
Convolutional Encoder Page 1 of 2

Home > Products > Intellectual Property > Lattice IP Cores > Convolutional Encoder

Convolutional Encoder

Overview

Convolutional encoding is a process of adding redundancy to a signal stream. Lattice's Convolutional Encoder core is a parameterizable core for convolutional encoding of a continuous input data stream. The core allows variable code rates, constraint lengths and generator polynomials. The core also supports puncturing. Puncturing enables a large range of transmission rates and reduces the bandwidth requirement on the channel.

Features

Parameterizable continuous convolutional encoder

Available for ORCA Series 4 FPGA and FPSC devices.

Parameterizable constraint length from 3 to 12

Parameterizable convolutional codes

Parameterizable puncture codes

Puncturing input rates from 2 to 12

Puncturing output rates from 2 to 23

Evaluation Configurations

Convolutional Encoder Evaluation Configurations available for ORCA4 FPGAs and FPSCs1

Config #	ORCA4 PFUs ²	LUTs	Registers	External I/Os	SysMem EBRs	f _{MAX} (MHz)	Latency ³
conv_enco_o4_1_001.lpc	4	6	16	7	N/A	342	3

¹ Performance and utilization characteristics using ispLEVER software and targeting the OR4E02, package BA352, speed 2.

Convolutional Encoder Evaluation Configurations available for ispXPGA¹

² Programmable Function Unit (PFU) is a standard logic block of Lattice FPGA devices. For more information, check the data sheet of the device.

³ The latency values are for din to dout with din_valid is high whenever rfi is high. The din to dout latency relationship can be explained as follows. For non-punctured encoders, the latency value is 3 when constraint length is greater than 4, otherwise the value is 2. For punctured encoders, the latency value is (output rate + 6) when constraint length is greater than 4, otherwise the value is (output rate + 4).

Convolutional Encoder Page 2 of 2

Configu	ration	XPGA PFUs ²	LUT- 4s	Registers	External I/Os	SysMem EBRs	f _{MAX} (MHz)	Latency ³
conv_enco_x	p_1_001.lpc	6	6	22	7	N/A	510	3

¹ Performance and utilization characteristics using ispLEVER software and targeting the LFX1200B, package FE680, speed 4.

Ordering Information

Part Numbers:For ORCA4: CONV-ENCO-O4-N1

For XPGA: CONV-ENCO-XP-N1

To find out how to purchase the Convolutional Encoder IP Core, please contact your local Lattice Sales Office.

² Programmable Function Unit (PFU) is a standard logic block of Lattice FPGA devices. For more information, check the data sheet of the device.

³ The latency values are for din to dout with din_valid is high whenever rfi is high. The din to dout latency relationship can be explained as follows: For Non-punctured encoders, the latency value is 3 when Constraint Length is greater than 4 or else the value is 2. For punctured encoders, the latency value is (Output Rate + 6) when Constraint Length is greater than 4 or else the value is (Output Rate + 4).