3.0 A, Very Low-Dropout (VLDO) Fast Transient **Response Regulator**

The NCP57302 is a high precision, very low dropout (VLDO), low minimum input voltage and low ground current positive voltage regulator that is capable of providing an output current in excess of 3.0 A with a typical dropout voltage of 315 mV at 3.0 A load current and input voltage from 1.8 V and up. The device is stable with ceramic output capacitors. The device can withstand up to 18 V max input voltage.

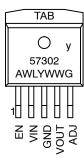
Internal protection features consist of output current limiting, built-in thermal shutdown and reverse output current protection. Logic level enable pin is available. The NCP57302 is an adjustable voltage device and is available in D2PAK-5 package.

Features

- Output Current in Excess of 3.0 A
- Minimum Operating Input Voltage 1.8 V for Full 3 A Output Current
- 315 mV Typical Dropout Voltage at 3.0 A
- Adjustable Output Voltage Range from 1.24 V to 13 V
- Low Ground Current
- Fast Transient Response
- Stable with Ceramic Output Capacitor
- Logic Compatible Enable Pin
- Current Limit, Reverse Current and Thermal Shutdown Protection
- Operation up to 13.5 V Input Voltage
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

Applications

- Consumer and Industrial Equipment Point of Regulation
- Servers and Networking Equipment
- FPGA, DSP and Logic Power supplies
- Switching Power Supply Post Regulation
- Battery Chargers
- Functional Replacement for Industry Standard MIC29300, MIC39300, MIC37300 with Improved Minimum Input Voltage Specification


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

D²PAK CASE 936A

= P (NCP), V (NCV) Α = Assembly Location

WL = Wafer Lot = Year WW = Work Week = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

TYPICAL APPLICATIONS

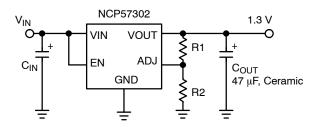


Figure 1. Adjustable Regulator

PIN FUNCTION DESCRIPTION

Pin Number	Pin Name	Pin Function			
1	EN	Enable Input: CMOS and TTL logic compatible. Logic high = enable; Logic low = shutdown.			
2	VIN	Input voltage which supplies both the internal circuitry and the current to the output load			
3	GND	Ground			
TAB	TAB	TAB is connected to ground.			
4	VOUT	Linear Regulator Output.			
5	ADJ	Adjustable Regulator Feedback Input. Connect to output voltage resistor divider central node.			

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating		Value	Unit	
V _{IN}	Supply Voltage	0 to 18	V		
V _{EN}	Enable Input Voltage	0 to 18	V		
$V_{OUT} - V_{IN}$	Reverse V _{OUT} – V _{IN} Voltage (EN = Sh	rse V _{OUT} – V _{IN} Voltage (EN = Shutdown or V _{IN} = 0 V) (Note 1) 0 to 6.5		V	
P _D	Power Dissipation (Notes 2 and 3)		Internally Limited		
TJ	Junction Temperature		$-40 \le T_J \le +125$	°C	
T _S	Storage Temperature		$-65 \le T_{J} \le +150$	°C	
	ESD Rating (Notes 4 and 5)	Human Body Model Machine Model	2000 200	V	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

NOTE: All voltages are referenced to GND pin unless otherwise noted.

- 1. The ENABLE pin input voltage must be \leq 0.8 V or V_{IN} must be connected to ground potential. 2. $P_{D(max)} = (T_{J(max)} T_A) / R_{\theta,JA}$, where $R_{\theta,JA}$ depends upon the printed circuit board layout. 3. This protection is not guaranteed outside the Recommended Operating Conditions.

- This protection is not guaranteed dutated the recommended.
 Devices are ESD sensitive. Handling precautions recommended..
 This device series incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model (HBM) tested per AEC Q100 002 (EIA/JESD22 A114C)
 - ESD Machine Model (MM) tested per AEC Q100 003 (EIA/JESD22 A115C)
 - This device contains latch up protection and exceeds 100 mA per JEDEC Standard JESD78.

