

Current Transducer LAH 125-P

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Electrical data

$I_{_{\mathrm{PN}}}$ $I_{_{\mathrm{PM}}}$	Primary nominal rms current Primary current, measuring range		125 0 ±200				A A
R _M	Measuring resistance @		$T_A =$	$T_{\rm A} = 70 ^{\circ}{\rm C} T_{\rm A} = 85$		85 °C	
					R _{M max}		
	with ±12 V	@ ±125 A _{max}	0	49	14	48	Ω
		@ ±200 A _{max}	0	14	14	15	Ω
	with ±15 V	@ ±125 A _{max}	22	72	29	70	Ω
		@ ±200 A _{max}	22	28	29	29	Ω
$I_{\rm SN}$	Secondary nominal rms			125			mΑ
K _N	Conversion ratio			1:100	0		
$U_{\rm c}$	Supply voltage (±5 %)			±12 *	15		V
I _c	Current consumption			19 (@ :	±15V)+	$I_{\rm s}$	mA

Accuracy - Dynamic performance data

Χ ε _ι	Accuracy @ I_{PN} , T_{A} = 25 °C Linearity error		±0.41 <0.15		% %
-			Тур	Max	
$I_{\rm o}$	Offset current @ $I_{\rm P}$ = 0, $T_{\rm A}$ = 25 °	С		±0.20	mA
I _{om}	Magnetic offset current ¹⁾ @ $I_{\rm P}$ =				
OW	after an	overload of $3 \times I_{PN}$		±0.20	mA
$I_{_{ m OT}}$		-25 °C +70 °C	±0.22	±0.65	mA
01	0	-40 °C +85 °C	±0.30	±0.95	mA
t _{ra}	Reaction time to 10 % of $I_{_{\rm PN}}$		<500		ns
t,	Step response time 2) to 90 % of	I _{PN}	<1		μs
di/dt	di/dt accurately followed		>100		A/µs
BW	Frequency bandwidth (-3 dB) @	I _{PN}	DC 1	00	kHz
General data					
T _A	Ambient operating temperature		-40 +	85	°C

T _A	Ambient operating temperature		-40 +85	°C
$T_{\rm s}$	Ambient storage temperature		-40 +90	°C
Ř	Resistance of secondary winding	@ T _A = 70 °C	34	Ω
0		@ $T_{A} = 85 ^{\circ}\text{C}$	35	Ω
т	Mass		30	g
	Standards		EN 50178: 1997	

<u>Notes</u>: ¹⁾ The result of the coercive field of the magnetic circuit ²⁾ With a di/dt of 100 A/µs.

*I*_{PN} = **125 A**

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulating plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.

Current Transducer LAH 125-P

Isolation characteristics					
$egin{array}{c} U_{ m d} \ \hat{U}_{ m W} \end{array}$	Rms voltage for AC insulation test, 50 Hz, 1 min Impulse withstand voltage 1.2/50 µs	5 12	kV kV		
U _e	Partial discharge extinction rms voltage @ 10 pC	>2 Min	kV		
d _{Cp} d _{CI} CTI	Creepage distance ¹⁾ Clearance ¹⁾ Comparative tracking index (group IIIa)	14.25 14.25 175	mm mm		

Note: ¹⁾ On PCB with soldering pattern UTEC93-703.

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

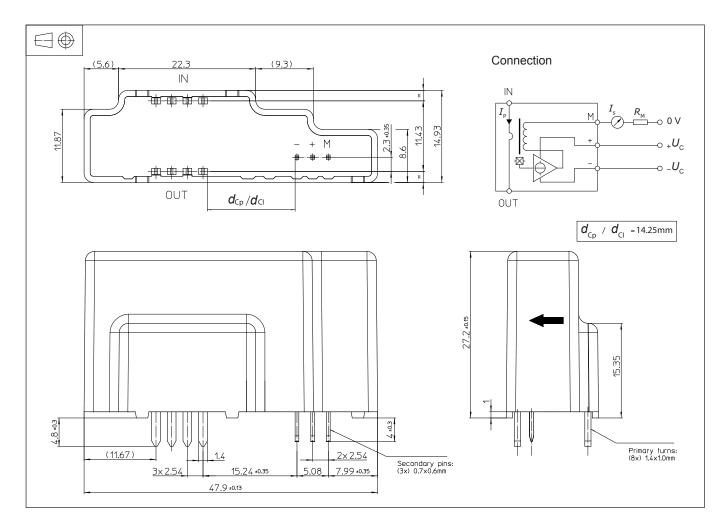
- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
$d_{\rm Cp}, d_{\rm Cl}, \hat{U}_{\rm W}$	Rated insulation voltage	Nominal voltage
Basic insulation	1250 V	1000 V
Reinforced insulation	630 V	600 V

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.


Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Dimensions LAH 125-P (in mm)

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ±0.2 mm 8 pins 1.4 × 1 mm 2 mm
- 3 pins 0.7 × 0.6 mm
- 1.2 mm

Remarks

- The temperature of the primary circuit board trace connected to the primrary pins of the transducer should not exceed 100 °C during operation.
- $I_{\rm s}$ is positive when $I_{\rm p}$ flows in the direction of the arrow.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.