

TEST REPORT IEC 62471 Photobiological safety of lamps and lamp systems

Report Reference No. SHES170800821171

Date of issue...... 2017-09-04

Total number of pages: 15

Address.....: 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China

Applicant's name Benewake (Beijing) Co., Ltd

District, Beijing, China

Test specification:

Standard IEC 62471:2006 (First Edition)

Test procedure....: SGS CSTC

Non-standard test method.....: N/A

Test Report Form No...... IEC62471A

Master TRF.....: Dated 2009-05

Copyright @ 2009 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

If this Test Report Form is used by non-IECEE members, the IECEE/IEC logo and the reference to the CB Scheme procedure shall be removed.

Test item description...... DE LiDAR

Trade Mark BENEWAKE

Manufacturer.....: Same as applicant

Model/Type reference TFmini

Ratings.....: USB supplied

Testir	ng procedure and testing location:	
\boxtimes	Testing Laboratory:	SGS-CSTC Standards Technical Services (Shanghai) Co.,
	and the second s	Ltd.
Testi	ng location/ address:	588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China
	Associated CB Laboratory:	
Testi	ng location/ address::	
	Tested by (name + signature):	Abby Vanda 11 / San 1
	Approved by (F Signature),: 检验检测专用章 章 lnspection & Testing Services 02	Abby Yang Shirt Tong
	Testing proceeds TMP	
	Tested by (name + signature):	
	Approved by (+ signature):	
Testi	ng location/ address:	
_		
	Testing procedure: WMT	
	Tested by (name + signature)	
	Witnessed by (+ signature)	
	Approved by (+ signature)	7
Testi	ng location/ address::	
	Testing procedure: SMT	
	Tested by (name + signature):	
	Approved by (+ signature):	
	Supervised by (+ signature):	
Toeti	ng location/ address:	
1 650	ng location, accress	
	Testing procedure: RMT	
	Tested by (name + signature):	
	Approved by (+ signature):	
	Supervised by (+ signature):	
	Testing location/ address :	
	-	

Summary of testing: Testing location: Tests performed (name of test and test clause): Refer. to page 1 Full tests **Summary of compliance with National Differences:** European Group Differences and National Differences for EN 62471:2008 Copy of marking plate: N/A

Tost itom particulars	
Test item particulars	
Tested lamp	☐ continuous wave lamps ☐ pulsed lamps
Tested lamp system	□ continuous wave lamps □ pulsed lamps
Lamp classification group:	exempt risk 1 risk 2 risk 3
Lamp cap:	N/A
Bulb	LEDs
Rated of the lamp	N/A
Furthermore marking on the lamp:	N/A
Seasoning of lamps according IEC standard:	N/A
Used measurement instrument:	Spectroradiometer
Temperature by measurement:	25 ± 5 °C
Information for safety use	N/A
Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	P (Pass)
- test object does not meet the requirement:	F (Fail)
Testing:	
Date of receipt of test item:	2017-08-21
Date (s) of performance of tests:	2017-08-21 to 2017-09-01

General remarks:

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory. "(see Enclosure #)" refers to additional information appended to the report.

"(see appended table)" refers to a table appended to the report.

Throughout this report a comma is used as the decimal separator.

This document is issued by the company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated: (a) the results shown in this document refer only to the sample(s) tested and (b) such sample(s) are retained for 30 days. This document cannot be reproduced except in full, without prior approval of the company.

Content:

- 1. Test report 15 pages
- 2. European group differences according to EN 62471:2008– Attachment A 3 pages
- 3. Photographs Attachment B 1 page

General product information:

The sample under test is high frequency pulsed light. To consider the worst case, the product was tested at 200 mm.

Because the frequency of pulsed light is very high, we could consider the result is very close to continuous wave. So we tested it by continuous wave mode. The test data is for reference.

The appliance is classified as **Exempt Group** according to EN 62471:2008.

IEC 62471 Clause Requirement + Test Result - Remark Verdict **EXPOSURE LIMITS** P 4.1 Р General Р The exposure limits in this standard is not less than 0.01 ms and not more than any 8-hour period and should be used as guides in the control of exposure Detailed spectral data of a light source are generally N/A see clause 4.3 required only if the luminance of the source exceeds 10⁴ cd·m⁻² Ρ 4.3 Hazard exposure limits 4.3.1 Actinic UV hazard exposure limit for the skin and eye The exposure limit for effective radiant exposure is Р 30 J m⁻² within any 8-hour period To protect against injury of the eye or skin from ul-Р traviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance, Es, of the light source shall not exceed the levels defined by: $E_{\rm s} \cdot t = \sum_{200}^{400} \sum_t E_{\lambda}(\lambda, t) \cdot S_{\rm UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \leq 30$ Р J-m⁻² Р The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by: $t_{\text{max}} = \frac{30}{E_{\text{s}}}$ Р 4.3.2 Р Near-UV hazard exposure limit for eye Р For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J·m⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E_{UVA}, shall not exceed 10 W·m⁻². The permissible time for exposure to ultraviolet radi-Ρ ation incident upon the unprotected eye for time less than 1000 s, shall be computed by: Р $t_{\text{max}} \leq$ Ρ 4.3.3 Retinal blue light hazard exposure limit Р To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance, LB, shall not exceed the levels defined by:

	IEC 62471		1
Clause	Requirement + Test	Result – Remark	Verdict
	$L_{\rm B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^{6} \qquad \text{J} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	for $t \le 10^4 \text{s}$ $t_{\text{max}} = \frac{10^6}{L_{\text{B}}}$	Р
	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad W \cdot m^{-2} \cdot sr^{-1}$	for t > 10 ⁴ s	Р
4.3.4	Retinal blue light hazard exposure limit - small source)	N/A
	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	see table 4.2	N/A
	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad J \cdot m^{-2}$	for t ≤ 100 s	N/A
	$E_{B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2}$	for t > 100 s	N/A
4.3.5	Retinal thermal hazard exposure limit		Р
	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(_{\lambda})$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:		Р
	$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0.25}}$ W · m ⁻² · sr ⁻¹	(10 μs ≤ t ≤ 10 s)	Р
4.3.6	Retinal thermal hazard exposure limit – weak visual s	timulus	Р
	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L _{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:		Р
	$L_{\rm IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad \qquad \text{W} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	t > 10 s	Р
4.3.7	Infrared radiation hazard exposure limits for the eye		Р
	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E _{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:		Р
	$E_{\text{IR}} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75}$ W · m ⁻²	t ≤ 1000 s	Р
	For times greater than 1000 s the limit becomes:		Р

IEC 62471 Clause Requirement + Test Result - Remark Verdict Ρ $E_{\mathsf{IR}} = \sum_{780}^{3\,000} E_{\lambda} \cdot \Delta \lambda \le 100$ W ⋅ m⁻² t > 1000 sР 4.3.8 Thermal hazard exposure limit for the skin Р Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to: $E_{\mathsf{H}} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda} (\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0,25}$ Ρ J - m⁻² 5 **MEASUREMENT OF LAMPS AND LAMP SYSTEMS** P 5.1 Р Measurement conditions Р Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification. 5.1.1 Lamp ageing (seasoning) Ρ Р Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard. 5.1.2 Test environment Р For specific test conditions, see the appropriate IEC Р lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations. 5.1.3 Extraneous radiation Ρ Careful checks should be made to ensure that ex-Р traneous sources of radiation and reflections do not add significantly to the measurement results. 5.1.4 Lamp operation Ρ Operation of the test lamp shall be provided in ac-Ρ cordance with: the appropriate IEC lamp standard, or N/A the manufacturer's recommendation Р 5.1.5 Lamp system operation N/A The power source for operation of the test lamp shall N/A be provided in accordance with: the appropriate IEC standard, or N/A the manufacturer's recommendation N/A 5.2 Р Measurement procedure 5.2.1 Р Irradiance measurements Minimum aperture diameter 7mm. Ρ Р Maximum aperture diameter 50 mm.

IEC 62471 Clause Requirement + Test Result - Remark Verdict Ρ The measurement shall be made in that position of the beam giving the maximum reading. Р The measurement instrument is adequate calibrated. Р 5.2.2 Radiance measurements 5.2.2.1 Standard method N/A N/A The measurements made with an optical system. The instrument shall be calibrated to read in absolute N/A radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument. 5.2.2.2 Alternative method Ρ Alternatively to an imaging radiance set-up, an irra-Р diance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements. 5.2.3 Measurement of source size P Р The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source. 5.2.4 Pulse width measurement for pulsed sources N/A N/A The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value. 5.3 Р Analysis methods 5.3.1 Weighting curve interpolations Ρ Р To standardize interpolated values, use linear insee table 4.1 terpolation on the log of given values to obtain intermediate points at the wavelength intervals desired. 5.3.2 Р Calculations Р The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy. 5.3.3 Measurement uncertainty Ρ The quality of all measurement results must be P see Annex C in the norm quantified by an analysis of the uncertainty. 6 LAMP CLASSIFICATION P For the purposes of this standard it was decided that see table 6.1 Р the values shall be reported as follows:

IEC 62471 Clause Requirement + Test Result - Remark Verdict for lamps intended for general lighting service, N/A the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm Р for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 6.1 Continuous wave lamps N/A N/A 6.1.1 **Exempt Group** In the exempt group are lamps, which does not pose N/A any photobiological hazard. The requirement is met by any lamp that does not pose: an actinic ultraviolet hazard (Es) within 8-hours N/A exposure (30000 s), nor a near-UV hazard (EUVA) within 1000 s, (about 16 N/A min), nor a retinal blue-light hazard (LB) within 10000 s N/A (about 2,8 h), nor a retinal thermal hazard (LR) within 10 s, nor N/A an infrared radiation hazard for the eye (E_{IR}) N/A within 1000 s 6.1.2 Risk Group 1 (Low-Risk) N/A In this group are lamps, which exceeds the limits for N/A the except group but that does not pose: an actinic ultraviolet hazard (Es) within 10000 s, N/A a near ultraviolet hazard (EUVA) within 300 s, nor N/A N/A a retinal blue-light hazard (L_B) within 100 s, nor a retinal thermal hazard (LR) within 10 s, nor N/A an infrared radiation hazard for the eye (E_{IR}) N/A within 100 s Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared ret-N/A inal hazard (LIR), within 100 s are in Risk Group 1. 6.1.3 Risk Group 2 (Moderate-Risk) N/A This requirement is met by any lamp that exceeds N/A the limits for Risk Group 1, but that does not pose: an actinic ultraviolet hazard (Es) within 1000 s N/A exposure, nor a near ultraviolet hazard (E_{UVA}) within 100 s, nor N/A a retinal blue-light hazard (LB) within 0,25 s N/A (aversion response), nor

IEC 62471 Result - Remark Verdict Clause Requirement + Test a retinal thermal hazard (LR) within 0,25 s (aver-N/A sion response), nor an infrared radiation hazard for the eye (E_{IR}) N/A within 10 s Lamps that emit infrared radiation without a strong N/A visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 10 s are in Risk Group 2. 6.1.4 Risk Group 3 (High-Risk) N/A Lamps which exceed the limits for Risk Group 2 are N/A in Group 3. 6.2 Pulsed lamps Р Pulse lamp criteria shall apply to a single pulse and N/A to any group of pulses within 0,25 s. A pulsed lamp shall be evaluated at the highest N/A nominal energy loading as specified by the manufacturer. The risk group determination of the lamp being Ρ tested shall be made as follows: a lamp that exceeds the exposure limit shall be N/A classified as belonging to Risk Group 3 (High-Risk) for single pulsed lamps, a lamp whose weighted N/A radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group for repetitively pulsed lamps, a lamp whose Р weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission

	IEC 62471		
Clause	Requirement + Test	Result – Remark	Verdict

Spectral we	ighting function for assessing u	ultraviolet hazards for sk	in and eye
elength ¹ , nm	UV hazard function S _{uv} (λ)	Wavelength λ, nm	UV hazard function S _{υν} (λ)
200	0,030	313*	0,006
205	0,051	315	0,003
210	0,075	316	0,0024
215	0,095	317	0,0020
220	0,120	318	0,0016
225	0,150	319	0,0012
230	0,190	320	0,0010
235	0,240	322	0,00067
240	0,300	323	0,00054
245	0,360	325	0,00050
250	0,430	328	0,00044
254*	0,500	330	0,00041
255	0,520	333*	0,00037
260	0,650	335	0,00034
265	0,810	340	0,00028
270	1,000	345	0,00024
275	0,960	350	0,00020
280*	0,880	355	0,00016
285	0,770	360	0,00013
290	0,640	365*	0,00011
295	0,540	370	0,000093
297*	0,460	375	0,000077
300	0,300	380	0,000064
303*	0,120	385	0,000053
305	0,060	390	0,000044
308	0,026	395	0,000036
310	0,015	400	0,000030
	elength , nm 2000 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280* 285 290 295 297* 300 303* 305 308	Selength Sov(A) Sov(A)	Anm S(A) A, nm 200 0,030 313* 205 0,051 315 210 0,075 316 215 0,095 317 220 0,120 318 225 0,150 319 230 0,190 320 235 0,240 322 240 0,300 323 245 0,360 325 250 0,430 328 254* 0,500 330 255 0,520 333* 266 0,650 335 265 0,810 340 270 1,000 345 275 0,960 350 286 0,770 360 290 0,640 365* 295 0,540 370 297* 0,460 375 300 0,300 380 303* 0,120 385 <

Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

^{*} Emission lines of a mercury discharge spectrum.

IEC 62471				
Clause	Requirement + Test	Result – Remark	Verdict	

Spectra sources		tions for assessing retinal hazards f	from broadband optical
Wavelen nm	gth	Blue-light hazard function Β (λ)	Burn hazard function R (λ)
300		0,01	
305		0,01	
310		0,01	
315		0,01	
320		0,01	
325		0,01	
330		0,01	
335		0,01	
340		0,01	
345		0,01	
350		0,01	
355		0,01	
360		0,01	
365		0,01	
370		0,01	
375		0,01	
380		0,01	0,1
385		0,013	0,13
390		0,025	0,25
395		0,05	0,5
400		0,10	1,0
405		0,20	2,0
410		0,40	4,0
415		0,80	8,0
420		0,90	9,0
425		0,95	9,5
430		0,98	9,8
435		1,00	10,0
440		1,00	10,0
445		0,97	9,7
450		0,94	9,4
455		0,90	9,0
460		0,80	8,0
465		0,70	7,0
470		0,62	6,2
475		0,55	5,5
480		0,45	4,5
485		0,40	4,0
490		0,22	2,2
495		0,16	1,6
500-60)	10 ^[(450-\lambda)/50]	1,0
600-70		0,001	1.0
700-105			10 ^[(700-λ)/500]
1050-11			0,2
1150-120			0,2·10 ^{0,02(1150-λ)}
1200-140			0,02

 IEC 62471

 Clause
 Requirement + Test
 Result – Remark
 Verdict

Table 5.4	Summary of the ELs for the	surface of the sl	kin or cornea (irradiance bas	sed values)
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of con- stant irradiance W•m ⁻²
Actinic UV skin & eye	$E_S = \sum E_\lambda \bullet S(\lambda) \bullet \Delta\lambda$	200 – 400	< 30000	1,4 (80)	30/t
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10
Blue-light small source	$E_B = \sum E_\lambda \bullet B(\lambda) \bullet \Delta\lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0
Eye IR	$E_{IR} = \sum E_{\lambda} \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75} 100
Skin thermal	$E_H = \sum E_\lambda \bullet \Delta \lambda$	380 – 3000	< 10	2π sr	20000/t ^{0,75}

Table 5.5	Sun	Summary of the ELs for the retina (radiance based values)					
Hazard Name		Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in ter constant ra W•m ⁻² •	adiance
Blue light				0,25 – 10	0,011•√(t/10)	10 ⁶ /	⁄t
		$L_{B} = \sum L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda$	300 – 700	10-100	0,011	10 ⁶ /	⁄t
				100-10000	0,0011•√t	10 ⁶ /	⁄t
				≥ 10000	0,1	100)
Retinal		I = ∇I → D(λ) → Λλ	200 1400	< 0,25	0,0017	50000/(a	(•t ^{0,25})
thermal		$L_{R} = \sum L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda$	380 – 1400	0,25 – 10	0,011•√(t/10)	50000/(a	(•t ^{0,25})
Retinal thermal (weak visual stimulus)	l	$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	780 – 1400	> 10	0,011	6000	/(α

IEC 62471				
Clause	Requirement + Test	Result – Remark	Verdict	

Page 15 of 15

Table 6.1	Emission limits	for risk group	s of continuo	us wave lam	ps				Р
				Emission Measurement					
Risk	Action spectrum	Symbol	Units	Exe	mpt	Low	risk	Mod risk	
	ороси син			Limit	Result	Limit	Result	Limit	Result
Actinic UV	S _{UV} (λ)	Es	W•m ⁻²	0,001	9,3e-07	0,003	-	0,03	
Near UV		E _{UVA}	W•m ⁻²	10	5,2e-05	33	1	100	
Blue light	Β(λ)	L _B	W•m ⁻² •sr ⁻¹	100	3,48e-02	10000		4000000	
Blue light, small source	Β(λ)	Ев	W•m⁻²	1,0*		1,0		400	
Retinal thermal	R(λ)	L _R	W•m ⁻² •sr ⁻¹	28000/α	2,4e+04	28000/α		71000/α	
Retinal thermal, weak visual stimulus**	R(\lambda)	Lir	W•m ⁻² •sr ⁻¹	6000/α	2,5e+04	6000/α		6000/α	
IR radiation, eye		E _{IR}	W•m⁻²	100	5,9e+00	570	-1	3200	

Small source defined as one with α < 0,011 radian. Averaging field of view at 10000 s is 0,1 radian. Involves evaluation of non-GLS source

— End of Test Report —

Attachment A

IEC62471A - ATTACHMENT					
Clause	Requirement + Test	Result - Remark	Verdict		

ATTACHMENT TO TEST REPORT IEC 62471 EUROPEAN GROUP DIFFERENCES AND NATIONAL DIFFERENCES

Photobiological safety of lamps and lamps systems

Differences according to..... EN 62471:2008

Attachment Form No...... EU_GD_IEC62471A

Attachment Originator: IMQ S.p.A.

Master Attachment: 2009-07

Copyright © 2009 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved.

	CENELEC COMMON MODIFICATIONS (EN)				
4	EXPOSURE LIMITS				
	Contents of the whole Clause 4 of IEC 62471:2006 moved into a new informative Annex ZB				
	Clause 4 replaced by the following:				
	Limits of the Artificial Optical Radiation Directive (2006/25/EC) have been applied instead of those fixed in IEC 62471:2006	See appended Table 6.1	Р		
4.1	General				
	First paragraph deleted				

SGS	_ Attachment A	Page 2 of 3	Report No.: SHES1708008	321171		
	IEC62471A - ATTACHMENT					
	Clause	Requirement + Test	Result - Re	mark	Verdict	

Table 6.1	Emission limits	for risk group	os of continuo	us wave lamps (base	ed on EU Direc	tive 2006/	/25/EC)		Р
	Action spectrum	Symbol	Units	Emission Measurement					
Risk				Exempt		Low risk		Mod risk	
				Limit	Result	Limit	Result	Limit	Result
Actinic UV	Sυv(λ)	Es	W•m⁻²	0,001	9,3e-07	-	-	-	-
Near UV		Euva	W•m⁻²	0,33	5,2e-05	-	-	-	-
Blue light	Β(λ)	L _B	W•m ⁻² •sr ⁻¹	100	3,48e-02	10000	-	4000000	-
Blue light, small source	Β(λ)	E _B	W•m ⁻²	0,01*		1,0	-	400	-
Retinal thermal	R(λ)	L _R	W•m ⁻² •sr ⁻¹	28000/α	2,4e+04	28000/ α	-	71000/α	-
Retinal				545000 0,0017≤ α ≤ 0,011	-				
thermal, weak visual stimulus**	R(\lambda)	L _{IR} W•m ⁻² •sr ⁻¹	6000/α						
					2,5e+04				
				$0,011 \le \alpha \le 0,1$					
IR radiation, eye		E _{IR}	W•m⁻²	100	5,9e+00	570	-	3200	-

Attachment A

IEC62471A - ATTACHMENT						
Clause	Requirement + Test	Result - Remark	Verdict			

* Small source defined as one with α < 0,011 radian. Averaging field of view at 10000 s is 0,1 radian.
** Involves evaluation of non-GLS source

Page 3 of 3

NOTE The action functions: see Table 4.1 and Table 4.2

The applicable aperture diameters: see 4.2.1

The limitations for the angular subtenses: see 4.2.2

The related measurement condition 5.2.3 and the range of acceptance angles: see Table 5.5.

— End of Attachment A —

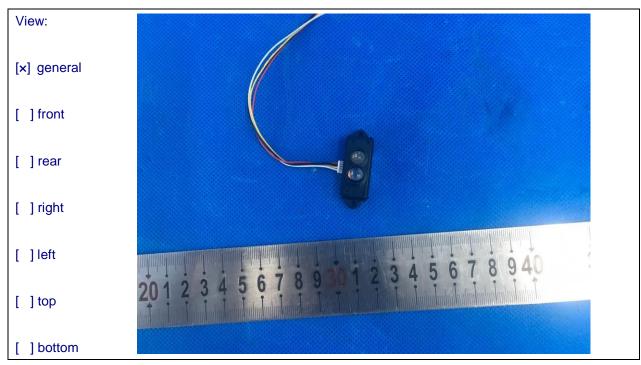

Attachment B

Photo documentation

Details of: DE LiDAR

Details of: DE LiDAR

— End of Attachment B —