it with Adobe Acrobat Reader.

Page 290 - What's a Microcontroller?

Transistor Example Parts

(2) Transistor — 2N3904
(2) Resistors— 100 kQ (brown-black-yellow)

(1) LED —any color

(1) Potentiometer — 10 kQ

(3) Jumper wires

Building and Testing the Transistor Circuit

Figure 9-3 shows a circuit that you can use to manually control how much current the
transistor allows through the LED. By twisting the knob on the potentiometer, the circuit
will deliver different amounts of current to the transistor’ s base. Thiswill cause a change
in the amount of current the transistor alows to pass from its collector to its emitter. The
LED will give you aclear indication of the change by glowing more or less brightly.

v" Build the circuit shown in Figure 9-3.

0 Makesurethat the LED’s anode (longer) pin is connected to Vdd.
0 Double-check your transistor circuit. Note that the transistor’ sflat siceis

facing to the right in the wiring diagram.

v" Turn the knob on the potentiometer and verify that the LED changes brightness
in response to a change in the position of the potentiometer’ s wiper terminal.

POT
10 kQ

vdd

100 kO

V;s

Figure 9-3
Manual
Potentiometer-
Controlled
Transistor
Circuit

Electronic Building Blocks - Page 291

Your Turn — Switching the Transistor On/Off

If al you want to do is switch a transistor on and off, you can use the circuit shown in
Figure 9-4. When the BASIC Stamp sends a high signal to this circuit, it will make it so
that the transistor conducts as much current as if you adjusted the potentiometer for
maximum brightness. When the BASIC Stamp sends a low signal to this circuit, it will
cause the transistor to stop conducting current, and the LED should emit no light.

What's the difference between this and connecting an LED circuit to an I/O pin?
BASIC Stamp I/O pins have limitations on how much current they can deliver. Transistors
~~™. have limitations too, but they are much higher. In the Process Control Student Guide, a
(9) transistor is used to drive a small DC fan. It is also used to supply large amounts of current
‘@’ to a small resistor that is used as a heating element. Either of these two applications would
draw so much current that they would quickly damage the BASIC Stamp, but the transistor
takes it in stride.

Build the circuit shown in Figure 9-4.

Write a program that sends high and low signals to P8 twice every second.
HINT: LedOnOff.bs2 from Chapter 2 needs only to be modified to send
high/low signals to P8 instead of P14. Remember to save it under a new name
before making the modifications.

v Run the program and verify that it gives you on/off control of the LED.

NN

Figure 9-4
Circuit giving
BASIC Stamp
On/Off Control
of Current to
LED with a
Transistor

P8 D

100 kQ

Page 292 - What's a Microcontroller?

ACTIVITY #2: INTRODUCING THE DIGITAL POTENTIOMETER

In this activity, you will replace the manually adjusted potentiometer with an integrated
circuit potentiometer that is digitally adjusted. Y ou will then program the BASIC Stamp
to adjust the digital potentiometer, which will in turn adjust the LED’s brightness in the
same way the manual potentiometer did in the previous activity.

Introducing the Digital Potentiometer

Figure 9-5 shows a pin map of the digital potentiometer you will usein this activity. This
chip has 8 pins, four on each side that are spaced to make it easy to plug into a
breadboard (1/10 inch apart). The manufacturer places a reference notch on the plastic
case so that you can tell the difference between pin 1 and pin 5. The reference notch isa
small half-circle in the chip’s case. You can use this notch as a reference for the pin
numbers on the chip. The pin numbers on the chip count upwards, counterclockwise
from the reference notch.

Part Substitutions: It is sometimes necessary for Parallax to make a part substitution. The
part will function the same, but the label on it may be different. If you find that the digital
potentiometer included in your What's a Microcontroller Parts Kit is not labeled AD5220, rest
assured that it will still work the same way and perform correctly in this activity.

Reference
Notch
l Figure 9-5
AD5220 Pin Map

cLk ~ vdd
g _ 73 Use the reference notch to make
EY° °[1 sure you have the AD5220 right-side-
BIALWWELE up when building it into your circuit on
on t wify the breadboard.

AD5220

Electronic Building Blocks - Page 293

Here is a summary of each of the AD5220’ s pins and functions:

1

2.

CLK: The pin that receives clock pulses (low-high-low signals) to move the
wiper terminal.

U/D: The pin that receives a high signal to make the wiper (W1) terminal move
towards A1, and alow signal to make it move towards B1. This pin just sets the
direction, the wiper terminal doesn’t actually move until a pulse (alow — high —
low signal) is sent to the CLK pin.

A1: The potentiometer’s A terminal.

GND: The ground connection. The ground on the Board of Education and
BASIC Stamp HomeWork Board isthe Vssterminal.

W1: The potentiometer’s wiper (W) terminal.

B1: The potentiometer's B terminal.

CS: The chip select pin. Apply a high signal to this pin, and the chip ignores al
control signals sent to CLK and U/D. Apply alow signal to this pin, and it acts
on any control signalsit receives.

Vdd: Connect to +5 V, which is Vdd on the Board of Education and BASIC
Stamp HomeWork Board.

The AD5220 Part Datasheet: To see the part datasheet for the AD5220: Go to
www.analog.com. Enter “AD5220" into the Search field on Analog Devices’ home page, and
click the Search button. Click the Data Sheets link. Click the link that reads “AD5220:
Increment/Decrement Digital Potentiometer Datasheet”.

Digital Pot Controlled Transistor Parts

(1) Transistor — 2N3904

(2) Resistors — 100 kQ (brown-black-yellow)
(1) LED —any color

(1) Digital potentiometer — AD5220

(20) Jumper wires

Building the Digital Potentiometer Circuit

Figure 9-6 shows a circuit schematic with the digital potentiometer used in place of a
manual potentiometer, and Figure 9-7 shows a wiring diagram for the circuit. The
BASIC Stamp can control the digital potentiometer by issuing control signals to P5 and

P6.

v Build the circuit shown in Figure 9-6 and Figure 9-7.

Page 294 - What's a Microcontroller?

Vdd Vdd
Vdd
AD5220
P6 D CLK ~ vdd}5
5 = R Fi 9-6
P5 D [z|vP cs%: Y lgure 9-
Digital Potentiometer
Al B1
B i e Controlled Transistor
GND LWl s—— Circuit Schematic

|||—c
:
|||—

<
n
n
<
n
n

Figure 9-7
Wiring Diagram for
Figure 9-6

oooooooood
oooooooood

Programming Digital Potentiometer Control

Imagine that the knob on the manual potentiometer from the previous exercise has 128
positions. Imagine also that the potentiometer is in the middle of its range of motion.
That means you could rotate the knob one direction by 63 steps and the other direction by
64 steps.

Let’s say you turn the potentiometer’s knob one step clockwise. The LED will get only
dlightly brighter. This would be the same as sending a high signal to the AD5220's U/D
pin and sending one pulse (high-low-high) to the CLK pin.

HGH5
PULSQUT 6, 1

Electronic Building Blocks - Page 295

Imagine next that you turn your manual potentiometer 3 steps counterclockwise. The
LED will get alittle bit dimmer. This would be the same as sending a low signal to the
U/D pin on the AD5220 and sending three pulses to the CLK pin.

LOW 5

FOR counter =1 TO 3
PULSQUT 6, 1
PAUSE 1

NEXT

Imagine next that you turn the potentiometer all the way clockwise. That's the same as
sending a high signal to the AD5220's U/D pin and sending 65 pulses to the CLK pin.
Now the LED should be shining brightly.

H GH 5

FOR counter = 1 TO 65
PULSQUT 6, 1
PAUSE 1

NEXT

Finally, imagine that you turn your manual potentiometer all the way counterclockwise.
The LED should emit no light. That’s the same as sending a low signa to the U/D pin,
and applying 128 pulsesto the CLK pin

LOW 5

FOR counter = 0 TO 127
PULSQUT 6, 1
PAUSE 1

NEXT

Example Program: DigitalPotUpDown.bs2

This example program adjusts the potentiometer up and down, from one end of its range
to the other, causing the LED to get gradually brighter, then gradually dimmer.

v Enter and run DigitalPotUpDown.bs2.

Page 296 - What's a Microcontroller?

' What's a Mcrocontroller - Digital Pot UpDown. bs2
' Sweep digital pot through val ues.

' {$STAMP BS2}
' {$PBASI C 2. 5}

DEBUG " Pr ogr am Runni ng! "
count er VAR Byt e

DO
LOW 5

FOR counter = 0 TO 127
PULSQUT 6, 1
PAUSE 10

NEXT

H GH 5

FOR counter = 0 TO 127
PULSOQUT 6, 1
PAUSE 10
NEXT
LOOP

Your Turn — Changing the Rate and Condensing the Code

You can increase or decrease the rate at which the LED gets brighter and dimmer by
changing the PAUSE command’ s Duration argument.

v" Modify and re-run the program using PAUSE 20 and note the difference in the
rate that the LED gets brighter and dimmer.
v" Repeat for PAUSE 5.

You can aso use a command called TOGGLE to make this program simpler. TOGGLE
changes the state of a BASIC Stamp 1/0O pin. If the I/O pin was sending a high signal,
TOGGLE makes it send a low signal. If the 1/O pin was sending a low signal, TOGGLE
makes it send a high signal.

v' Save DigitalPotUpDown.bs2 as Digital PotUpDownWithToggle.bs2.

v" Maodify the program so that it looks like the one by that name shown below.

v" Run the program and verify that it functions the same way as the
DigitalPotUpDown.bs2.

v Compare the number of lines of code it took to do the samejob.

Electronic Building Blocks - Page 297

Running out of program memory is a problem some people encounter when their BASIC
Stamp projects get large and complicated. Using TOGGLE instead of two FOR. .. NEXT
loops is just one example of many techniques that can be used to do the same job with half

the code.

What's a Mcrocontroller -
' Sweep digital

{ $STAMP BS2}
{$PBASI C 2. 5}

DEBUG " Pr ogr am Runni ng! "

count er VAR

LOW 5

Byt e

DO
FOR counter = 0 TO 127
PULSQUT 6, 5
PAUSE 10
NEXT
TOGGELE 5
LOOP

Di gi t al Pot UpDownW t hToggl e. bs2

pot through val ues.

Looking Inside the Digital Potentiometer

Figure 9-8 shows a diagram of the potentiometer inside the AD5220. The AD5220 has
128 resistive elements, each of which is 78.125 Q (nominal value). All 128 of these add

up to 10,000 Q or 10 kQ.

3

Ad5220

CLK
UD

~NUIN

CSs

pos. 127

40Q pos. 125

pos. 1

pos. 0

Al
78 Q)

78 Q)

78 Q .
8 Figure 9-8

Inside the AD5220

78 Q)

78 Q)
B1

Page 298 - What's a Microcontroller?

A nominal value means a named value. Parts like resistors and capacitors typically have
a nominal value and a tolerance. Each of the AD5220’s resistive elements has a nominal
value of 78.125 Q, with a tolerance of 30% (23.438 Q) above or below the nominal value.

Between each of these resistive elementsis a switch, called atap. Each switch is actually
agroup of transistors that are switched on or off to let current pass or not pass. Only one
of these switches can be closed at one time. If one of the upper switches is closed (like
pos. 125, 126, or 127), it’s like having the manual potentiometer knob turned most or all
the way clockwise. If pos. 0 or 1isclosed, it’'s like having a manual potentiometer turned
most or all the way counterclockwise.

Imagine that Pos. 126 is closed. If you want to set the tap to 125, (open pos. 126 and
close pos. 125), set U/D low, then apply apulseto CLK. If you want to set the tap to Pos
127, set U/D high, and apply 2 pulses. If you want to bring the tap down to 1, set U/D
low, and apply 126 pulses.

This next example program uses the Debug Terminal to ask you which tap setting you
want. Then it decides whether to set the U/D pin high or low, and applies the correct
number of pulsesto move the tap from its old setting to the new setting.

With the exception of EEPROM Data, the next example program also has al the sections
you could normally expect to find in an application program:

o Title— comments that include the filename of a program, its description, and the
Stamp and PBASIC directives

e EEPROM Data — DATA declarations that store predefined lists of values in
portions of EEPROM memory that are not needed for program storage

e 1/O Definitions— PI N directives that name /O pins

e Constants — CON declarations that name values in the program

e Variables — VAR declarations that assign names to portions of BASIC Stamp’s
RAM memory for storing values

e [nitiadization — a routine that gets the program started on the right foot. In this
next program, the potentiometer’s tap needs to be brought down to zero

e Main—theroutine that handles the primary jobs the program has to do

e Subroutines — the segments of code that do specific jobs, either for each other, or
in this case, for the main routine

Electronic Building Blocks - Page 299

Example Program: TerminalControlledDigtialPot.bs2

You can use this example program and the Debug Terminal to set the digital pot’s tap.
By changing the tap setting on the digital pot, you change the brightness of the LED
connected to the transistor that the digital pot controls. Figure 9-9 shows an example of
entering the value 120 into the Debug Terminal’s Transmit windowpane while the
program is running. Since the old tap setting was 65, the LED becomes nearly twice as
bright when it is adjusted to 120.

Windowpanes Figure 9-9
_ Sending Messages
Transmit — to the BASIC Stamp

Click the Transmit
) (upper) windowpane
Receive — and enter the
numbers for the new
tap setting.

Enter and run Terminal ControlledDigtial Pot.bs2.

Make sure the Echo Off box is clear (no checkmark).

Click the Debug Terminal’ s Transmit windowpane to place the cursor there.
Enter values between 0 and 127 into the Debug Terminal. Make sure to press
the enter key after you typein the digits.

ANANENRN

- [Title J---cmommmmm s
' What's a Mcrocontroller - Terminal ControlledDigital Pot. bs2
Update digital pot's tap based on Debug Term nal user input.

' {$STAWP BS2}
' {$PBASI C 2.5}

UdPi n PI'N 5 ' Set values of 1/0 pins
Cl kPin PI'N 6 ' connected to CLK and U D.

Page 300 - What's a Microcontroller?

Del ayPul ses CON 10
Del ayReader CON 2000

count er VAR Byt e
ol dTapSetti ng VAR Byt e
newTapSetting VAR Byt e

B [Initialization J--------------------

0
0

ol dTapSetti ng
newTapSet ti ng

LOW UdPi n

FOR counter = 0 TO 127
PULSQUT 6, 5
PAUSE 1

NEXT

PAUSE 1000

- [Main Routine J----------------------

GOSUB Get _New _Tap_Setting
GOSUB Set _Ud_Pi n
GOSUB Pul se_Cl k_pin

LOoP

Get _New _Tap_Setti ng:

DEBUG CLS, "Tap setting is: ",
DEC newTapSetting, CR CR

Counter for FOR ..NEXT.
Previous tap setting.
New tap setting.

Initialize new and ol d
tap settings to zero.

Set U D pin for Down.
Set tap to | owest position.

Wait 1 s before 1st nessage

User display and get input.
Set U D pin for up/down.
Del i ver pul ses.

Di splay instructions and
get user input for new
tap setting val ue.

DEBUG "Enter new tap", CR, ‘"setting (0 TO 127): "

DEBUG N DEC newTapSetti ng
RETURN
Set _Ud_Pi n:

| F newTapSetting > ol dTapSetti ng THEN
HI GH UdPi n
ol dTapSetting = ol dTapSetting + 1
ELSElI F newTapSetting < ol dTapSetting THEN
LOW UdPi n
ol dTapSetting = ol dTapSetting - 1

Exami ne new and ol d tap val ues
to decide val ue of U D pin.
Notify user if values are
equal .

I ncrenent for Pulse_d k_pin.

Decrenent for Pul se_C k_pin.

ELSE
DEBUG CR, "New and old settings", CR
"are the same, try ", CR
"again...", CR
PAUSE Del ayReader
ENDI F
RETURN

Pul se_d k_pi n:

' Deliver pulses fromold to new val ues.

Electronic Building Blocks - Page 301

' Gve reader tine to view
' Message.

Keep in mnd that Set_Ud_Pin

' adjusted the value of ol dTapSetting toward newTapSetti ng by one.
' This keeps the FOR ..NEXT | oop from executing one too many tines.

FOR counter = ol dTapSetti ng TO newTapSetti ng

PULSOQUT O kPin, 1
PAUSE Del ayPul ses
NEXT
ol dTapSetti ng = newTapSetting

RETURN

Keep track of new and ol d
' tapSetting val ues.

Page 302 - What's a Microcontroller?

SUMMARY

This chapter introduced integrated circuits and how they can be used with the BASIC
Stamp. A transistor was used as a current valve, and a digital potentiometer was used to
control the amount of current passing through the transistor. Examining the digital
potentiometer introduced the reference notch and pin map as important elements of
electronic chips. The function of each of the digital potentiometer pins was discussed, as
well as the device' s interna structure. The PBASIC command TOGGLE was introduced as
ameans to save program memory.

Questions

1. What are the names of the terminals on the transistor you used in this chapter?

2. Whichtermina controls the current passing through the transistor?

3. What can you do to increase or decrease the current passing through the
transistor?

Exercise

1. Write a program that adjusts the tap in the digital pot to position O regardless of
its current setting.

Project - Advanced Challenge

1. Add a phototransistor to your project and cause the brightness of the LED to
adjust with the brightness seen by the phototransistor. Note: the solution given is
worth reading, as it demonstrates a useful approach to scaling an input to another
output.

Electronic Building Blocks - Page 303

Solutions

Q1. Emitter, base, and collector.

Q2. The base controls the current passing through the transistor.

Q3. Increase or decrease the current allowed into the transistor's base.

El. To solve this exercise, look at Terminal ControlledDigital Pot.bs2. The first thing

P1.

it does, in the Initialization section, is to set the tap to the lowest position. This
exact code is used in the solution below.

' What's a Mcrocontrol |l er - Ch9Ex01_Set TapToZer 0. bs2
' Turn tap on digital pot all the way down to zero

" {$STAWP BS2}

" {$PBASI C 2. 5}

DEBUG " Pr ogr am Runni ng! "

UdPi n PI'N 5 ' Set values of 1/0 pins
Cl kPin PI'N 6 ' connected to CLK and U D.
count er VAR Byt e ' Counter for FOR ..NEXT.
LOW UdPi n ' Set UD pin for Down.
FOR counter = 0 TO 128 ' Set tap to | owest position.
PULSOQUT C kPin, 5
PAUSE 1
NEXT
Usethe digital potentiometer circuit from Figure 9-6 on page 294 and the

phototransistor circuit from Figure 7-4 on page 200.

This solution builds on TerminalControlledDigitalPot.bs2, and incorporates
elements from PhototransistorAnalogToBinary.bs2 from Chapter 7, Activity #5.
It also applies some algebra to solve a scaling problem that makes the range of
values you could get from the phototransistor RCTI ME measurement fit into a
range of 0 to 128 for the digital potentiometer. Keep in mind that this is one
example solution, and by no means the only solution or approach.

The GOSUB Get_New Tap_Setting subroutine cal from the program
Terminal ControlledDigitalPot.bs2 is replaced by two other subroutine cals:
GOSUB Read_Phototransistor and GOSUB Scal e_Phot ot ransi st or.
Likewise, the Get_New Tap_Setting subroutine is replaced by
Read_Phot ot r ansi st or and Scal e_Phot ot ransi st or subroutines.
Read_Phot ot r ansi st or is a subroutine version of the commands that take the
phototransistor RCIME measurement and limit its input range in

Page 304 - What's a Microcontroller?

PhototransistorAnalogToBinary.bs2. The pin, constant and variable names have
been adjusted, and the PAUSE 100 for a 10-times-per-second display was
changed to PAUSE 1, which is all that's needed to charge the capacitor before
taking the RCTI ME measurement. After this subroutine stores a vaue in the
I i ght Readi ng variable, it will be somewhere between val M n (100) and
Val Max (4000). Make sure to test and adjust these values for your own lighting
conditions.

The problem we now have is that there are only 128 tap settings, and 3900
possible phototransistor RCTI ME measurements. To fix this, we need to divide
the phototransistor RCTI ME measurement by some value to make it fit into the O
to 127 range. So, we know we need to divide the range of input values by some
valueto make it fit into 128 values. It looks like thisin an equation:

Rangeof PossiblePhototransistor Measurements
ScaleDivisor

=128Poss bleTap Settings
To solve this, multiply both sides of the eguation by Scale Divisor, and then
divide both sides by 128 Possible Tap Settings.

Rangeof Possg blePhototransistor Measurements
128 PossibleTap Settings

ScaleDivisor =

In the code, the range of possible phototransistor measurements is val Max —
Val M n, scal eDi vi sor isavariable, and 128 is a constant. So, this code from
the Declarations and Initidization section figures out the vaue of
scal eDi vi sor likethis:

scal eDi visor = (val Max — valMn) / 128

After every phototransistor RCTI ME measurement, the Scal e_Phot ot r ansi st or
subroutine subtracts val M n from |ightReading and then divides the
measurement by scal eDi visor. The result maps the 100 to 4000 input
measurement range to a0 to 127 output tap setting range.

Scal e_Phot otransi stor:
lightReading = (lightReading — valMn) / scal eDi visor
RETURN

Electronic Building Blocks - Page 305

Assuming Val M n is 100 and Val Max is 4000, the | i ght Readi ng variable could
store 3900 possible values. What if the input range was val M n = 10, 000 to
Val Max = 13, 9007 When you subtract val M n = 10, 000, there are still 3900
possible values, and dividing scal eDi vi sor into it will correctly map the
measurement to the corresponding digital pot tap setting. If your code didn’t
first subtract val M n, the resulting scaled value would be completely out of the O
to 128 range for the digital pot.

' What's a Mcrocontroller - Ch9Prj01_Phot oControl | edD gital Pot. bs2
' Update digital pot's tap based on phototransistor reading

{ $STAWP BS2}

{$PBASI C 2. 5}

----- [Declarations and Initialization]-----------=----ccmmmmoooo

UdPi n PI'N 5 Set val ues of /0O pins

C kPin PI'N 6 ' connected to CLK and U D.
Phot oPi n PI'N 2 ' Phototransistor on pin P2
Del ayPul ses CON 10 ' Delay to observe LED fade.
Del ayReader CON 2000

val Max CON 4000 ' Max phototransi stor val
val M n CON 100 ' M n phototransistor val
count er VAR Byt e ' Counter for FOR .. NEXT.

ol dTapSetti ng VAR Byt e ' Previous tap setting.
newTapSetting VAR Byt e " New tap setting.

| i ght Readi ng VAR Wor d ' readi ng from phot ot ransi st or
scal eDi vi sor VAR Wor d ' For scaling val ues

' Set up a value that can be divided into the phototransistor RCTIME
measurenent to scale it to a range of 0 to 128

scal eDi vi sor = (val Max - valMn) / 128

ol dTapSetting = 0 " Initialize new and ol d

newTapSetting = 0 ' tap settings to zero.

LOW UdPi n ' Set UD pin for Down.

FOR counter = 0 TO 127 ' Set tap to | owest position.
PULSOQUT C kPin,5
PAUSE 1

NEXT

PAUSE 1000 ' 1 sec. before 1st nmessage

GOSUB Read_Phot ot r ansi st or
GOSUB Scal e_Phot ot r ansi st or

Page 306 - What's a Microcontroller?

newTapSetting = |ightReading MN 1 MAX 127
DEBUG HOVE, DEC5 |i ght Readi ng
GOSUB Set _Ud_Pi n ' Set UD pin for up/down.
GOSUB Pul se_Cl k_pin ' Deliver pulses.
LOOP
B [Subroutines J--------mmmm e
Set _Ud_Pi n: ' Exam ne old and new
| F newTapSetting > ol dTapSetti ng THEN ' tap val ues to decide
HI GH UdPi n
ELSEI F newTapSetting < ol dTapSetting THEN ' value of UdPin. Notify
LOW UdPi n ' user if values are
ENDI F ' equal .
RETURN
Pul se_d k_pi n: ' Deliver pulses
FOR counter = ol dTapSetting TO newTapSetting ' fromold to new
PULSQUT C kPin, 1 ' val ues.
PAUSE Del ayPul ses
NEXT
ol dTapSetti ng = newTapSetting ' Keep track of new and old
RETURN ' tapSetting val ues.

Read_Phot ot r ansi st or:
Hl GH Phot oPi n

PAUSE 1

RCTI ME PhotoPin, 1, |ightReading

|'i ght Readi ng = | i ght Readi ng MAX val Max M N val M n
RETURN

Scal e_Phot ot r ansi st or:
|'i ght Reading = (lightReading - valMn) / scal eDi vi sor
RETURN

Prototyping Your Own Inventions - Page 307

Chapter 10: Prototyping Your Own Inventions

This text introduced the basics of integrating an onboard computer into projects and
inventions. Common circuit ingredients in everyday products that you now have some
experience with include: indicator lights, buttons, servos, dials, digital displays, light
sensors, speakers, transistors, and other integrated circuits. You aso now have
experience connecting these circuits to the BASIC Stamp microcontroller and writing
code to test each of them as well asintegrate them into small applications.

At this point, you may be interested in using your new skills to invent something, or to
learn more, or maybe both. What you have learned in this book can get you well down
the road to making prototypes for a wide variety of inventions. In this chapter, we'll use
amicro alarm system as an exampl e prototype of afamiliar device. Along the way, we'll
cover some important prototyping techniques and habits, including:

Suggestions for early development of your design ideas and inventions

An example of how to build and test each sub-system in the prototype
Examples of how to incorporate test code into the project code

Good practices for code commenting and file versioning

Examples of using familiar parts as stand-ins for devices with similar interfaces
Tips and tricks for getting past design hurdles

Where to go next to find more Stamps in Class projects and interesting devices

APPLY WHAT YOU KNOW TO OTHER PARTS AND COMPONENTS

The pushbutton circuit from Chapter 3 is an example of a very simple input device that
converts a physical condition (whether or not someone has pressed a button) to a high or
low signal the BASIC Stamp can detect and process. Y ou have also used pushbuttonsin
applications that controlled light blinking, servo positions and speaker tones. There are
many sensors that detect a physical condition other than “contact” that also send high or
low signals a BASIC Stamp /O pin can monitor. A few examples include gas, motion,
and sound sensors, and there are many, many more. Since you now have experience
making the BASIC Stamp monitor a pushbutton circuit, monitoring a sound or motion
sensor isvery similar, and certainly areasonable next step.

Another technique from this book is measuring RC decay with the RCTI ME command to
sense potentiometer knob position and light levels with both a phototransistor and an
LED. These examples are just the tip of the iceberg in terms of sensors you can use with

Page 308 - What's a Microcontroller?

an RC decay circuit. Other examples include humidity, temperature, and pressure, and
that’s till just the beginning. The LED indicator light provides still another example
circuit that's representative of a variety of circuits with different functions. The LED
circuit is controlled by high/low BASIC Stamp 1/O pin output. With additional support
circuits, you can use high/low signals to run electric motors forwards and backwards, turn
lights on/off, turn heating elements on/off, and more.

Now, think about al the other devices you have experimented with in this book. Each of
them is just one example in a list of devices with similar interfaces that you can use to
prototype al manner of inventions.

PROTOTYPING A MICRO SECURITY SYSTEM

In this chapter, we'll use parts from the What's a Microcontroller kit to make a very
small security system prototype you could use in a desk, dresser, tool chest, or closet. It
could come in handy for those of you who suspect siblings or coworkers of borrowing
your stuff without asking. With this prototype, we'll also investigate other parts and
components you could substitute in your security system that operate on the same
principles as the familiar kit parts, but could give your system greatly enhanced
functionality. From there, we'll look at how to find, understand, test and incorporate
other parts that you may never have worked with before.

ACTIVITY #1: FROM IDEA TO PROOF OF CONCEPT

Many products start out as an idea, in some cases an invention that could be “really cool,”
and in other casesit’s something that solves a problem. Thisidea can be developed into a
concept with drawings and specifications, and some early design work. The next step is
typicaly to develop a working prototype. It might not be pretty, but it should reliably
demonstrate that a device can be made that works according to the concept and
specification. In companies that develop products, this proof of concept is typically
required to get management approval and funding to continue developing the product.

Idea, Concept, and Functional Description

Let's say you have a cabinet with a door on a hinge and a drawer, and it needs a very
small alarm system. Or maybe you want to design a specia cabinet with built-in
security. Figure 10-1 shows a sketch of how a potentiometer and electrical contact
similar to a pushbutton could be used to detect when either the door or drawer is open.
This sketch is similar to a concept diagram, which focuses only on conveying what the
product or invention does.

Prototyping Your Own Inventions - Page 309

Figure 10-1
Concept
Sketch of a
Cabinet Micro
Security
System

The functional description isimportant. When you have a better idea of what your device
is supposed to do at the beginning, it prevents problems that can happen if you have to
redesign the device to accommodate something you didn’t think about. Designers and
companies that create custom devices for customers have to be very careful to cross-
examine their customers to understand what they expect. Especidly for custom-
engineered devices, redesigns can be hugely expensive and time consuming.

Here is an example of a very brief functional description we can use for our simple
system: Develop a circuit and program prototype for a micro alarm system that can
monitor one small door that’s on a hinge and a drawer. If armed, an alarm should sound
if either door or drawer is opened. A status LED should glow green when the alarm is
not armed, and red when it is armed. A prototype may be armed and disarmed by
computer control. A time delay should be incorporated after the device has been armed
to allow the user to close the cabinet.

Page 310 - What's a Microcontroller?

Specification

Beyond the functional description, a specification typicaly accounts for as many aspects
of the proposed device as possible, including: cost, power consumption, voltage supply,
dimensions, weight, speaker volume, and many other details.

Initial Design

Often, the initial design involves brainstorming for approaches that “might” solve the
design problem, and many of these ideas have to be tested to find out if they really are
feasible. Other portions of the design might involve fairly standard or common parts and
design practices. Our micro alarm fits in this category, at least for the prototype. A
pushbutton could be mounted in the cabinet so that when the drawer is closed, it presses
the pushbutton. For the door on a hinge, a potentiometer could be attached so that it
twists with the door and can sense the door’s position. The bicolor LED is a familiar
indicator, and the piezospeaker is certainly awell-known alarm noise maker.

So, now we know the circuits we need for our micro security cabinet prototype: bicolor
LED, pushbutton, potentiometer, and piezospeaker. Here is a list of chapters and
activities where each of these circuits was introduced:

Bicolor LED: Chapter 2, Activity #5
Pushbutton: Chapter 3, Activity #2
Potentiometer: Chapter 5, Activity #3
Piezospeaker: Chapter 8, Activity #1

Cabinet Alarm Parts List:

Going back into each chapter and putting all the parts together resultsin this parts list:

(3) Resistors— 220 Q (red-red-brown) (1) Piezospeaker

(1) Resistors— 10 kQ (brown-black-orange) (1) Capacitor —0.01 pF
(1) LED —hbicolor (1) Potentiometer — 10 kQ
(1) Pushbutton — normally open (4) Jumper wires

Cabinet Alarm Schematic

The schematic in Figure 10-2 is arranged to give all the components plenty of space on
the breadboard, so not &l the I/O pin connections are the same as they were in earlier
chapters. You'll have to keep this in mind when you harvest code examples from the
earlier chaptersto test each of the circuits.

Prototyping Your Own Inventions - Page 311

Figure 10-2: Alarm System Prototype Schematic

P15 []
5 A LED -
¥ bicolor
2
P14 [MWV
220 Q
P11

P6

PO

ACTIVITY #2: BUILD AND TEST EACH CIRCUIT INDIVIDUALLY

Whenever possible, test each subsystem individualy before trying to make them work
together. If you follow this rule, your projects will go more smoothly, and it'll save alot
of troubleshooting time. For example, if al the circuits are built but not tested, people
have a natural tendency to spend too much time examining code and forget to check each
circuit. So, the most important time savings in this procedure is in making sure that there
are no circuit mistakes trying to trick you into thinking they are coding errors.

Page 312 - What's a Microcontroller?

Building and Testing Each Circuit

This activity demonstrates focusing on individual subsystems by building and testing
each circuit. Once the pushbutton circuit is built and tested, we'll build and test the
speaker circuit. After repeating this process with the potentiometer and bicolor LED, the
circuitswill al be “known good” and ready for some application code.

v

v
v
v

Find test code in Chapter 3, Activity #2 that you can adapt to testing the Figure
10-2 pushbutton circuit.
Change the I/O pin references so that it works with the circuit in Figure 10-2.
Test the code and correct any bugs or wiring errors before continuing.
Repeat this same process for:

0 Piezospeaker circuit from Chapter 8, Activity #1

o Potentiometer circuit from Chapter 5, Activity #3

0 Bicolor LED circuit from Chapter 2, Activity #5
Make sure to save each modified program under a new name, preferably in a
separate folder, maybe named “WAM Chapter 10.”

Your Turn — System Test

Now that all the circuits are tested and all the test programs saved on your PC, it'stime to
build up a system test that displays debug messages indicating which circuit is being
tested as it executes the test code. Thisisa useful exercise because typical alarm systems
have self-test and diagnostic modes that utilize al the features in one routine.

v

v

Combine elementsin your test programs into a single program that it:

o0 Starts by displaying the color of the bicolor LED in the Debug Terminal
asit updates the color...

0 Then displays a message that the piezospeaker is making sound while it
beeps...

o Findly enters a loop that repeatedly reports the pushbutton drawer
sensor and potentiometer hinged door sensor status in the Debug
Terminal.

Test for and fix any bugs before continuing.

Prototyping Your Own Inventions - Page 313

ACTIVITY #3: ORGANIZE CODING TASKS INTO SMALL PIECES

Just as each circuit should be built and tested before making them work together, each
feature of the code should also be developed and tested individually before incorporating
it into the larger application. MicroAlarmProto(Dev-009).bs2 is an example of a program
that’s on its way to a proof of concept. Its Debug Terminal user interface is mostly in
place, and the alarm system correctly cycles through its various modes or states,
including not armed, arming, armed, and triggered.

At this point, the Al arm Arni ng subroutine at the end of the program is still under
congtruction. It has code in place that triggers the alarm if the pushbutton is released,
which indicates that the drawer has been opened, but it does not yet monitor the hinged
door. Potentiometer code needs to be added to the Check_Sensors subroutine that
measures its position. If its position is beyond a certain threshold, 15 for example, the
st at e variable should be changed to Tri gger ed. Two additional tasks that remain are to
turn the bicolor LED green when the alarm is not armed, and red when it isarmed. These
remaining tasks are indicated by comments in the code that look like this:

To-do: bicolor LED green
.Tb.- do: bicolor LED red

To-do: Check if Potentioneter is over threshold
value. |If yes, then, trigger alarm

v" Hand-enter MicroAlarmProto(Dev-009).bs2 into the BASIC Stamp Editor
(recommended), or download it from www.parallax.com/go/WAM and open it
with the BASIC Stamp Editor.

v' Examine the program and note how each subroutine is modular, and does a
specificjob. Thisis part of organizing coding tasksinto small pieces.

v If you do not remember how to use the Debug Terminal’s Transmit and Receive
windowpanes, review Figure 9-9 on page 299.

v' Load MicroAlarmProto(Dev-009).bs2 into the BASIC Stamp and use the Debug
Terminal’s Transmit windowpane to type the character A to arm the alarm, and
D to disarm the alarm. The system does a brief countdown before arming the
alarm. Make sure to press and hold the pushbutton before the alarm arms.

v" While the alarm is armed, release the button. You will have a chance to disarm
the alarm after a few seconds of alarm tone.

v" Arm the dlarm again. Thistime, type “D” to disarm the alarm before releasing
the button.

Page 314 - What's a Microcontroller?

e I AR E |Eomea06e a6 0008 60 S0 S EE 56 566 EGE D8 58 65 S5 S5 85 E 555 EGE S8 58 65 855 5E

"What's a Mcrocontroller -
' Test cabi net al arm system

' {$STAMP BS2}
' {$PBASI C 2. 5}

M cr oAl ar nPr ot o(Dev- 009) . bs2

Target = BASIC Stanmp 2
Language = PBASIC 2.5

B [ConStants J------mmmmmm oo oo

Not Ar med CON O
Armi ng CON 1
Ar ned CON 3

Triggered CON 4

seconds VAR Word
count er VAR Byte
char VAR Byte
state VAR N b

————— [Variables J------c-ccmmmmmmmiiiiie e e e e -

Stores second count

For counting

Stores characters

Stores al arm system state

B [Initialization J-------mmmmm o e

PAUSE 1000
DEBUG " Program runni ng. . ."
state = Not Arned

SELECT state
CASE Not Ar ned

' To-do: bicolor LED green

GOSUB Pronpt _to_Arm
CASE Armi ng

GOSUB Al ar m Ar i ng
CASE Ar med

' To-do: bicolor LED red

GOSUB Check_Sensors

GOSUB Pronpt _to_Di sarm

CASE Tri ggered

GOSUB Al arm Tri gger ed

ENDSELECT
LOoP

Wait 1 second
Di spl ay runni ng message
Initialize alarmstate

Mai n | oop
Eval uate state case by case
If state = not arned

call Pronpt_to_Arm
If state = Arm ng

call Al arm Arm ng
If state = Arned

Cal | Check_Sensors

Call Pronpt_to_Disarm
If state = Triggered

Call Al arm Triggered
Done eval uati ng char
Repeat main | oop

=====[Subroutines]

Pronpt _to_Arm

DEBUG CLS, "Type Ato arni,

GOSUB Get _User _I nput
RETURN

----- [Subroutine - Pronpt_To Arm]

CR,

nsn

Di spl ay nmessage
Cal |l Get_User_I nput
Return from Pronpt _to Arm

[Subroutine - Pronpt_to_Disarm]

Pronpt _to_Di sarm
DEBUG CLS, "Type D to disarni, CR
GOSUB Get _User _I nput
RETURN

[Subroutine - AlarmArmng]-------

Al ar m_Armi ng:
DEBUG CLS, "d ose the cabinet.",

CR, "You have"

FOR seconds = 8 TO 0O

DEBUG CRSRX, 9, DEC seconds,

seconds left..."

PAUSE 1000
NEXT
state = Arnmed
RETURN

[Subroutine - AlarmArned]--------

Al ar m_Ar ned:

DO

GOSUB Pronpt _To_di sarm

GOSUB Check_Sensors
LOOP UNTIL state <> Arned
RETURN

[Subroutine - Al arm Triggered]

Al arm Tri gger ed:

DO

DEBUG CLS, "Alarmtriggered!!!"
FOR counter = 1 TO 15

FREQOUT 6, 100, 4500
PAUSE 100

NEXT
FOR seconds = 1 TO 6

IF state <> triggered THEN EXI T
GOSUB Pronpt _to_Di sarm

NEXT
LOOP UNTIL state <> triggered

[Subroutine - Get_User_Input]-----

Get _User _I nput :
char = 0

SERIN 16, 84, 500, Tinmeout Label,

GOSUB Process_Char
Ti neout _Label :
RETURN

[Subroutine - Process_Char]-------

Process_Char:
SELECT char
CASE "A", "a"

CLREQL,

[char]

Prototyping Your Own Inventions - Page 315

Di spl ay nessage
Call Get_User_I nput
Return from Pronpt _to_Di sarm

WArn user to secure cabi net

Count down seconds |eft
Di splay tinme remaining

Wait 1 second

Repeat count down

Set state variable to Arned
Return from Al arm Armi ng

Arnmed | oop

Check for user input

Check sensors

Repeat until state not arned
Return from Al arm Ar med

Alarmtriggered | oop
Di spl ay war ni ng
Sound 15 al arm t ones

3 sec. for user to disarm

Repeat until disarned

Cl ear char vari abl e

Wait 0.5 sec. for key press
I f key, call Process_Char
If no key, skip call

Return from Get_User _| nput

Eval uate char case by case
If "A" or "a"

Page 316 - What's a Microcontroller?

state = Arm ng ! Change state var to Arm ng
CASE "D', "d" ' Elseif "D or "d"

state = Not Ar nmed ! Change state var to Not Arned
CASE ELSE ' elseif pno"A", "a", "D, "d"

DEBUG "Wong character, try again" ! Di spl ay error message

PAUSE 2000 ! G ve user 2 sec. to read
ENDSELECT ' Done with evaluating char

RETURN ' Return from Process_Char

----- [Subroutine - Check_Sensors J]-----------------mmoom o
Check_Sensors:
To-do: Check if Potentiometer is over threshold val ue.
If yes, then, trigger alarm
IF INO = O THEN state = Triggered ' Btn rel eased? Trigger alarm
RETURN ' Return from Check_Sensors

New Coding Techniques in the Example Code

Take alook at the second FOR. . . NEXT loop inthe Al ar m Tri gger ed subroutine:

FOR seconds = 1 TO 6
IF state <> triggered THEN EXI T
GOSUB Pronpt _to_Di sarm

NEXT

If acall tothe Pronpt _to_Di sar msubroutine resultsin achange in the st at e variable,
the I F. .. THEN statement uses EXI T to get out of the FOR .. NEXT loop before the 6
repetitions are done.

Another new command called SERI N appearsin the Get _User _I| nput subroutine. DEBUG
and DEBUG N are special versions of the more general SEROUT and SERI N commands. To
see how this works, try replacing the command DEBUG " Program running..." with
SEROUT 16, 84, ["Program running..."]. Unlike the DEBUG and DEBUG N
commands, SEROUT and SERIN can communicate on any I/O pin, or pin 16 for
communication with the DEBUG terminal. They aso have special codes you can use to
select the baud rate that are described in the SERI N and SEROUT command's Baud Rate
tablesin the BASIC Stamp Manual.

Get _User _I nput:
char = 0
SERIN 16, 84, 500, Tinmeout_Label, [char]
GOSUB Process_Char
Ti meout _Label :
RETURN

Prototyping Your Own Inventions - Page 317

The Get _User _I nput subroutine starts by setting the char variable to 0 to clear any old
values char might be storing. Then, it executes the SERI N command, with its optional
Ti meout value set to 500 ms (half a second), and its optional ti meout label set to
Ti meout _Label , which is two lines below. If the SERIN command does receive a
character within 500 ms, it stores the result in the char variable and moves on to the next
line, which callsthe Process_Char subroutine. If it doesn't get a character in 500 ms, it
instead jumpsto Ti meout _Label , which causesit to skip over the subroutine call.

Your Turn — Next Steps Toward the Proof of Concept

It's time to get this program functioning as a proof of concept.

v Save a copy of MicroAlarmProto(Dev-009).bs2 as MicroAlarmProto(Dev-
010).bs2

v Use segments of your tested code from Activity #2 to complete the three “To-
do” items.

v' Test your modified code, and when you get it working right, save a copy of the
code as MicroAlarmProto(Dev-011).bs2

ACTIVITY #4: DOCUMENT YOUR CODE!

MicroAlarmProto(Dev-011).bs2 is not quite finished because it till needs some
documentation and other changes that make the program easier to modify and maintain.
For example, in the Al arm Tri ggered subroutine, the command FREQOUT 6, 100,

4500 has what some coders call “mystery numbers.” Mystery numbers are values that are
used in away the casual observer might not be able to easily discern. You could rewrite
this command as FREQOUT Speaker Pi n, BeepTi me, Al arnifone. Then, you can add a
Pin Directives section above the Constants section, and declare SpeakerPin PIN 6.
Also, in the Constants section, declare BeepTi ne CON 100, and Al ar niTone CON 4500.

Not every constant in a given program has to be named. Keep in mind that mystery
numbers are values that are used in away the casual observer might not be able to easily
discern. Another example fromthe Al ar m Tri gger ed subroutineis;

FOR seconds =1 TO6 ' 3 sec. for user to disarm

The numbers 1 and 6 are not mystery numbers because it's clear that they make the
FOR. .. NEXT loop repeat six times, and the comment to its right indicates that six
repetitions lasts for three seconds. Not al supervisors may agree with this interpretation,

Page 318 - What's a Microcontroller?

and some might heatedly proclaim that the 1 and the 6 really are mystery numbers. If
you end up coding at work and your boss is a stickler for naming all constants, it's
probably a good ideato just adhere to whatever coding style is required.

v" Go through MicroAlarmProto(Dev-011).bs2 and document mystery numbers by
declaring pin directives and constants, and substituting their names for numbers
in the program.

v" One exception to PI N directives is the SERI N command’s pin argument, which
should be declared as a constant and not a pin. Pin arguments are for 1/O pins
and range from PO to P15. The Pin argument 16 causes the SERI N command to
listen to the BASIC Stamp module' s SIN pin, which is connected to your board's
programming port.

Another area where MicroAlarmProto(Dev-011).bs2’'s documentation is still weak is in
the comments that explain each routine and subroutine. Each subroutine should have
comments that explain what it does, any variables it depends on to do its job, and any
variables that the subroutine uses to store results before its RETURN. Here is an example
of good documentation added to the beginning of the Pr ocess_Char subroutine.

Updates the state variable based on the contents of the
char variable. |f char contains "A" or "a", the Armed
constant gets stored in state. |If char contains "D' or "d"
t he Not Armed constant gets stored in state.

Process_Char:
... code omtted here
RETURN ' Return from..

v Update descriptions between the subroutine titles and their labels, and repeat for
the main routine as well.

v. When you are done, save a copy of your code with the name
MicroAlarmProof Of Concept(v1.0).bs2.

Save Copies and Increment Version Numbers after Each Small Change

Make sure to continue saving copies of your code with each small adjustment. This
makes it easy to take small steps backward to working code if your change(s) cause bugs.
For example, before your next modification, save the file as

Prototyping Your Own Inventions - Page 319

MicroAlarmProof Of Concept(v1.01).bs2, or maybe even v1.0la. When your next feature
is fully implemented, chose a reasonable revision step. If it'sasmaller revision, try v1.1;
if it'sabigrevision, up it to v2.0.

ACTIVITY #5: GIVE YOUR APP AMAZING NEW FUNCTIONALITY

As mentioned earlier, each circuit you have worked with in this text is realy an example
from a group of components and modules that the BASIC Stamp can interact with in the
same way. Figure 10-3 shows some part substitutions you could make to convert your
current mini-enclosure security system into one that will protect an object sitting out in
the open. This modified system can instead detect motions in the room, and also detect if
someone lifts up the object you want to protect:

e Pushbutton: high-low output — replace with PIR Motion Sensor
e Potentiometer: variable resistor — replace with FlexiForce Sensor

The PIR sensor detects changing patterns of passive infrared light in the surrounding
area, and sends a high signal to indicate that motion is detected, or a low signa to
indicate no motion. The FlexiForce sensor’s resistance varies with force applied to the
round dot on the end (such as an object sitting on it), so it can be measured in an RC
circuit with the RCTI ME command.

Figure 10-3: Sensors to Upgrade our Mini Alarm System

PIR Motion FlexiForce Sensor
Sensor

v' Go to www.parallax.com and type “motion detection” into the Search field, then
click the Go button.

Find the PIR Sensor in the search results and go to its product page.

Download PIR Sensor Documentation (.pdf), and optionally watch the PIR
Sensor video clip. The PDF will bein the page’ s Downloads section.

AN

Page 320 - What's a Microcontroller?

v Read the documentation’s explanations, schematic, and PIR_Simple.bs2
example code. Could you substitute this sensor for a pushbutton?

v' Go back to your search results (or back to the Parallax home page) and type
pressure into the Search field. Then, follow the FlexiForce sensor link.

Find and un-zip the FlexiForce Documentation and Source Code (.zip).

In the un-zipped folder, open and read the documentation, schematic, and
FlexiForce Simple.bs2 source code. Could you substitute this sensor for a
potentiometer?

AN

For a step-by-step example that demonstrates how the enhancements in both this
and the next activity can be incorporated into your Micro Alarm application, follow the
Stamps in Class “Mini Projects” link at: www.parallax.com/Education.

ACTIVITY #6 : HOW TO JUMP OVER DESIGN HURDLES

Now that you're just about done with What's a Microcontroller? one of the most
important next steps you can take is finding answers for tasks you don’t already know
how to solve with your microcontroller. Here are the general steps:

Step 1: Look for components or circuits that could solve your problem.

Step 2: Read about the component/circuit, and find out how it works. Pay
specia attention to how the BASIC Stamp would need to interact with
the component/circuit.

Step 3: Check to find out if example code is available for the circuit or
component. That'll make it a lot easier to incorporate into your
application.

Let's say that the next step in your project is to display the system’s status without the
computer connection. Here's an example of how you can find and evaluate a component
for your application.

v (Step 1) Go to www.parallax.com and try the term “display” in the Search field.
From the home page, you may need to click the Go button instead of just
pressing Enter. Go to the product pages of the various result items in the search
and see if you can find one that's relatively inexpensive and capable of
displaying a couple lines of text.

If you decided the Parallax Serial 2x16 LCD in Figure 10-4 is a good candidate, you're
on the right track. However, just about any of the displays are fair game.

Prototyping Your Own Inventions - Page 321

Figure 10-4
Parallax 2x16 Serial LCD

v (Step 2) Go to the Parallax Seria 2x16 LCD product page. If you haven't
already done so, read the product description. Then, find the link to the Parallax
Serial 2x16 LCD’s PDF Documentation. It'll be in the page’s Downloads &
Resources section, probably labeled “Parallax Serial 2x16 LCD Documentation
v2.0 (pdf).” The 2.0 version number might be higher by the time you try this.

v (Step 3) Check for example code in the Parallax Serial 2x16 LCD's PDF
documentation as well as links to code in the product web page’ s Downloads &
Resources section. Look for a nice, short, simple example program that displays
atest message because it usually provides a good starting point.

After the brief introduction to SERI N and SEROUT that followed this chapter’s example
program, example code for the Parallax Serial LCD, which relies on SEROUT, might look
rather familiar.

If you follow the Smart Sensors and Applications link, you can download the Smart
Sensors and Applications textbook, which has an entire chapter about controlling this
display with the BASIC Stamp 2.

Three Examples out of How Many?

The PIR and FlexiForce Sensors and the Paralax Serial LCD are three examples of
modules and components you can use to greatly increase your prototype's functionality.
These three are just adrop in the bucket compared to what’ s available.

Page 322 - What's a Microcontroller?

Figure 10-5 shows a few more modules and components, and it still represents just a
small sample. The examples in the figure are: (8) RF module for radio communication,
(b) gyro for detecting rotation speed, (c) compass for finding direction, (d) vibration
sensor, (€) accelerometer for detecting tilt and speed changes, (f) ultrasonic sensor for
detecting distance, (g) light intensity sensor, (h) servo controller, (i) DC motor controller,
()) Darlington array for driving stepper motor coils, and (k) stepper motor. You can find
any of these devices at www.parallax.com with a keyword search. For example, to find
out more about (), enter “ultrasonic sensor” into the Parallax home page's Search field
and then click the Go button.

Figure 10-5: More Module and Accessory Examples

Communication Sensors Motor Control
b e h
a J
c f
k
i
d g

Your Turn — Investigating More Resources

If you have a project in mind and need to find a circuit and code to support one of your
project’ s features, the search procedure just discussed provides a good starting point, but
it only finds product pages on www.parallax.com, and there are a number of design
guestions that product pages won't necessarily answer. Fortunately, there are lots more
resources, including:

Prototyping Your Own Inventions - Page 323

Stamps in Class PDF textbooks

Parallax PDF product documentation

Nuts and Volts of BASIC Stamps columns

Answersto questions and articles at forums.parallax.com
BASIC Stamp articles published on the Internet

When you are looking for components and information about how to use them with the
BASIC Stamp, it falls in the category of “application information.” When searching for
application information, it’s best to start with the manufacturer’s web site, then expand
the search to include forums, and if you still haven’t found a good solution, expand it
further to include the World Wide Web at large. Figure 10-6 shows an example of a
Google keywords search that will search for the terms “infrared” and “remote” in PDF
documents and product pages at www.parallax.com. The important part here is that the
Google searches PDF documents instead of just product pages. Make sure there are no
spacesin site:www.parallax.com.

Figure 10-6
Google Search of the site
www.parallax.com

You can modify the search to include questions and answers on the Parallax support
forums by changing the “www” to “forums” like this:

infrared remote site:forums.parallax.com

This searches for all questions, answers and short articles that contain the words
“infrared” and “remote” at forums.parallax.com. To find an application specific to the
BASIC Stamp, change your search to the terms below. Make sure the words BASIC
Stamp are in quotes because it will filter out postage stamp collecting results.

Here is a summary of the Google search sequences for “BASIC Stamp” infrared remote

v infrared remote site:www.parallax.com
0 Searches for the terms “infrared” and “remote” in PDF and product
pages at www.parallax.com

Page 324 - What's a Microcontroller?

v infrared remote site:fourms.parallax.com
0 Searches for the terms “infrared” and “remote” in discussions at
forums.parallax.com
v “BASIC Stamp” infrared remote
0 Searches the web at large for the words “infrared” and “remote” in the
same page or PDF with the phrase “BASIC Stamp.”

Let's say that the next step for your Micro Alarm project is a keypad, but the
documentation and examples you found with a simple product page search at
parallax.com turned out to be sparse and devoid of example circuits and code. Since
some more searching would be in order, let’s try a Google search of the Parallax site for
all referencesto keypad. Remember, the Google search includes PDF documents.

v Go to www.google.com.
v' Type “keypad sitewww.parallax.com” into the Search field and then press Enter.

The results may take some patience and persistence to sift through, and there may be
many pages of results. There's usually enough of an excerpt from each search result to
get some context for each link. Thiswill give some idea of which onesto skip and which
ones to look at more closely. After afew pages, you might find and follow a link to an
IR Remote Parts Kit, shown in Figure 10-7. This might not be a solution you were
expecting, but after examining the price, documentation, and example code, it might have
alot of potential for your enhanced micro security system keypad.

Figure 10-7: IR Remote Parts Kit

If after al that, you till haven't found the information you need, it's time to ask at
forums.parallax.com. When you post a question there, it will be seen by experts in a
variety of fields as well as by teachers, hobbyists, and students. The collective expertise
of the Parallax Forums should be able to help get you past just about any design hurdle!

Prototyping Your Own Inventions - Page 325

Processor Memory and Speed Design Hurdles

In some cases, programs for larger projects can grow long enough to exceed the BASIC
Stamp 2's program memory. This design hurdle can sometimes be jumped by rewriting
code that does more work with fewer commands. Another option is to upgrade to a
BASIC Stamp model with a larger program memory. In other cases, the project might
involve storing more variable values than the BASIC Stamp 2 can accommodate. There
are also BASIC Stamp 2 models that feature scratchpad RAM for variable values. Other
projects might need to do more tasks in less time than the BASIC Stamp 2 is designed to
take, so some models of BASIC Stamp 2 are designed with faster processing speeds.

Figure 10-8 shows all of the different BASIC Stamp models. For details about one,
follow the “ Compare BASIC Stamp Modules’ link at www.parallax.com/basi cstamp.

Figure 10-8: The Complete Lineup of BASIC Stamp Models

TR OENGD IR) TERRRES aciach

From left: BS1, BS2, BS2e, BS2sx, BS2p24, BS2p40, BS2pe, BS2px

BS1: Affordable yet capable, perfect for small projects or tight spaces.

BS2: Ideal for beginners with a vast resource base of sample code; the core of the
Stamps in Class program.

BS2e: Perfect for BS2 users who need more program and variable space.

BS2sx: Supports the BS2 command set with more variable and program space at more
than twice the execution speed.

BS2p24. In addition to more speed and variable space, specia commands support 1/0
polling, character LCDs and I°C and 1-wire protocols.

BS2p40: All the features of the BS2p24 with a bank of 16 additional 1/0 pins.

BS2pe: Supports the BS2p24 command set paired with lower power consumption and
more memory for battery-powered datalogging applications.

BS2px: The fastest BASIC Stamp model supports all BS2p24 commands, plus specia
I/0 configuration features.

Page 326 - What's a Microcontroller?

One thing to keep in mind if you upgrade to a faster model of BASIC Stamp is
differences in units for time-sensitive commands like RCTI ME and FREQOUT. Since
different models' processors run at different speeds, units for Duration and Frequency and
other arguments might be different. For example, the when the BS2 executes FREQOUT
6, 100, 4500, it sends a high pitched alarm tone to P6 for 100 ms (1/10th of a second)
at afrequency of 4500 Hz. The same command executed by the BS2px sends a tone that
only last 16.6 ms at a frequency of 27,135 Hz, which is so high-pitched that it’s not even
audible to human ears! For the complete descriptions of how each command works on
each model, and for tips on converting BS2 programs to perform correctly on other
models, see the BASIC Stamp Editor Help.

High-performance Parallel Processing

Some complex applications require processing agility and memory that’s well beyond the
BASIC Stamp 2 line's capabilities. These are the kind of projects that the Propeller
microcontroller is designed for. This uniquely capable microcontroller has eight much
higher speed processors in one chip, along with 32 1/0 pins and ample program memory
and RAM. The processors can al operate at the same time, both independently and co-
operatively, sharing access to global memory and a system clock. Each processor aso has
its own memory, and additional hardware to perform complex tasks like high-speed 1/O
pin state monitoring or generating signals for atelevision or computer display.

The Propeller Education Kit shown in Figure 10-9 is a good way to get started with the
Propeller microcontroller. This kit is not necessarily the best next step after What's a
Microcontroller? The next activity has some good recommendations for next book/kit
steps. However, when you notice that your projects are getting more ambitious and
challenging, remember the Propeller microcontroller and Propeller Education Kit.

Figure 10-9

Propeller Education Kit
(left)

PE Platform (right)

Prototyping Your Own Inventions - Page 327

ACTIVITY #7: WHAT'S NEXT?

Now that you are just about finished with What's a Microcontroller? it's time to think
about what to learn next. Before continuing, take a moment to consider what you’ re most
interested in. Some general categories you could delve further into include:

Robotics

Electronics

Sensors

Automation

Hobby projects

Earth sciences and climate measurement

This activity inventories resources you can use to move forward with each these
categories.

The resources, kits, and components discussed in this activity are current as of when
this chapter was written (Fall 2009). Newer and better versions of resources, kits, and
components may become available that replace the ones presented here. Make sure to
check www.parallax.com for the latest information.

What's a Microcontroller Sequels

Figure 10-10 shows the books and kits that make the best sequels to this book. Robotics
with the Boe-Bot is a lot of fun and a great |earning experience because you get to applg
many of the techniques from this book to robotics applications with the rolling Boe-Bot
robot. Smart Sensors and Applications was written to be “What's a Microcontroller, Part
2.” It was renamed because all the nifty sensors and the liquid crystal display shown in
the center of Figure 10-10 have coprocessors that communicate with the BASIC Stamp.
The coprocessors make them “smart” sensors. Understanding Sgnalsis great because it
alows you to “se€” interactions between the BASIC Stamp and circuits with a Parallax
oscilloscope that you plug into your computer’s USB port.

Page 328 - What's a Microcontroller?

Figure 10-10: Great Next Steps after What's a Microcontroller?

Smart Sensors Understanding
Boe-Bot Robot Kit and Applications Signals Parts
Parts and Text and Text

More Stamps in Class Kits and Textbooks

Figure 10-11 shows a flowchart that outlines all the Stamps in Class kits and textbooks
available at the time of thiswriting. It's accessible through the Stamps in Class Program
Overviews and Flowchart link at www.parallax.com/Education, and you can click each
picture to visit the product page for the book and its accompanying kit. What's a
Microcontroller? is at the top-left of the figure. From there, the flowchart indicates that
you can either jump to Roboatics with the Boe-Bot or any text/kit in the Sensors or Signals

series.

Full PDF Textbook Downloads: You can download the entire full-color PDF of each
Stamps in Class book at www.parallax.com. Click on any of the chart’s pictures to navigate
to the Text + Kit page, and you will find the PDF link in the page’s Downloads section.

Prototyping Your Own Inventions - Page 329

Figure 10-11

Stamps in Class
Flowchart

If the category you areinterested iniis:

¢ Robotics, then the next step is definitely Robotics with the Boe-Bot.

e Sensors, inventing, or hobby projects, then your next step would be Smart
Sensors and Applications.

e Electronics (signals), then your next step would be Understanding Sgnals.

e Automation, then your next step would be Process Control.

e Earth science and climate measurement, then your next step would be Applied
Sensors (originally named Earth Measurements).

Page 330 - What's a Microcontroller?

Additional Stamps In Class Resources

Above and beyond what’s in the Stamps in Class Textbooks, there are Stamps in Class
“Mini Projects’ linked at www.parallax.com/Education. Some projects utilize just the
stock parts from a given kit but demonstrate new ways to use them along with new
concepts. Many of these projects are like complete Stamps in Class textbook chapters
with activities, schematics, wiring diagrams, and complete code listings that can be
downloaded. Some even have accompanying video tutorias. Figure 10-12 is taken from
the video for the “Build Your Own Mini Timer” project, which can be done with just the
parts you have been using in this book. Whether you are looking for more information or
creative inspiration, you might find it here.

Figure 10-12: Example Stamps in Class “Mini Project”

Prototyping Your Own Inventions - Page 331

SUMMARY

This book introduced a variety of circuits and techniques, all of which are building blocks
in common products as well as in inventions. This book also introduced techniques for
orchestrating the various building blocks with the BASIC Stamp microcontroller. This
chapter demonstrated how to incorporate these techniques and building blocks into a
prototype, and it also recommended some next steps for learning more in your area of
interest.

The approach for making the BASIC Stamp interact with a given circuit can be applied to
avariety of other circuits and modules to accomplish an even wider range of tasks. Two
examples applied to the micro alarm prototype were: (1) a motion sensor with an
interface similar to the pushbutton and (2) a pressure sensor with an interface similar to
the potentiometer.

While developing code for your application, make sure to save your work frequently
under incremented revision names. Also, make sure to use meaningful names for 1/0
pins and numbers with PI N and CON directives. Finally, add lots of comments to your
code explaining what it does and how it does it. Subroutines should include comments
that explain what the subroutine does along with any variables with values it uses to do
itsjob aswell as variables that results are stored in when the subroutine is done.

This chapter also introduced a variety of research techniques for implementing featuresin
your prototype. Even if you start with no clue about how to make a particular feature
work, you can use search terms to find useful component, circuit, and code examples.
Stamps in Class textbooks and kits also feature a wealth of circuits and useful design
techniques, and they are a great place to learn more in the fields of robotics, sensors,
electronics, automation, earth science, and more. All the textbooks that come with
Stamps in Class kits are free downl oads.

Now that you have reached the end of this book, take a moment now to think about four
things: (1) the techniques you have learned, (2) your next invention, project or prototype,
(3) how what you have learned here can be applied to it, and (4) what you want to learn
next.

v" Now, it'stime to get started on your next project or prototype.
v' Make sure to keep studying and learning new techniques as you go.
v" Have fun, and good luck!

Page 332 - What's a Microcontroller?

Appendix A: Parts List and Kit Options - Page 333

Appendix A: Parts List and Kit Options

What’s a Microcontroller Parts & Text Kit #28152, Parts Only #28122
Parts and quantities subject to change without notice

Parallax Part # Description Quantity
150-01020 Resistor, 5%, 1/4W, 1 kQ 10
150-01030 Resistor, 5%, 1/4W, 10 kQ 4
150-01040 Resistor, 5%, 1/4W, 100 kQ 2
150-02020 Resistor, 5%, 1/4W, 2 kQ 2
150-02210 Resistor, 5%, 1/4W, 220 Q 6
150-04710 Resistor, 5%, 1/4W, 470 Q 6
152-01031 Potentiometer - 10 kQ 1
200-01031 Capacitor, 0.01 pF 2
200-01040 Capacitor, 0.1 pF 2
201-01080 Capacitor, 1000 pF 1
201-03080 Capacitor 3300 pF 1

28123 What's a Microcontroller? text (in #28152 only) 1
350-00001 LED - Green - T1 3/4 2
350-00005 LED - Bicolor - T1 3/4 1
350-00006 LED - Red - T1 3/4 2
350-00007 LED - Yellow - T1 3/4 2
350-00027 7-segment LED Display 1
350-00029 Phototransistor, 850 nm, T1 3/4 1
400-00002 Pushbutton — Normally Open 2
451-00303 3 Pin Header — Male/Male 1
500-00001 Transistor — 2N3904 1
604-00010 10 kQ digital potentiometer 1
800-00016 3" Jumper Wires — Bag of 10 2
900-00001 Piezo Speaker 1
900-00005 Parallax Standard Servo 1

Page 334 - What's a Microcontroller?

COMPLETE KIT OPTIONS

There are severa kit options available that include a BASIC Stamp 2 microcontroller
development board and al of the electronic components to complete the activities in this
text:

e BASIC Stamp Activity Kit (#90005) includes:
0o BASIC Stamp HomeWork Board with surface-mount BS2
0 USB to Serial Adapter with USB A to Mini-B Cable (#28031)
0 What'saMicrocontroller? Parts and Text (#28152)

e BASIC Stamp Discovery Kit (Serial #27207 or USB #27807) includes:
0 Board of Education (Serial #28150 or USB #28850)
0 BASIC Stamp 2 microcontroller module (#B8S2-1C)
0 Programming Cable (Serial #800-00003 or USB A to Mini-B
#805-00006)
0 What'saMicrocontroller? Parts and Text (#28152)
0 BASIC Stamp Manual (#27218)

e What'saMicrocontroller Parts & Text Kit (#28152). PLUS
e Board of Education Full Kit (Serial #28103 or USB #28803) includes:
0 Board of Education (Serial #28150 or USB #28850)
0 BASIC Stamp 2 microcontroller module (#B8S2-1C)
0 Programming cable (Serial #800-00003 or USB A to Mini-B
#805-00006)
0 Jumper Wires (1 pack of 10)

A noteto Educators: Quantity discounts are available for all of the kits listed above; see
each kit's product page at www.parallax.com for details. In addition, the BASIC Stamp
HomeWork Board is available separately in packs of 10 as an economical solution for
classroom use, costing significantly less than the Board of Education + BASIC Stamp 2
module (#28158). Please contact the Parallax Sales Team toll free at (888) 512-1024 for
higher quantity pricing.

Appendix B: More about Electricity - Page 335

Appendix B: More about Electricity

What’s an electron? An electron is one of the three fundamental parts of an atom; the
other two are the proton and the neutron. One or more protons and neutrons stick together
in the center of the molecule in an area called the nucleus. Electrons are very small in
comparison to protons and neutrons, and they orbit around the nucleus. Electrons repel
each other, and electrons and protons attract to each other.

What's charge? The tendency of an electron to repel from another electron and attract to a
nearby proton is called negative charge. The tendency for a proton to repel from another
proton and attract an electron is called positive charge. When a molecule has more
electrons than protons, it is said to be negatively charged. If a molecule has fewer electrons
than protons, it is said to be positively charged. If a molecule has the same number of
protons and electrons, it is called neutrally charged.

What's voltage? Voltage is like electrical pressure. When a negatively charged molecule is
near a positively charged molecule, the extra electron on the negatively charged molecule
tries to get from the negatively charged molecule to the positively charged molecule.
Batteries keep a compound with negatively charged molecules separated from a compound
with positively charged molecules. Each of these compounds is connected to one of the
battery’s terminals; the positively charged compound is connected to the positive (+)
terminal, and the negative compound is connected to the negative (-) terminal.

The volt is a measurement of electrical pressure, and it's abbreviated with a capital V. You
may already be familiar with the nine volt (9 V) battery used to supply power to the Board of
Education or HomeWork Board. Other common batteries include the 12 V batteries found in
cars and the 1.5 V AA batteries used in calculators, handheld games, and other devices.

What's current? Current is a measure of the number of electrons per second passing
through a circuit. Sometimes the molecules bond in a chemical reaction that creates a
compound (that is neutrally charged). Other times, the electron leaves the negatively
charged molecule and joins the positively charged molecule by passing though a circuit like
the one you just built and tested. The letter most commonly used to refer to current in
schematics and books is capital “I.”

What's an amp? An amp (short for ampere) is the basic unit of current, and the notation for
the amp is the capital “A.” Compared to the circuits you are using with the BASIC Stamp, an
amp is a very large amount of current. It's a convenient value for describing the amount of
current that a car battery supplies to headlights, the fan that cool a car's engine, and other
high power devices. Milliamp (mA) and microamp (uA) measurements are more convenient
for discussing the BASIC Stamp module’s supply current as well as currents between 1/0
pins and circuits. 1 mA = 1/1,000 A, and 1 yA = 1/1,000,000 A.

What's resistance? Resistance is the tendency of an element in a circuit to resist the flow
of electrons (the current) from a battery’s negative terminal to its positive terminal.

The ohm is the basic measurement of resistance. It has already been introduced and it's
abbreviated with the Greek letter omega ().

What's a conductor? Copper wire has almost no resistance, and it's called a conductor.

Page 336 - What's a Microcontroller?

BONUS ACTIVITY: OHM’S LAW, VOLTAGE, AND CURRENT
This activity applies some of the definitions just discussed.

Ohm’s Law Parts

(1) Resistor — 220 Q (red-red-brown)

(1) Resistor — 470 Q (yellow-violet-brown)
(1) Resistor —1 kQ (brown-black-red)
(1) Resistor —2kQ (red-black-red)

(1) LED —any color

Test Circuit

The resistance value of R; in Figure B-1 can be changed. Lower resistance allows more
current through the LED, and it glows more brightly. Higher resistance values will cause
the LED to look dim because they do not allow as much current to pass through the

circuit.

v

AN

<
n
n

Disconnect power from your Board of Education or HomeWork Board whenever
you modify the circuit.

Build the circuit shown in Figure B-1 starting with a 220 Q resistor.

Modify the circuit by replacing the 220 Q resistor with a 470 Q resistor. Was
the LED less bright?

Repeat using the 1 kQ resistor, then the 2 kQ resistor, checking the change in
brightness each time.

R, R, R, R, _;]]E' oo
Pl ooooo
rof| 00000 ooooo
R, r | OOCOO ooooo Figure B-1
poff| OOCOO ooooo .
PO ooooo oooog LED Current Monitor
s ooooo ooooo
R,=220Q b7 ooooo ooooo
LED _ aooooo ooooo
R,=470Q ro M| 0oooo| (ooooo
R, =1kQ o ooooo ooooo
R =2 kO b3 ooooo ooooo
4 i ooooo ooooo
- ooooo| _jooooo
b0 ooooo ooooo
o 0oooo ooooo

Appendix B: More about Electricity - Page 337

If you are using a9 V battery, you can a'so compare the brightness of a different voltage
source, Vin. Vin is connected directly to the 9 V battery’s + terminal, and Vss is
connected directly to the battery’s negative terminal. On our system, Vdd is regulated
5V. That'sabout half the voltage of the 9V battery.

\

If you are not using a 9 V battery, stop here and skip to the Calculating the

Current section below. Otherwise, continue.

ANANENRN

AN

Start with the circuit shown in Figure B-1, but use a1 kQ resistor.

Make a note of how bright the LED is.

Disconnect power.

Modify the circuit by disconnecting the resistor lead from Vdd and plugging it
into Vin.

When you plug the power back in, isthe LED brighter? How much brighter?

DO NOT try the Vin experiment with a 220 or 470 Q resistor, it will supply the LED with
more current than it is rated for.

Calculating the Current

The BASIC Stamp Manual has some rules about how much current 1/O pins can supply
to circuits. If you don’t follow these rules, you may end up damaging your BASIC
Stamp. The rules have to do with how much current an 1/0O pin is allowed to deliver and
how much current a group of 1/O pinsis allowed to deliver.

Current Rules for BASIC Stamp 1/O Pins

An 1/O pin can “source” up to 20 mA. In other words, if you send a HI GH signal to
an I/O pin, it should not supply the LED circuit with more than 20 mA.

If you rewire the LED circuit so that the BASIC Stamp makes the LED turn on
when you send the LOWcommand, an I/O pin can “sink” up to 25 mA.

PO through P7 can only source up to 40 mA. Likewise with P8 through P15.
40 mA is also the I/O supply current budget for the BASIC Stamp 2 module’s 5 V
regulator, so the total current draw for all I/O pins should never exceed 40 mA. If
you have lots of LED circuits, you will need larger resistors so that the circuits
don’t draw too much current.

For more information, consult the BASIC Stamp 2 Pin Descriptions table in the
BASIC Stamp Manual.

Page 338 - What's a Microcontroller?

If you know how to cal culate how much current your circuit will use, then you can decide
if it's OK to make your LEDs glow that brightly. Every component has rules for what it
does with voltage, resistance, and current. For the light emitting diode, the rule is avalue
called the diode forward voltage. For the resistor, the rule is called Ohm’'s Law. There
are also rules for how current and voltage add up in circuits. These are called Kirchhoff's
Voltage and Current Laws.

Vdd - Vss = 5 V The voltage (electrical pressure) from Vdd to Vss is 5 V. This is called
regulated voltage, and it works about the same as a battery that supplies exactly 5 V.
(Batteries are not typically 5 V, though four 1.2 V rechargeable nickel-cadmium batteries in
series can add up to 4.8 V.) The Board of Education and BASIC Stamp HomeWork Board
both have 5 V regulators that convert the 6 to 9 V battery supply voltage to regulated 5 V for
the Vdd sockets above the breadboard. The BASIC Stamp also has a built-in voltage
regulator that converts the 6 to 9 V input to 5 V for its components.

Vin —Vss =9 V If you are using 9 V battery, the voltage from Vin to Vss is 9 V. Be careful.
If you are using a voltage regulator that plugs into the wall, even if it says 9 V, it could go as
high as 18 V.

Ground and/or reference refer to the negative terminal of a circuit. When it comes to the
BASIC Stamp and Board of Education, Vss is considered the ground reference. It is zero
volts, and if you are using a 9 V battery, it is that battery’s negative terminal. The battery’s
positive terminal is 9 V. Vdd is 5 V (above the Vss reference of 0 V), and it is a special
voltage made by a voltage regulator chip to supply the BASIC Stamp with power.

Ohm’s Law: V = | x R The voltage measured across a resistor’s terminals (V) equals the
current passing through the resistor (1) times the resistor’s resistance (R).

Diode Forward Voltage: The voltage across a diode’s anode and cathode as current
passes through it from anode to cathode. For the green LED in the Figure 2-6 circuit on
page 33, you can assume that the forward voltage across the LED is approximately 2.1 V for
the sake of making circuit calculations. If the LED is yellow, assume 2.0 V, and if it's red,
assume 1.7 V. These voltages will vary slightly with the amount of current passing through
the circuit. Smaller series resistance and/or higher voltage applied to the circuit results in
higher current flow. Larger series resistance and/or smaller applied voltage results in lower
current flow.

Kirchhoff's Voltage Law Simplified: voltage used equals voltage supplied. If you
supply a circuit with 5 V, the number of volts all the parts use had better add up to 5 V.

Kirchhoff's Current Law Simplified: current in equals current out. The current that
enters an LED circuit from Vdd is the same amount of current that leaves it through Vss.
Also, if you connect three LEDs to the BASIC Stamp, and each LED circuit draws 5 mA, it
means the BASIC Stamp has to supply all the circuits with a total of 15 mA.

Appendix B: More about Electricity - Page 339

Example Calculation: One Circuit, Two Circuits

Calculating how much current ared LED circuit draws takes two steps:

1. Figure out the voltage across the resistor
2. Use Ohm’s Law to figure out the current through the resistor.

Figure B-2 shows how to calculate the voltage across the resistor. The voltage supplied
is on the left; it's 5 V. The voltages used by each component are to the right of the
circuit. The voltage we don’t know at the start is Vg, the voltage across the resistor. Bu,
we do know that the voltage across the LED is going to be about 1.7 V (the red light
emitting diode's forward voltage). We also know that the voltage across the parts has to
add up to 5V because of Kirchhoff’s Voltage Law. The difference between 5V and 1.7
V is 3.3V, so that must be the voltage across the resistor V.

N Vdd
+
V=2V i -
. Vg+l7v=5y FloureB-2
5y) Voltage Across
) Vg =5V -1.7V the Circuit,
7/ Vg =33V Resistor, and
1.7V LED
V;s

Kilo is metric for 1000. The metric way of saying 1000 is kilo, and it's abbreviated with the
lower-case k. Instead of writing 1000 Q, you can write 1 kQ. Either way, it's pronounced
one-kilo-ohm. Likewise, 2000 Q is written 2 kQ.

Milli is metric for 1/1000, and it is abbreviated with a lower-case m. If the BASIC Stamp
supplies an LED circuit with 3.3 thousandths of an amp, that's 3.3 milliamps, or 3.3 mA.

What's a mA? Pronounced milliamp, it's the notation for one-one-thousandth-of-an-amp.
The “m™ in mA is the metric notation for milli, which stands for 1/1000. The “A” in mA stands
for amps. Put the two together, and you have milliamps, and it's very useful for describing
the amount of current drawn by the BASIC Stamp and the circuits connected to it.

Now that we have calculated the voltage across the resistor, Figure B-3 shows an
example of how to use that value to calculate the current passing through the resistor.
Start with Ohm’s Law: V =1 x R. You know the answersto V (3.3 V) and R (470 Q).
Now, all you have to do is solve for | (the current).

Page 340 - What's a Microcontroller?

V=1I1xR
3.3V =1 x470Q
33V
+ 47100 Figure B-3
33V l 1 X 470 © | ~000702V/, Caloulating
Current through
) | =0.00702 A the Resistor
702
1000
| =7.02mA

Yes, it's true! 1 A =1V/Q (One amp is one volt per ohm).

How much current is 7.02 mA? It's the amount of current the LED circuit in Figure B-2
conducts. You can replace the 470 Q resistor with a 220 Q resistor, and the circuit will
conduct about 15.0 mA, and the LED will glow more brightly. If you use a 1000 Q resistor,
the circuit will conduct 3.3 mA, and the LED will glow less brightly. A 2000 Q resistor will
cause the LED to glow less brightly still, and the current will be 1.65 mA.

Let's say you want to make an /O pin turn two LEDs on at the same time. That means
that inside the BASIC Stamp, it would supply the circuits as shown in Figure B-4.
Would the circuit’s current draw exceed the I/O pin’'s 20 mA limit? Let's find out.
Remember that the simplified version of Kirchhoff’s Current Law says that the total
current drawn from the supply equals the current supplied to al the circuits. That means
that | in Figure B-4 has to equal the total of the two currents being drawn. Simply add
the two current draws, and you'll get an answer of 14.04 mA, which you can round to
14.0 mA. Since this current draw is still below the I/O pin’s 20 mA limit, it can safely be
connected to an 1/0O pin and switched on/off with the BASIC Stamp.

Appendix B: More about Electricity - Page 341

Vdd

- Figure B-4
|:|1+|2+"'|i Tota|
7.02mA 470 Q 7.02mA 470 0 | =7.02mA+7.02mA Current
Supplied to
Circuits
§ LED § LED
Vss Vss

Your Turn — Modifying the Circuit

v Repeat the exercisein Figure B-2, but use Vin —Vss= 9V instead of Vdd — Vss
=5V.

Assuming the forward voltage does not change, the answer isVr = 7.3 V. The
measured resistor voltage will probably be slightly less because of alarger LED
forward voltage from more current passing through the circuit.

v Repeat the exercise in Figure B-3, but use a 1 k(2 resistor.
Answer: | =33 mA.

v' UseVgr=7.3V todothe exercisein Figure B-3 with a1 kQ resistor.
Answer: | =7.3mA.

v" Repeat the exercise shown in Figure B-4 with one of the resistors at 470 Q and
the other at 1 kQ.

Answer: 1 =7.02mA + 3.3mA =10.32 mA.

Page 342 - What's a Microcontroller?

Appendix C: RTTTL Format Summary - Page 343

Appendix C: RTTTL Format Summary

This is a summary intended to help make sense out of RTTTL format. The full RTTTL
specification can be found published at various web sites. With any search engine, use
the keywords “RTTTL specification” to review web pages that include the specification.

Here isan example of an RTTTL format ringtone:
TakeMeQut ToTheBal | game: d=4, 0=7, b=225: 2c6, c, a6, g6, €6, 2g. 6, 2d6, p,

2c6, c, ab, g6, eb6, 2g. 6, g6, p, p, a6, g#6, a6, e6, f 6, g6, a6, p, f 6, 2d6, p, 2a6
, a6, a6, b6, c, d, b6, a6, g6

The text before the first colon is what the cell phone displays as the name of the song. In
this case, the ringtone is named:

TakeMeQut ToTheBal | Gane:

Between the first and second colon, the default settings for the song are entered using d,
0, and b. Hereiswhat they mean:

d — duration

0 — octave
b — beats per mnute or tenpo.

In TakeMeOutToTheBallGame, the default settings are:
d=4, 0=7, b=225:

The notes in the melody are entered after the second colon, and they are separated by
commas. If just the note letter is used, that note will be played for the default duration in
the default octave. For example, the second note in TakeMeOutToTheBallGameis:

G,

Since it has no other information, it will be played for the default quarter note duration
(d=4), in the seventh octave (0=7).

A note could have up to five characters between the commas; here is what each character
specifies:

,duration note sharp dot octave,

Page 344 - What's a Microcontroller?

For example:
, 2g#. 6,

...means play the half note G-sharp for 1 % the duration of a half note, and play it in the
sixth octave.

Here are afew examples from TakeMeOutToTheBallGame:

, 2g. 6, —half note, G, dotted, sixth octave
,a6, —default quarter note duration, A note played in the sixth octave
, g#6, —quarter duration, g note, sharp (denoted by #), sixth octave

The character:
. P,

...stands for pause, and it is used for rests. With no extrainformation, the p plays for the
default quarter-note duration. Y ou could also play a half note’ s worth of rest by using:

’ 2p1
Here is an example of adotted rest:
il 2p-)

In this case the rest would last for a half note plus a quarter note' s duration.

Index - Page 345

Index
-$- Applied Sensors, 329
$ (Hexadecimal formatter), 207 Q%IT?;SG 39
-%- Automation, 329
% (Binary formatter), 181 -B-
- Base
** (Multiply High operator), 270 Phototransistor, 198
*/ (Multiply Middle operator, 85, 270 Transistor. 289
-?- Base-10 numbers, 183
? (symbol = x formatter), 45 Base-16 numbers, 183
Base-2 numbers, 67
“H- BASIC Stamp, 11, 325
MF (microfarad), 143 BASIC Stamp Editor, 15
1 BASIC Stamp model comparison, 325
T Battery, 35
16-bit rollover bug, 122 Beat, 252
7. Benjamin Franklin, 35

Bicolor LED, 50
7-segment display, 169, 170, 169-71 Binary, 61
Binary numbers, 67, 179, 181

SA-
Action sounds. 248 % (Binary formatter), 181
Active-high vs. active low, 69 Bit, 45, 179
AD52_20 digital potentiometer, 292 Variable size, 45
Algorithm, 87
Alphabet Song, 257 Boolean, 61
Amp, 335 Breadboard, 31, 32, 259
AND, 78 BS1, 325
Anode, 30 BS2, 325
. BS2e, 325
7-segment display, 170 BS2p24, 325
LED, 30 BS2p40, 325
BS2pe, 325

Apostrophe, 42

Page 346 - What's a Microcontroller?

BS2px, 230, 325

BS2sx, 325

Bug, 16-hit rollover, 122

Build Y our Own Mini Timer project
video, 330

Bus, parald, 177

Byte, 45, 179

Variable size, 45
-C-
Cabinet alarm project, 310

Cadmium sulfide, 197
Capacitor, 143

Ceramic Capactior Schematic Symbol
and Parts Drawing, 150

Electrolytic, 143

Electrolytic Capacitor Schematic Symbol
and Part Drawing, 144

Junction capacitance, 236
Polar — identifying terminals, 144

Used in parallel, 224
Cathode, 30

Common cathode in &-segment display,
170

LED, 30

Charge, 335
Closed circuit, 62
CLREOL, 167
CMOS, 61

Code block, 78
Code overhead, 84
Collector

Phototransistor, 198

Transistor, 289

Color spectrum, 197

COM port, 41

Commenting code, 42

Common cathode, 170

Communication products, 322

Concept diagram, 308

Conductor, 335

Constants, 160

Control characters. See DEBUG
Control Characters

Controlling, 61

Counting, 80

CR, 25

CRSRUP, 129

Current, 28, 35, 335

Milliamp, 339
Cycle, 117, 245
-D-
DATA, 255
Datalogging, 203
DCD, 269

DEBUG, 39
DEBUG Control Characters, 129

CLREOL, 167

CR, 25

CRSRUP, 129

HOME, 76
DEBUG Formatters, 129

$ (Hexadecimal Formatter), 207

% (Binary formatter), 181

? (symbol = x formatter), 45

DEC (Decimal formatter), 120, 207
Debug Termina

Transmit and Receive Windowpanes, 120

DEBUGIN, 119

DEC, 120, 207

Decimal formatter DEC, 207
Decimal numbers, 183, 204
Degree, 102

Device, pardld, 177

Diode, 30

Diode Forward Voltage, 338
DIRH, 178

DO...LOOP, 39, 83, 123
Dot, in music, 264
DTMFOUT, 251

Dua Tone Multi Frequency, 251

-E-

Earth Measurements, 329
Earth science, 329

Echo, 121

EEPROM, 203
Electrolytic capacitor, 143
Electron, 34, 35, 335
Embedded system, 11
Emitter

Phototransistor, 198
Transistor, 289

END, 63
EXIT, 282, 316

-E-

Farads, 164

Fetch and execute, 287

Flat notes, 254

FlexiForce Sensor, 319

FOR...NEXT, 43, 124

Formatters, DEBUG. See DEBUG
Formatters

Index - Page 347

Fractions, 85

FREQOUT, 247, 251
Frequency, 245

Functional description, 309

-G-

Google, 323

GOSUB, 216

GOTO, 217

Graphing software, 213
Ground, 31, 338

-H-

hertz, 245, 247

Hexadecimal formatter $, 207

Hexadecimal numbers, 183

Hexadecimal to decimal conversion,
205

HIGH, 39, 182

HOME, 76

HomeWork board

and the RCTIME circuit voltage divider,
155

Hysteresis, 228
-1-
1/O pin protection, 69
1/0 pins
Default direction, 181
DIRH and OUTH registers, 178

1/0O Pins. See Input/Output Pins
IF...ELSEIF...ELSE, 75
IF...THEN, 78
IF...THEN...ELSE, 71

IN, 67

Input/output pins. See 1/O pins
Integer, 270

Page 348 - What's a Microcontroller?

Interference, 252

Interpreter chip, 287

IR Remote Parts Kit, 324
-J-

Junction capacitance, 236
K-

KCL, 338

kHz, 245

Kilo, 339

Kirchhoff’s Laws (Simplified)
Current, 338
Voltage, 338

Kirchhoff's Voltage and Current Laws,
338
KVL, 338

-L-

Label, 217
LCD Display, 320
LED, 27

as a light sensor, 235
Bi-color, 50
Part Drawing and Schematic Symbol, 30
Light Emitting Diode. See LED
Light emitting diodes, 27
light meter, 214
Light meter, 214
LOOKDOWN, 186, 187

LOOKUP, 183
LOW, 39, 182

-M -

mA, 339
Main routine, 222

Math Operations, 268
Memory

Memory Map, 204
Overwriting the program, 207

Memory Map, 203, 207
Metric units of measure, 339
Microcontroller, 11
Microfarads, 143
Microsecond, 105
Milli, 339
Millipede Project, 13
Millisecond, 39, 105
Motor Control product, 322
Music

Dot, 264

Rests, 259

Tempo, 260
Mystery numbers, 317

-N -

Nanometer, 197

Natural keys, 254

nc, 171

Negative charge, 335
Nested loop, 249
Nesting subroutines, 219
Neutral, 35

Neutron, 335

Nib, 45

Variable size, 45

No-connect, 171
Nominal value, 298
NPN transistor, 289
Nucleus, 335
Numbers

Binary, 67, 179
Decimal, 183

Hexadecimal, 183

Nuts and Volts of BASIC Stamps

columns, 323
-0-

Octave, 254
Offset, 158

Ohm, 335

Ohm's Law, 231, 338
Omega Q, 28

ON GOSUB, 217
ON GOTO, 217
Open circuit, 62
OR, 78

OUTH, 178
Overflow, 273

Overwriting the program, 207

-P-
Parallax Standard Servo

Caution, 96

Parts diagram, 95
Parallel

bus, 177

device, 177

Parallel capacitors, 224
Parallel processing, 326
PAUSE, 39

PBASIC Language

AND, 78
Arguments, 39
Bit, 45

Byte, 45
CLREOL, 167

CR, 25

CRSRUP, 129

DATA, 255

DCD, 269

DEBUG, 39

DEBUGIN, 119

DEC, 207

DEC, 120

DIRH, 178

DO...LOOP, 39, 83, 123
DTMFOUT, 251

END, 63

EXIT, 282, 316
FOR...NEXT, 43, 124
FREQOUT, 247, 251
GOSUB, 216

GOTO, 217

HIGH, 39, 182

HOME, 76
IF...ELSEIF...ELSE, 75
IF...THEN, 78
IF...THEN...ELSE, 71
IN, 67

LOOKDOWN, 186, 187
LOOKUP, 183

LOW, 39, 182

Nib, 45

Index - Page 349

Page 350 - What's a Microcontroller?

ON GOSUB, 217

OR, 78

OUTH, 178

PAUSE, 39

PIN, 162

PULSOUT, 105

RANDOM, 86

RCTIME, 149, 199

READ, 206

RETURN, 216

SELECT...CASE, 272

SERIN, 316

SEROUT, 316

STEP, 124

TOGGLE, 296

UNTIL, 83, 123

WHILE, 123

Word, 206

WRITE, 206, 207
PBASIC Operators

** (Multiply High), 270

*/ (Multiply Middle, 85, 270

DCD, 269

Order of execution, 268

Parentheses, 268

Photoresistor, 197
Phototransistor, 198
Piezoelectric Speaker, 245
PIN, 162

Pin map, 170, 292

PIR Motion Sensor, 319
polling, 83

Polling, 80

Positive charge, 335
Potentiometer, 139

AD5220 (digital), 292

Process Control, 329
Program

Loops, nested, 249
Overwriting, 207

Program Listings
ActionTones.bs2, 248
Ch01Prj01_Add1234.bs2, 25

Ch01Prj02_ FirstProgramYourTurn.bs2,
26

Ch02Prj01_Countdown.bs2, 60

Ch03Prj01_TwoPlayerReactionTimer.bs2,
91

Ch04Prj01SoInl__KillSwitch.bs2, 136
Ch07Prj01_Blinds_Control.bs2, 243

ChO07Prj02_Blinds_Control_Extra.bs2,
243

Ch5Prj01_ControlServoWithPot.bs2, 166
Ch6Prj01_FishAndChips.bs2, 193

Ch8Prj01_PushButtonToneGenerator.bs2
, 286

Ch9Ex01_SetTapToZero.bs2, 303

Ch9Prj01_PhotoControlledDigitalPot.bs2,
305

ControlServoWithPot.bs2, 159
DialDisplay.bs2, 189
DigitalPotUpDown.bs2, 295

Index - Page 351

DigitalPotUpDownWithToggle.bs2, 297 SimpleLookdown.bs2, 187

DisplayDigits.bs2, 179 SimpleLookup.bs2, 183

DisplayDigitsWithLookup.bs2, 184 SimpleSubroutines.bs2, 217

DoReMiFaSolLaTiDo.bs2, 255 SlowServoSignalsForLed.bs2, 113

FlashBothLeds.bs2, 49 StoreLightMeasurementsinEeprom.bs2,
208

LedOnOff.bs2, 38
LedOnOffTenTimes.bs2, 44
LightMeter.bs2, 220
MicroAlarmProto(Dev-009).bs2, 314
MicroMusicWithRtttl.bs2, 277
MusicWithMoreFeatures.bs2, 265
NestedLoops.bs2, 250
NotesAndDurations.bs2, 260
PairsOfTones.bs2, 252

TerminalControlledDigitalPot.bs2, 299
TestBiColorLed.bs2, 55
TestBinaryPhototransistor.bs2, 234
TestPhototransistor.bs2, 201
TestPiezoWithFreqout.bs2, 247
TestSecondLed.bs2, 48
ThreeServoPositions.bs2, 115
TwinkleTwinkle.bs2, 257

Proof of concept, 317

PhototransistorAnalogToBinary.bs2, 227 .
9 i Propeller microcontroller, 326

PolledRcTimer.bs2, 147 Proton, 335
PushbuttonControlledLed.bs2, 71 Prototyping, 307
Prototyping area, 31
PushbuttonControlOfTwolLeds.bs2, 75
ushbuttonControlOfTwoLeds.bs do code, 72
ReactionTimer.bs2, 81 Pseudo random, 87
ReadLightMeasurementsFromEeprom.bs Pull-up and Pull-down resistors, 69
2,210 PULSOUT, 105
ReadPotWithRcTime.bs2, 152 Pushbutton, 62
ReadPushbuttonState.bs2, 68 Active-high, 69
SegmentTestWithHighLow.bs2, 178 -R-
SelectCaseWithCharacters.bs2, 275 RANDOM, 86
) RCTIME, 149, 199
SelectCaseWithValues.bs2, 273 READ, 206
ServoCenter.bs2, 106 Receive Windowpane, 120
ServoControlWithDebug.bs2, 122 Receiving, 61
Reference, 338

ServoVelocities.bs2, 127 Reference notch, 292

Page 352 - What's a Microcontroller?

Remote, IR Remote Parts Kit, 324
Resistance, 335
Resistor, 28, 38

as I/O pin protection, 38

Color Code Values, 29

1/O pin protection, 69

Part drawing and schematic symbol, 29
Pull-up and Pull-down, 69

Variable, digital potentiometer, 292
Variable, Flexiforce, 319

Variable, potentiometer, 139

Rests, in music, 259

RETURN, 216

Reveille, 277

Ringing Tone Text Transfer Language,
271

Robotics with the Boe-Bot, 329

Rollover bug, 122

RTTTL, 271

-S-

Scaling, 158

Schematic, 35

Schematic symbol, 28

Schmitt trigger, 230

Seed vaue for pseudo random numbers,
86, 87

SELECT...CASE, 272

Sending, 61

Sensing, 61

Sensors products, 322

Serial 2x16 LCD, 320

SERIN, 316

SEROUT, 316

Servo

Caution Statement, 96
Power supply warning, 101
Timing diagram, 104

Servo Header Jumper, 97

Sharp notes, 254

Smart Sensors and Applications, 329

Smart Sensors and Applications
textbook, 321

Sockets, 31

Sound waves. See

Specification, 310

StampPlot LITE, 213

Stamps in Class Flowchart, 329

Stamps in Class Mini Projects, 330

STEP, 124

Subroutine, 216

Call, 218
Label, 217
Nesting limit, 219

Sunlight, 201
Superposition, 252
Switching, 61

-T-

Take Me Out To The Ball Game, 343
Tap, potentiometer, 298

Tempo, 260

Timing diagram, 104

TOGGLE, 296

Tokens, 203, 207, 287

Tolerance, 29, 298

Transistor, 198, 289

Schematic Symbol and Part Drawing, 289

Transistor-transistor logic (TTL), 230
Transmit Windowpane, 120

Index - Page 353

Transmitting, 61 RAM storage, 209
TTL, 61 , Word, 45
Twinkle Twinkle Little Star., 257
\Vdd, 338
-U- Video tutorials, 330
UNTIL, 83 V!n, 338
USB drivers, 20 Virtual COM Port, 20
Visible light, 197
V- Volt, 335
Variable range error, 122 Voltage, 35,335
Variable resistor, 319 Voltage decay circuit, 145
. dicital Voltage divider, 155
potentiometer (digital), 292 Vss, 338
potentiometer (single-turn), 139 W -
Variables, 45 Wavelength, 197
Bit, 45 WHILE, 123
Byte, 45 Word, 45
DIRH, 178 Variable size, 45
Initialization, 82 WORD modifier, 206

Naming rules, 43 WRITE, 206, 207

Nib, 45 -Q-
OUTH, 178 Q omega, 28
Overflow, 273

Page 354 - What's a Microcontroller?

Parts and quantities are subject to change without notice. Parts may differ from what is
shown in this picture. If you have any questions about your kit, please email
stampsinclass@parallax.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Parallax
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