RECOMMENDED OPERATING CONDITIONS (Note 6)

Symbol	Rating	Value	Unit
V _{IN}	Supply Voltage	1.8 to 13.5	V
V _{EN}	Enable Input Voltage	0 to 13.5	V
T_J	Junction Temperature	$-40 \le T_J \le +125$	°C

6. The device is not guaranteed to function outside it's Recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 $T_{J} = 25^{\circ}C \text{ with } V_{IN} = V_{OUT \ nominal} + 0.6 \ V; \ V_{EN} = V_{IN}; \ I_{L} = 10 \ mA; \ bold \ values \ indicate \\ -40^{\circ}C < T_{J} < +125^{\circ}C, \ unless \ noted. \ (Note \ 7) < 10^{\circ}C <$

Parameter	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	I _L = 10 mA			+1.5	%
	10 mA < I_{OUT} < 3 A , $V_{OUT \ nominal}$ + 0.6 V \leq V_{IN} \leq 13.5 V	-2.5		+2.5	%
Output Voltage Line Regulation	$V_{IN} = V_{OUT \text{ nominal}} + 0.6 \text{ V to } 13.5 \text{ V}; I_L = 10 \text{ mA}$		0.02	0.5	%
Output Voltage Load Regulation	I _L = 10 mA to 3 A		0.2	1	%
V _{IN} – V _{OUT} Dropout Voltage	I _L = 1.0 A (Note 10)		182	295	mV
(Note 8)	I _L = 1.5 A		220	350	mV
	I _L = 2.0 A (Note 10)		250	410	mV
	I _L = 3.0 A		315	520	mV
Ground Pin Current (Note 9)	I _L = 3.0 A		60	90 120	mA
Ground Pin Current in Shutdown	$V_{EN} \leq 0.5 V$		1.0	5	μΑ
Overload Protection Current Limit	V _{OUT} = 0 V		3.5	5	Α
Start-up Time	V_{EN} = V_{IN},V_{OUT} nominal = 2.5 V, I_{OUT} = 10 mA, C_{OUT} = 47 μF		100	500	μs
Reference Voltage		1.221 1.209	1.240	1.259 1.271	V
Adjust Pin Bias Current			100	200 350	nA

ENABLE INPUT

Enable Input Signal Levels	Regulator enable	1.4			V
	Regulator shutdown			8.0	V
Enable pin Input Current	V _{EN} ≤ 0.8 V (Regulator shutdown)			2 4	μΑ
	6.5 V > V _{EN} ≥ 1.4 V (Regulator enable)		15	30 40	μΑ

Package	Conditions / PCB Footprint	Thermal Resistance	
D2PAK-5, Junction-to-Case		$R_{\theta JC} = 2.1$ °C/W	
D2PAK-5, Junction-to-Air	PCB with 100 mm ² 2.0 oz Copper Heat Spreading Area	$R_{\theta JA} = 52^{\circ}C/W$	

^{7.} V_{OUTnominal} can be set by external resistor divider in the application. Tested for V_{OUTnominal} = 1.240 V unless noted.

8. V_{DO} = V_{IN} - V_{OUT} when V_{OUT} decreases to 98% of its nominal output voltage with V_{IN} = V_{OUT} + 1 V. Tested for V_{OUTnominal} = 2.5 V.

9. I_{IN} = I_{GND} + I_{OUT}.

10. Guaranteed by design.

TYPICAL CHARACTERISTICS

T_J = 25°C if not otherwise noted

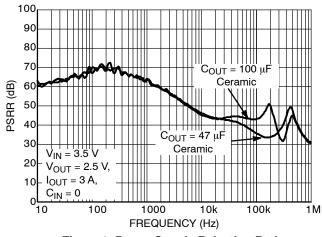


Figure 2. Power Supply Rejection Ratio

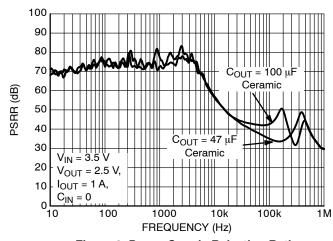


Figure 3. Power Supply Rejection Ratio

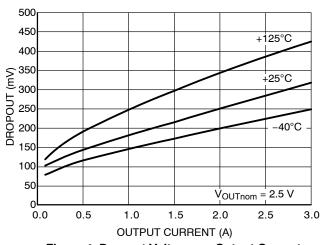


Figure 4. Dropout Voltage vs. Output Current

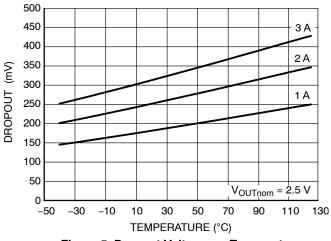


Figure 5. Dropout Voltage vs. Temperature

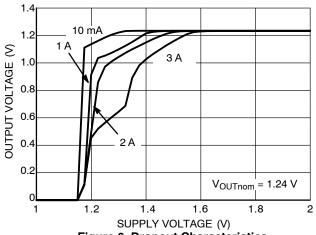


Figure 6. Dropout Characteristics

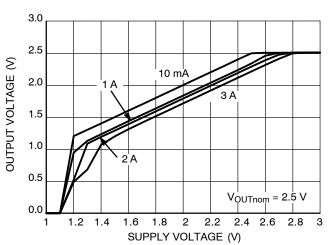


Figure 7. Dropout Characteristics

TYPICAL CHARACTERISTICS

 $T_J = 25^{\circ}C$ if not otherwise noted

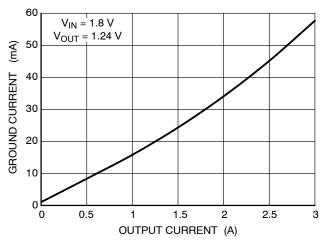


Figure 8. Ground Current vs. Output Current

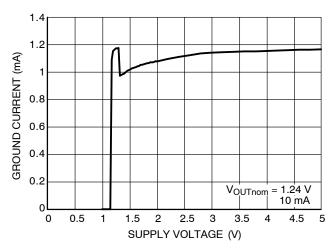


Figure 9. Ground Current vs. Supply Voltage

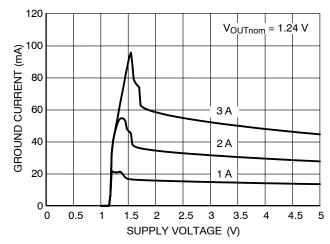


Figure 10. Ground Current vs. Supply Voltage

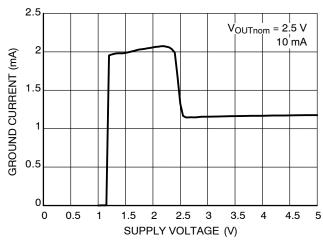


Figure 11. Ground Current vs. Supply Voltage

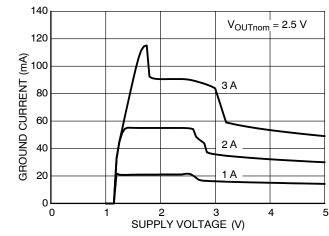


Figure 12. Ground Current vs. Supply Voltage

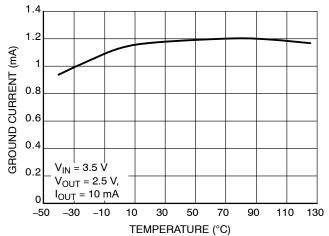


Figure 13. Ground Current vs. Temperature

TYPICAL CHARACTERISTICS

 $T_J = 25^{\circ}C$ if not otherwise noted

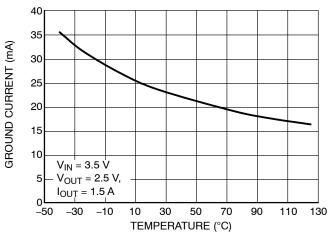


Figure 14. Ground Current vs. Temperature

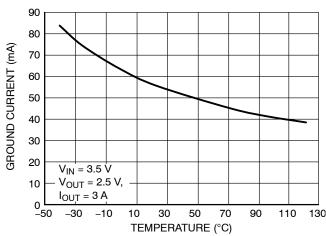


Figure 15. Ground Current vs. Temperature

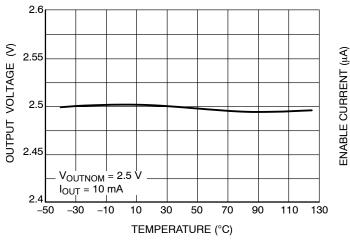


Figure 16. Output Voltage vs. Temperature

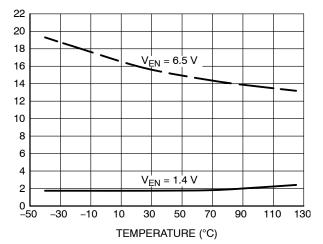


Figure 17. Enable Pin Input Current vs. Temperature

FUNCTIONAL CHARACTERISTICS

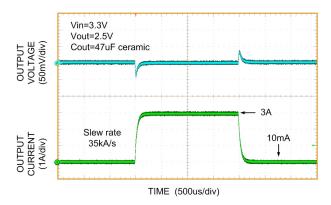


Figure 18. Load Transient Response

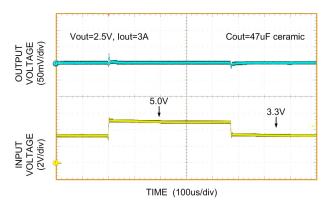


Figure 19. Line Transient Response

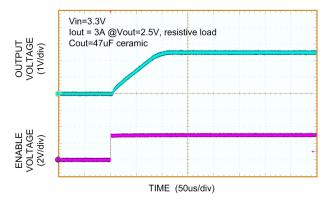


Figure 20. Enable Transient Response

APPLICATIONS INFORMATION

Output Capacitor and Stability

The NCP57302 device requires an output capacitor for stable operation. The NCP57302 is designed to operate with ceramic output capacitors. The recommended output capacitance value is 47 μF or greater. Such capacitors help to improve transient response and noise reduction at high frequency.

Input Capacitor

An input capacitor of $1.0~\mu F$ or greater is recommended when the device is more than 4 inches away from the bulk supply capacitance, or when the supply is a battery. Small, surface–mount chip capacitors can be used for the bypassing. The capacitor should be place within 1 inch of the device for optimal performance. Larger values will help to improve ripple rejection by bypassing the input of the regulator, further improving the integrity of the output voltage.

Minimum Load Current

The NCP57302 regulator is specified between finite loads. A 10 mA minimum load current is necessary for proper operation.

Enable Input

NCP57302 regulators also feature an enable input for on/off control of the device. It's shutdown state draws "zero" current from input voltage supply (only microamperes of leakage). The enable input is TTL/CMOS compatible for simple logic interface, but can be connected up to $V_{\rm IN}$.

Overcurrent and Reverse Output Current Protection

The NCP57302 regulator is fully protected from damage due to output current overload and output short conditions. When NCP57302 output is overloaded, Output Current limiting is provided. This limiting is linear; output current during overload or output short conditions is constant. These features are advantageous for powering FPGAs and other ICs having current consumption higher than nominal during their startup.

Thermal shutdown disables the NCP57302 device when the die temperature exceeds the maximum safe operating temperature.

When NCP57302 is disabled and $(V_{OUT} - V_{IN})$ voltage difference is less than 6.5 V in the application, the output structure of these regulators is able to withstand output voltage (backup battery as example) to be applied without reverse current flow.

Adjustable Voltage Design

The NCP/NCV57302 Adjustable voltage Device Output voltage is set by the ratio of two external resistors as shown in Figure 21.

The device maintains the voltage at the ADJ pin at 1.24 V referenced to ground. The current in R2 is then equal to 1.24 V / R2, and the current in R1 is the current in R2 plus the ADJ pin bias current. The ADJ pin bias current flows from V_{OUT} through R1 into the ADJ pin.

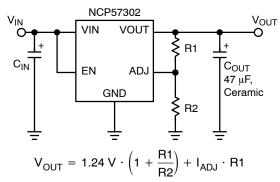


Figure 21. Adjustable Voltage Operation

For the R2 resistor value up to 15 k Ω the I_{ADJ} current impact can be neglected and the R1 resistor value can be calculated y:

$$R1 = R2 \times \left(\frac{V_{OUT}}{1.24} - 1\right)$$
 (eq. 1)

Where V_{OUT} is the desired nominal output voltage.

Thermal Considerations

The power handling capability of the device is limited by the maximum rated junction temperature (125°C). The P_D total power dissipated by the device has two components, Input to output voltage differential multiplied by Output current and Input voltage multiplied by GND pin current.

$$\textbf{P}_{\textbf{D}} = \left(\textbf{V}_{\textbf{IN}} - \textbf{V}_{\textbf{OUT}} \right) \cdot \textbf{I}_{\textbf{OUT}} + \textbf{V}_{\textbf{IN}} \cdot \textbf{I}_{\textbf{GND}} \quad \text{(eq. 2)}$$

The GND pin current value can be found in Electrical Characteristics table and in Typical Characteristics graphs. The Junction temperature T_J is

$$T_{.I} = T_A + P_D \cdot R_{\theta,IA}$$
 (eq. 3)

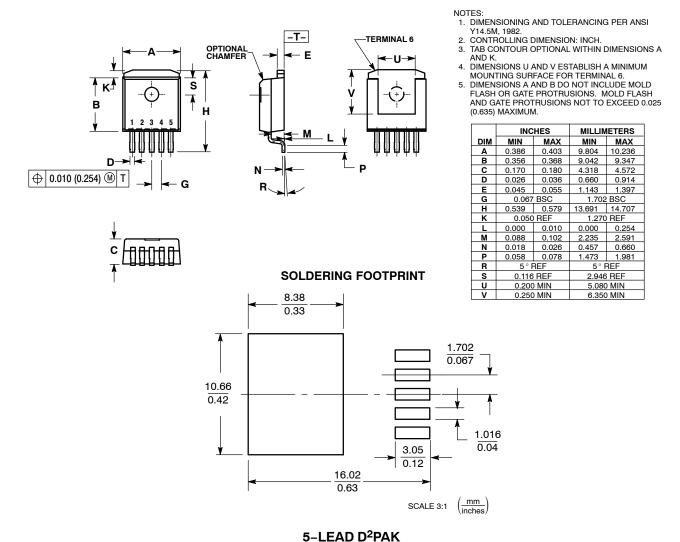
where T_A is ambient temperature and $R_{\theta JA}$ is the Junction to Ambient Thermal Resistance of the NCP/NCV57302 device mounted on the specific PCB.

To maximize efficiency of the application and minimize thermal power dissipation of the device it is convenient to use the Input to output voltage differential as low as possible.

The static typical dropout characteristics for various output voltage and output current can be found in the Typical Characteristics graphs.

ORDERING INFORMATION

Device	Output Current	Output Voltage	Junction Temp. Range	Package	Shipping [†]
NCP57302DSADJR4G	3.0 A	ADJ	–40°C to +125°C	D2PAK-5 (Pb-Free)	800 / Tape & Reel
NCV57302DSADJR4G*	3.0 A	ADJ	-40°C to +125°C	D2PAK-5 (Pb-Free)	800 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

Capable.

PACKAGE DIMENSIONS

D²PAK 5 CASE 936A-02 ISSUE C

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Oppor

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free US

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative