

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

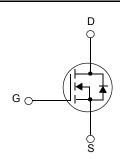
March 2015

FDD8447L 40V N-Channel PowerTrench® MOSFET **40V**, **50A**, **8.5m** Ω

Features

- Max $r_{DS(on)}$ = 8.5m Ω at V_{GS} = 10V, I_D = 14A
- Max $r_{DS(on)}$ = 11.0m Ω at V_{GS} = 4.5V, I_D = 11A
- Fast Switching
- RoHS Compliant

General Description


This N-Channel MOSFET has been produced using Fairchild Semiconductor's proprietary PowerTrench® technology to deliver low $r_{DS(on)}$ and optimized BV_{DSS} capability to offer superior performance benefit in the application.

Applications

- Inverter
- Power Supplies

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DS}	Drain to Source Voltage	40	V
V_{GS}	Gate to Source Voltage	±20	V
	Drain Current -Continuous (Package limited) T _C = 25°C	50	
	-Continuous (Silicon limited) T _C = 25°C	57	^
ΙD	-Continuous T _A = 25°C (Note 1a)	15.2	_ A
	-Pulsed	100	
I _S	Max Pulse Diode Current	100	Α
E _{AS}	Drain-Source Avalanche Energy (Note 3)	153	mJ
	Power Dissipation T _C = 25°C	44	
P_D	T _A = 25°C (Note 1a)	3.1	W
	T _A = 25°C (Note 1b)	1.3	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case		2.8	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Not	e 1a)	40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Not	e 1b)	96	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8447L	FDD8447L	D-PAK(TO-252)	13"	16mm	2500 units

Electrical Characteristics T_J = 25°C unless otherwise noted

Symbol	Parameter Test Conditions		Min	Тур	Max	Units
Off Chara	cteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	40			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		35		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 32V, V _{GS} = 0V			1	μА
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{GS} = 0V$			±100	nA

On Characteristics (Note 2)

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.9	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		-5		mV/°C
r _{DS(on)}		V _{GS} = 10V, I _D = 14A		7.0	8.5	
	Static Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 11A$		8.5	11.0	mΩ
		V _{GS} = 10V, I _D = 14A, T _J =125°C		10.4	14.0	
9 _{FS}	Forward Transconductance	V _{DS} = 5V, I _D = 14A		58		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 20V, V _{GS} = 0V, f = 1MHz	1970	pF
C _{oss}	Output Capacitance		250	pF
C _{rss}	Reverse Transfer Capacitance		150	pF
R_g	Gate Resistance	f = 1MHz	1.27	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	.,	12	21	ns
t _r	Rise Time	$V_{DD} = 20V, I_{D} = 1A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$	12	21	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} - 10V, K _{GEN} - 052	38	61	ns
t _f	Fall Time		9	18	ns
$Q_{g(TOT)}$	Total Gate Charge, V _{GS} = 10V	-V _{DD} = 20V, I _D = 14A -V _{GS} = 10V	37	52	nC
$Q_{g(TOT)}$	Total Gate Charge, V _{GS} = 5V		20	28	nC
Q _{gs}	Gate to Source Gate Charge	V _{GS} - 10V	6		nC
Q_{gd}	Gate to Drain "Miller" Charge		7		nC

Drain-Source Diode Characteristics

I_S	Maximum Continuous Drain-Source Diode	Maximum Continuous Drain-Source Diode Forward Current (No.			2.6	Α
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 14A	(Note 2)	8.0	1.2	V
t _{rr}	Reverse Recovery Time	1 - 14A di/dt - 100/	V/o	22		ns
Q _{rr}	Reverse Recovery Charge	I _F = 14A, di/dt = 100A/μs		11		nC

Notes:

Reuc is guaranteed by design while Reua is determined by the user's board design.

a. 40°C/W when mounted on a 1 in2 pad of 2 oz copper

b. 96°C/W when mounted on a minimum pad.

^{2:} Pulse Test: Pulse Width < $300\mu\text{s},$ Duty cycle < 2.0%.

^{3:} Starting TJ = 25° C, L = 1mH, IAS = 17.5A, VDD = 40V, VGS = 10V.

Typical Characteristics

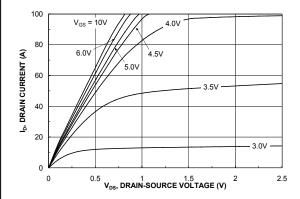


Figure 1. On-Region Characteristics

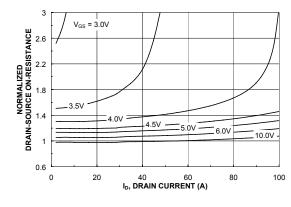


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

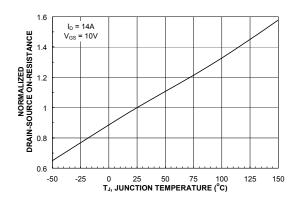


Figure 3. On-Resistance Variation with Temperature

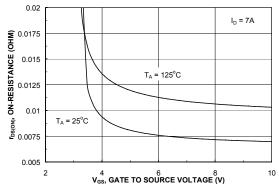


Figure 4. On-Resistance Variation with Gate-to-Source Voltage

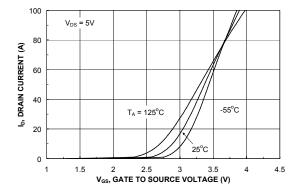


Figure 5. Transfer Characteristics

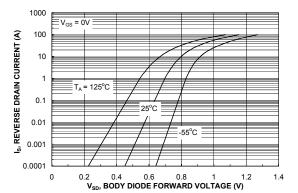


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Typical Characteristics

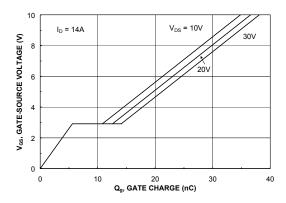


Figure 7. Gate Charge Characteristics

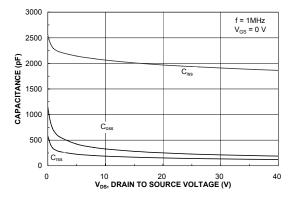


Figure 8. Capacitance Characteristics

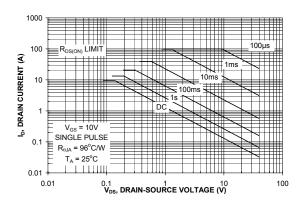


Figure 9. Maximum Safe Operating Area

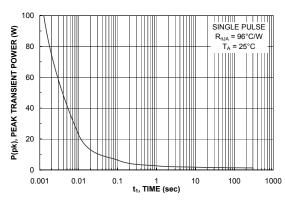


Figure 10. Single Pulse Maximum Power Dissipation

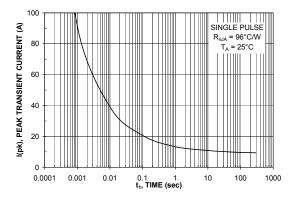


Figure 11. Single Pulse Maximum Peak Current

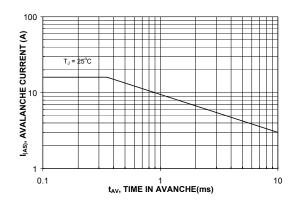


Figure 12. Unclamped Inductive Switching Capability

Typical Characteristics

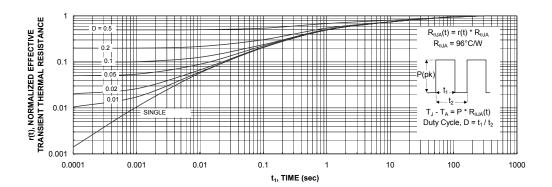
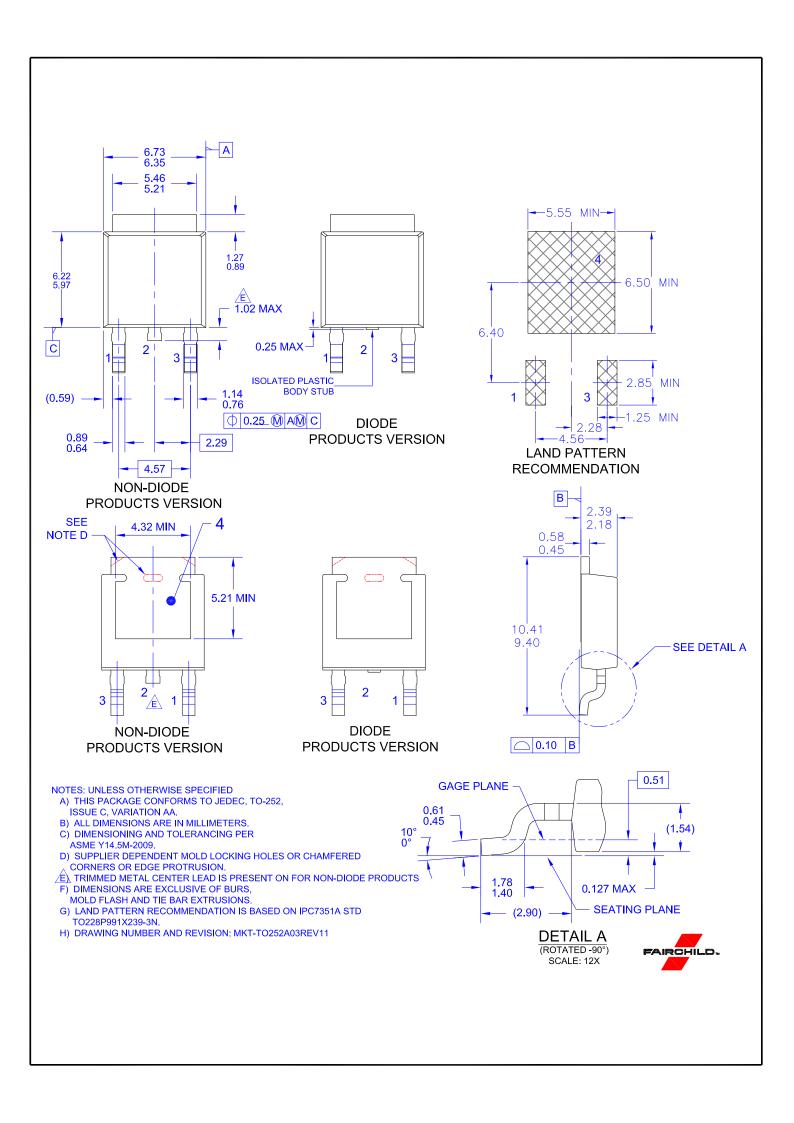



Figure 13. Transient Thermal Response Curve

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative