
Raspberry gPIo 

 


Introduction
Relative to its size the Raspberry Pi is a powerhorse of a computer – it can 
drive HDMI displays, process mouse, keyboard, and camera inputs, 
connect to the Internet, and run full-featured Linux distributions. But it’s 
more than just a small computer, it’s a hardware prototyping tool! The Pi 
has bi-directional I/O pins, which you can use to drive LEDs, spin motors, 
or read button presses.

This tutorial applies to the Raspberry Pi Model B, the Raspberry Pi Model 
B+ and the new Raspberry Pi 2 Model B.

Example Pi Wedge on a model B

Driving the Raspberry Pi’s I/O lines requires a bit of programming. 
Programming in what language? Take your pick! A quick glance at the 
Raspberry Pi GPIO examples shows that there are dozens of 
programming-language-choices. We’ve pared that list down, and ended up 
with two really solid, easy tools for driving I/O: Python and C (using the 
WiringPi library).

If you’ve never driven an LED or read in a button press using the Raspberry 
Pi, this tutorial should help to get you started. Whether you’re a fan of the 
easily-readable, interpretive scripting language Python or more of a die-
hard C programmer, you’ll find a programming option that suits our needs.

Covered In This Tutorial

In this tutorial we’ll show two different approaches to reading and driving 
the Raspberry Pi’s GPIO pins: python and C. Here’s a quick overview of 
what’s covered:

• GPIO Pinout – An overview of the Pi’s GPIO header.
• Python API and Examples

Page 1 of 17



Raspberry gPIo SparkFun Wish List

◦ RPi.GPIO API – An overview of the Python functions you can 
use to drive GPIO.

◦ RPi.GPIO Example – An example Python script that shows off 
both input and output functionality.

• C (and WiringPi) API and Examples
◦ WiringPi Setup and Test – How to install WiringPi and then 

take it for a test drive on the command line.
◦ WiringPi API – An overview of the basic functions provided by 

the WiringPi library.
◦ WiringPi Example – A simple example program that shows off 

WiringPi’s input and output capabilities.
• Using an IDE – How to download and install Geany. Our favorite IDE 

for programming on the Raspberry Pi.

Each programming language has it’s share of pros and cons. Python is 
easy (especially if your a programming novice) and doesn’t require any 
compilation. C is faster and may be easier for those familiar with the old 
standby.

What You’ll Need

Here’s a wishlist-full of everything we used for this tutorial.

Raspberry Pi - Model B 
DEV-11546

Who wants pi? The Raspberry Pi has made quite a splash since it wa…

SparkFun Pi Wedge 
KIT-12652

This is the SparkFun Pi Wedge, a small board that connects to the Ra…

(2) Breadboard - Self-Adhesive (White) 
PRT-12002

This is your tried and true white solderless breadboard. It has 2 power …

Jumper Wires Standard 7" M/M Pack of 30 
PRT-11026

If you need to knock up a quick prototype there's nothing like having a …

Momentary Pushbutton Switch - 12mm Square 
COM-09190

This is a standard 12mm square momentary button. What we really li…

Resistor 330 Ohm 1/6 Watt PTH - 20 pack 
COM-11507

1/6 Watt, +/- 5% tolerance PTH resistors. Commonly used in breadbo…

LED - Basic Red 5mm 
COM-09590

LEDs - those blinky things. A must have for power indication, pin stat…

Some further notes on that bill of materials:

• Your Raspberry Pi should have an SD card with Raspbian installed
on it. Check out our How to Install Raspbian tutorial for help with that.

• We’re also assuming you have the necessary mouse, keyboard and 
display hooked up to your Pi.

• Your Pi will need an Internet connection to download WiringPi. You 
can use either Ethernet or WiFi (check out our Raspberry Pi WiFi 
tutorial for help with that.

• The Pi Wedge isn’t quite required, but it does make life a lot easier. If 
you want to skip the breakout, you can instead use Male-to-Female 
jumpers to connect from Pi to breadboard.

• Of course, feel free to swap in your preferred button and LEDs.

Page 2 of 17



Suggested Reading

This tutorial will assume you have Raspbian installed on your Raspberry 
Pi. Raspbian is the most popular, well-supported Linux distribution available 
for the Pi. If you don’t have Raspbian set up, check out our Setting Up 
Raspbian tutorial before continuing down this rabbit hole.

Other, more general purpose tutorials you might be interested in reading 
include:

• Pulse-Width Modulation – You can use PWM to dim LEDs or send 
signals to servo motors. The RPi has a single PWM-capable pin.

• Light-Emitting Diodes (LEDs) – To test the output capabilities of the 
Pi, we’ll be driving a lot of LEDs.

• Switch Basics – And to test inputs to the Pi, we’ll be using buttons 
and switches.

• Pull-Up Resistors – The Pi has internal pull-up (and pull-down) 
resistors. These are very handy when you’re interfacing buttons with 
the little computer.

Suggested Viewing

Check out our Raspberry Pi video tutorials if you want a more visual 
introduction to the Pi!

• Getting Started With The Raspberry Pi 
◦ Part 1
◦ Part 2
◦ Part 3

GPIO Pinout
The Raspberry Pi offers up its GPIO over a standard male header on the 
board. Over the years the header has expanded from 26 pins to 40 pins 
while maintaining the original pinout.

Header configuration for early and late model Pi computers

If you’re coming to the Raspberry Pi as an Arduino user, you’re probably 
used to referencing pins with a single, unique number. Programming the 
Pi’s hardware works much the same, each pin has its own number…and 
then some.

There are (at least) two, different numbering schemes you may encounter 
when referencing Pi pin numbers: (1) Broadcom chip-specific pin numbers 
and (2) P1 physical pin numbers. You’re usually free to use either number-
system, but many programs require that you declare which scheme you’re 
using at the very beginning of your program.

Here’s a table showing all 26 pins on the P1 header, including any special 
function they may have, and their dual numbers:

Page 3 of 17



Element14 pin description, annotated

Wedge 
Silk

Python 
(BCM)

WiringPi 
GPIO

Name
P1 Pin 

Number
Name

WiringPi 
GPIO

Python 
(BCM)

Wedge 
Silk

3.3v DC 
Power

1 2 5v DC Power

SDA 8
GPIO02 

(SDA1, I2C)
3 4 5v DC Power

SCL 9
GPIO03 

(SCL1, I2C)
5 6 Ground

G4 4 7
GPIO04 

(GPIO_GCLK)
7 8

GPIO14 
(TXD0)

15 TXO

Ground 9 10
GPIO15 
(RXD0)

16 RXI

G17 17 0
GPIO17 

(GPIO_GEN0)
11 12

GPIO18 
(GPIO_GEN1)

1 18 G18

G27 27 2
GPIO27 

(GPIO_GEN2)
13 14 Ground

G22 22 3
GPIO22 

(GPIO_GEN3)
15 16

GPIO23 
(GPIO_GEN4)

4 23 G23

3.3v DC 
Power

17 18
GPIO24 

(GPIO_GEN5)
5 24 G24

MOSI 12
GPIO10 

(SPI_MOSI)
19 20 Ground

MISO 13
GPIO09 

(SPI_MISO)
21 22

GPIO25 
(GPIO_GEN6)

6 25 G25

(no 
worky 

14)

GPIO11 
(SPI_CLK)

23 24
GPIO08 

(SPI_CE0_N)
10 CD0

Ground 25 26
GPIO07 

(SPI_CE1_N)
11 CE1

IDSD 30
ID_SD (I2C ID 

EEPROM)
27 28

ID_SC (I2C ID 
EEPROM)

31 IDSC

G05 5 21 GPIO05 29 30 Ground
G6 6 22 GPIO06 31 32 GPIO12 26 12 G12
G13 13 23 GPIO13 33 34 Ground
G19 19 24 GPIO19 35 36 GPIO16 27 16 G16
G26 26 25 GPIO26 37 38 GPIO20 28 20 G20

Ground 39 40 GPIO21 29 21 G21
This table shows the Pi pin header numbers, element14 given names, 
wiringPi numbers, Python numbers, and related silkscreen on the wedge.

Page 4 of 17



Note: The Broadcom pin numbers above relate to Pi Model 2 and later 
only. If you have an older Rev1 Pi, check out this link for your Broadcom pin 
numbers.

As you can see, the Pi not only gives you access to the bi-directional I/O 
pins, but also Serial (UART), I C, SPI, and even some PWM (“analog 
output”).

Hardware Setup
To get a head start you can assemble the circuit now. We’ll use this setup 
for both the C and Python examples. We’ll use two LEDs to test the output 
functionality (digital and PWM), and a button to test the input.

connections to original pi

connections to the pi B + and pi 2 B

2

Page 5 of 17



Our two LEDs are connected to the Pi’s GPIO 18 and GPIO 23 – those 
are the Broadcom chip-specific numbers. If you’re basing your wiring off the 
P1 connector pin numbers, that’d be pins 12 and 16.

The button is connected to Broadcom GPIO 17, aka P1 pin 11.

If you have Pi Wedge, the hookup should be pretty straight-forward. It’ll look 
a little something like this when you’re done:

If you don’t have a Pi Wedge, male-to-female jumper wires help to make an 
easy transition from Pi to breadboard.

Python (RPi.GPIO) API
We’ll use the RPi.GPIO module as the driving force behind our Python 
examples. This set of Python files and source is included with Raspbian, 
so assuming you’re running that most popular Linux distribution, you don’t 
need to download anything to get started.

On this page we’ll provide an overview of the basic function calls you can 
make using this module.

Setup Stuff

In order to us RPi.GPIO throughout the rest of your Python script, you need 
to put this statement at the top of your file:

import RPi.GPIO as GPIO

That statement “includes” the RPi.GPIO module, and goes a step further by 
providing a local name – GPIO – which we’ll call to reference the module 
from here on.

Pin Numbering Declaration

After you’ve included the RPi.GPIO module, the next step is to determine 
which of the two pin-numbering schemes you want to use:

1. GPIO.BOARD – Board numbering scheme. The pin numbers follow the 
pin numbers on header P1.

2. GPIO.BCM – Broadcom chip-specific pin numbers. These pin 
numbers follow the lower-level numbering system defined by the 
Raspberry Pi’s Broadcom-chip brain.

If you’re using the Pi Wedge, we recommend using the GPIO.BCM definition 
– those are the numbers silkscreened on the PCB. The GPIO.BOARD may 
be easier if you’re wiring directly to the header.

To specify in your code which number-system is being used, use the 

Page 6 of 17



GPIO.setmode() function. For example…

GPIO.setmode(GPIO.BCM)

…will activate the Broadcom-chip specific pin numbers.

Both the import and setmode lines of code are required, if you want to 
use Python.

Setting a Pin Mode

If you’ve used Arduino, you’re probably familiar with the fact that you have 
to declare a “pin mode” before you can use it as either an input or output. 
To set a pin mode, use the setup([pin], [GPIO.IN, GPIO.OUT] function. 
So, if you want to set pin 18 as an output, for example, write:

GPIO.setup(18, GPIO.OUT)

Remember that the pin number will change if you’re using the board 
numbering system (instead of 18, it’d be 12).

Outputs

Digital Output

To write a pin high or low, use the 
GPIO.output([pin], [GPIO.LOW, GPIO.HIGH]) function. For example, if 

you want to set pin 18 high, write:

GPIO.output(18, GPIO.HIGH)

Writing a pin to GPIO.HIGH will drive it to 3.3V, and GPIO.LOW will set it to 
0V. For the lazy, alternative to GPIO.HIGH and GPIO.LOW , you can use 
either 1 , True , 0 or False to set a pin value.

PWM (“Analog”) Output

PWM on the Raspberry Pi is about as limited as can be – one, single pin is 
capable of it: 18 (i.e. board pin 12).

To initialize PWM, use GPIO.PWM([pin], [frequency]) function. To make 
the rest of your script-writing easier you can assign that instance to a 
variable. Then use pwm.start([duty cycle]) function to set an initial 
value. For example…

pwm = GPIO.PWM(18, 1000)
pwm.start(50)

…will set our PWM pin up with a frequency of 1kHz, and set that output to a 
50% duty cycle.

To adjust the value of the PWM output, use the 
pwm.ChangeDutyCycle([duty cycle]) function. [duty cycle] can be any 

value between 0 (i.e 0%/LOW) and 100 (ie.e 100%/HIGH). So to set a pin 
to 75% on, for example, you could write:

pwm.ChangeDutyCycle(75)

To turn PWM on that pin off, use the pwm.stop() command.

Simple enough! Just don’t forget to set the pin as an output before you use 
it for PWM.

Inputs

Page 7 of 17



If a pin is configured as an input, you can use the GPIO.input([pin])
function to read its value. The input() function will return either a True or 
False indicating whether the pin is HIGH or LOW. You can use an if

statement to test this, for example…

if GPIO.input(17):
print("Pin 11 is HIGH")

else:
print("Pin 11 is LOW")

…will read pin 17 and print whether it’s being read as HIGH or LOW.

Pull-Up/Down Resistors

Remember back to the GPIO.setup() function where we declared whether 
a pin was an input or output? There’s an optional third parameter to that 
function, which you can use to set pull-up or pull-down resistors. To use a 
pull-up resistor on a pin, add pull_up_down=GPIO.PUD_UP as a third 
parameter in GPIO.setup . Or, if you need a pull-down resistor, instead use 
pull_up_down=GPIO.PUD_DOWN .

For example, to use a pull-up resistor on GPIO 17, write this into your 
setup:

GPIO.setup(17, GPIO.IN, pull_up_down=GPIO.PUD_UP)

If nothing is declared in that third value, both pull-resistors will be disabled.

Etc.

Delays

If you need to slow your Python script down, you can add delays. To 
incorporate delays into your script, you’ll need to include another module: 
time . This line, at the top of your script, will do it for you:

include time 

Then, throughout the rest of your script, you can use 
time.sleep([seconds]) to give your script a rest. You can use decimals to 

precisely set your delay. For example, to delay 250 milliseconds, write:

time.sleep(0.25)

The time module includes all sorts of useful functions, on top of sleep . 
Check out the reference here.

Garbage Collecting

Once your script has run its course, be kind to the next process that might 
use your GPIOs by cleaning up after yourself. Use the GPIO.cleanup()
command at the end of your script to release any resources your script may 
be using.

Your Pi will survive if you forget to add this command, but it is good practice 
to include wherever you can.

Now then. Lets incorporate everything we learned here into an example 
script to try everything out.

Python (RPi.GPIO) Example
Follow along as we use the basic RPi.GPIO functions from the last page to 
create a simple example GPIO script.

Page 8 of 17



1. Create a File

To begin, we need to create a Python file. You can do this through the GUI-
based file explorer. Or, if you want a terminal-based solution, open up 
LXTerminal, and navigate to a folder you’d like the file to live (or create 
one). And create a new folder with these commands:

pi@raspberrypi ~/code $ mkdir python
pi@raspberrypi ~/code $ cd python
Create a file – we’ll call ours “blinker” – and terminate it with a .py
extension. Then open it up in your favorite text editor. Nano works, as does 
Pi’s default GUI text editor, Leafpad.

pi@raspberrypi ~/code/python $ touch blinker.py
pi@raspberrypi ~/code/python $ leafpad blinker.py &
That’ll open up a blank text file (the “&” will open it in the background, 
leaving the terminal in place for future use). Time for some code!

2. Codify

Here’s an example sketch that incorporates everything we learned on the 
last page. It does a little input and output, and even handles some PWM. 
This assumes you’ve set up the circuit as arranged on the Hardware Setup 
page.

Page 9 of 17



# External module imports
import RPi.GPIO as GPIO
import time

# Pin Definitons:
pwmPin = 18 # Broadcom pin 18 (P1 pin 12)
ledPin = 23 # Broadcom pin 23 (P1 pin 16)
butPin = 17 # Broadcom pin 17 (P1 pin 11)

dc = 95 # duty cycle (0­100) for PWM pin

# Pin Setup:
GPIO.setmode(GPIO.BCM) # Broadcom pin­numbering scheme
GPIO.setup(ledPin, GPIO.OUT) # LED pin set as output
GPIO.setup(pwmPin, GPIO.OUT) # PWM pin set as output
pwm = GPIO.PWM(pwmPin, 50)  # Initialize PWM on pwmPin 100Hz f
requency
GPIO.setup(butPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Butto
n pin set as input w/ pull­up

# Initial state for LEDs:
GPIO.output(ledPin, GPIO.LOW)
pwm.start(dc)

print("Here we go! Press CTRL+C to exit")
try:

while 1:
if GPIO.input(butPin): # button is released

            pwm.ChangeDutyCycle(dc)
            GPIO.output(ledPin, GPIO.LOW)

else: # button is pressed:
            pwm.ChangeDutyCycle(100­dc)
            GPIO.output(ledPin, GPIO.HIGH)
            time.sleep(0.075)
            GPIO.output(ledPin, GPIO.LOW)
            time.sleep(0.075)
except KeyboardInterrupt: # If CTRL+C is pressed, exit cleanl
y:
    pwm.stop() # stop PWM
    GPIO.cleanup() # cleanup all GPIO

After you’ve typed all of that in (don’t forget your whitespace!) save.

Running the Script

The RPi.GPIO module requires administrator privileges, so you’ll need to 
tag a sudo on to the front of your Python script call. To run your 
“blinker.py” script, type:

pi@raspberrypi ~/code/python $ sudo python blinker.py
With the code running, press the button to turn on the digital LED. The 
PWM-ing LED will invert its brightness when you press the button as well.

Press CTRL+C to cleanly exit the script.

C (WiringPi) Setup

Page 10 of 17



Python is a great GPIO-driving option, especially if you’re used to it. But if 
you’re a rickety old programmer, unfamiliar with the whitespace-driven 
scripting language, and would rather live within the happy confines of C, 
then let me introduce the WiringPi library.

1) Install Wiring Pi

WiringPi is not included with Raspbian, so, to begin, you’ll need to 
download and install it. That means your Pi will need a connection to the 
Internet – either via Ethernet or WiFi.

Once your Pi is Internet-enabled, visit the WiringPi homepage for 
instructions on downloading and installing the library.

We highly recommend using Git to download the latest version. As long as 
you have Git installed, these commands should be all you need to 
download and install WiringPi:

pi@raspberrypi ~/code $ git clone 
git://git.drogon.net/wiringPi
pi@raspberrypi ~/code $ cd wiringPi
pi@raspberrypi ~/code/wiringPi $ git pull origin
pi@raspberrypi ~/code/wiringPi $ cd wiringPi
pi@raspberrypi ~/code/wiringPi/wiringPi $ ./build

2) Test Wiring Pi

WiringPi is awesome because it’s actually more than just a C library, it 
includes a command-line utility as well! You can test your installation of 
WiringPi with the gpio utility.

Open up a terminal, and try some of these system calls:

pi@raspberrypi ~/code $ gpio -g mode 18 output
pi@raspberrypi ~/code $ gpio -g write 18 1
pi@raspberrypi ~/code $ gpio -g write 18 0
As long as your LED is still connected to pin 18 it should blink on and off 
following the last two commands.

Or, to test the button, type:

pi@raspberrypi ~/code $ gpio -g mode 17 up
pi@raspberrypi ~/code $ gpio -g read 17
Either 0 or 1 will be returned, depending on whether the button is pressed 
or not. Try typing that last line again while pressing the button.

The gpio utility, as stated in the manual, is a “swiss army knife” command-
line tool. We highly recommend checking out the man page (type 
man gpio ) to discover everything it can do.

If you’re ready to get on with some C-style programming, head over to the 
next page. We’ll overview some of the most useful functions provided by 
the WiringPi library.

C (WiringPi) API
On this page we’ll discuss some of the most useful functions provided by 
the WiringPi library. It’s tailored to look a lot like Arduino, so if you’ve done 
any Arduino programming some of this may look familiar.

Setup Stuff

To begin, you’ll need to include the library. At the beginning of your 
program, type:

Page 11 of 17



#include <wiringPi.h>

After you’ve included the library, your first steps should be to initialize it. 
This step also determines which pin numbering scheme you’ll be using 
throughout the rest of your program. Pick one of these function calls to 
initialize the library:

wiringPiSetup(); // Initializes wiringPi using wiringPi's siml
ified number system.
wiringPiSetupGpio(); // Initializes wiringPi using the Broadco
m GPIO pin numbers

WiringPi’s simplified number system introduces a third pin-numbering 
scheme. We didn’t show it in the table earlier, if you want to use this 
scheme, check out their pins page for an overview.

Pin Mode Declaration

To set a pin as either an input or output, use the pinMode([pin], [mode])
function. Mode can be either INPUT , OUTPUT , or PWM_OUTPUT .

For example, to set pin 22 as an input, 23 as an output, and 18 as a PWM, 
write:

wiringPiSetupGpio()
pinMode(17, INPUT);
pinMode(23, OUTPUT);
pinMode(18, PWM_OUTPUT);

Keep in mind that the above example uses the Broadcom GPIO pin-
numbering scheme.

Digital Output

The digitalWrite([pin], [HIGH/LOW]) function can be used to set an 
output pin either HIGH or LOW. Easy enough, if you’re an Arduino user.

To set pin 23 as HIGH, for example, simply call:

digitalWrite(23, HIGH);

PWM (“Analog”) Output

For the lone PWM pin, you can use pwmWrite([pin], [0­1023]) to set it to 
a value between 0 and 1024. As an example…

pwmWrite(18, 723);

…will set pin 18 to a duty cycle around 70%.

Digital Input

If you’re an Arduino veteran, you probably know what comes next. To read 
the digital state of a pin, digitalRead([pin]) is your function. For 
example…

if (digitalRead(17))
printf("Pin 17 is HIGH\n");

else
printf("Pin 17 is LOW\n");

…will print the status of pin 22. The digitalRead() function returns 1 if the 
pin is HIGH and 0 if it’s LOW.

Page 12 of 17



Pull-Up/Down Resistors

Need some pull-up or pull-down resistors on your digital input? Use the 
pullUpDnControl([pin], [PUD_OFF, PUD_DOWN, PUD_UP]) function to pull 

your pin.

For example, if you have a button on pin 22 and need some help pulling it 
up, write:

pullUpDnControl(17, PUD_UP);

That comes in handy if your button pulls low when it’s pressed.

Delays

Slowing down those blinking LEDs is always useful – assuming you actually 
want to differentiate between on and off. WiringPi includes two delay 
functions to choose from: delay([milliseconds]) and 
delayMicroseconds([microseconds]) . The standard delay will halt the 

program flow for a specified number of milliseconds. If you want to delay for 
2 seconds, for example, write:

delay(2000);

Or you can use delayMicroseconds() to get a more precise, microsecond-
level delay.

Now that you know the basics, let’s apply them to an example piece of 
code.

C (WiringPi) Example
The intention of WiringPi is to make your I/O code look as Arduino-ified as 
possible. However keep in mind that we’re no longer existing in the comfy 
confines of Arduino – there’s no loop() or setup() , just int main(void) .

Follow along here as we create an example C file, incorporate the WiringPi 
library, and compile and run that program.

Create blinker.c

Using the terminal, navigate to a folder of your choice and create a new file 
– “blinker.c”. Then open that file in a text editor (Nano or Leafpad are 
included with Raspbian).

pi@raspberrypi ~/code $ mkdir c_example
pi@raspberrypi ~/code $ cd c_example
pi@raspberrypi ~/code/c_example $ touch blinker.c
pi@raspberrypi ~/code/c_example $ leafpad blinker.c &
The commands above will open your “blinker.c” file in Leafpad, while 
leaving your terminal functioning – in-directory – in the background.

Program!

Here’s an example program that includes a little bit of everything we talked 
about on the last page. Copy and paste, or write it yourself to get some 
extra reinforcement.

Page 13 of 17



#include <stdio.h>    // Used for printf() statements
#include <wiringPi.h> // Include WiringPi library!

// Pin number declarations. We're using the Broadcom chip pin 
numbers.
const int pwmPin = 18; // PWM LED ­ Broadcom pin 18, P1 pin 12
const int ledPin = 23; // Regular LED ­ Broadcom pin 23, P1 pi
n 16
const int butPin = 17; // Active­low button ­ Broadcom pin 1
7, P1 pin 11

const int pwmValue = 75; // Use this to set an LED brightness

int main(void)
{ 

// Setup stuff:
wiringPiSetupGpio(); // Initialize wiringPi ­­ using Broad

com pin numbers

pinMode(pwmPin, PWM_OUTPUT); // Set PWM LED as PWM output
pinMode(ledPin, OUTPUT);     // Set regular LED as output
pinMode(butPin, INPUT);      // Set button as INPUT
pullUpDnControl(butPin, PUD_UP); // Enable pull­up resisto

r on button

printf("Blinker is running! Press CTRL+C to quit.\n");

// Loop (while(1)):
while(1)

    { 
if (digitalRead(butPin)) // Button is released if thi

s returns 1
        { 

pwmWrite(pwmPin, pwmValue); // PWM LED at bright s
etting

digitalWrite(ledPin, LOW);     // Regular LED off
        } 

else // If digitalRead returns 0, button is pressed
        { 

pwmWrite(pwmPin, 1024 ­ pwmValue); // PWM LED at d
im setting

// Do some blinking on the ledPin:
digitalWrite(ledPin, HIGH); // Turn LED ON
delay(75); // Wait 75ms
digitalWrite(ledPin, LOW); // Turn LED OFF
delay(75); // Wait 75ms again

        } 
    } 

return 0;
} 

Once you’ve finished, Save and return to your terminal.

Compile and Execute!

Unlike Python, which is an interpreted language, before we can run our C 
program, we need to build it.

To compile our program, we’ll invoke gcc. Enter this into your terminal, 
and wait a second for it to finish compiling:

pi@raspberrypi ~/code/c_example $ gcc -o blinker 
blinker.c -l wiringPi

Page 14 of 17



That command will create an executable file – “blinker”. The “-l wiringPi” 
part is important, it loads the wiringPi library. A successful compilation won’t 
produce any messages; if you got any errors, try to use the messages to 
track them down.

Type this to execute your program:

pi@raspberrypi ~/code/c_example $ sudo ./blinker
The blinker program should begin doing it’s thing. Make sure you’ve set up 
the circuit just as modeled on the hardware setup page. Press the button to 
blink the LED, release to have it turn off. The PWM-ing LED will be 
brightest when the button is released, and dim when the button is pressed.

If typing all of that code in a bland, black-and-white, non-highlighting editor 
hurt your brain, check out the next page where we introduce a simple IDE 
that makes your programming more efficient.

Using an IDE!
Thus far we’ve been using simple text-editors – Leafpad or Nano – to write 
our Python and C programs. So seasoned programmers are probably 
missing a whole lot of features assumed of even the most basic editors: 
auto-tabbing, context-highlighting, even automated building. If you want to 
incorporate any of those features, we recommend using an IDE (integrated 
development environment). One of our favorite Pi IDE’s is Geany, here’s 
how to get it up and running.

Download and Install Geany

Geany isn’t included with Raspbian, so you’ll need an Internet connection to 
download it. You can use the magical apt­get utility to install it with this 
command:

pi@raspberrypi ~/code $ sudo apt-get update
pi@raspberrypi ~/code $ sudo apt-get install geany
Once installed, you can run Geany by going to the “Start” menu, and 
looking under the “Programming” tab.

Or, from the terminal, you can type sudo geany . You can even open a file 
in Geany, directly from the command line. To open our previous C file, for 
example, type sudo geany blinker.c .

Using Geany…

Once Geany is running, you can create a new file by going to File > New. 
Saving the file as either “.c” or “.py” (or any other common language file 
extension) will immediately inform Geany what kind of language you’re 
working with, so it can start highlighting your text.

Geany can be used with most languages, including the Python and C 
examples we’ve just examined. Some tweaks to the default IDE options are 
necessary, though. Here’s an overview of using Geany with each language.

Page 15 of 17



…with C and WiringPi

Let’s recreate our WiringPi Example with Geany. Open the “blinker.c” 
created earlier within the confines of Geany. You should immediately be 
presented with some very pleasant color-coding.

Before trying to compile the code, though, you’ll need to tweak some of the 
build options. Go up to Build and Set Build Commands. Inside the 
“Compile” and “Build” text blocks, tack this on to the end of the default 
command: -l wiringPi . That will load the wiringPi library.

While you’re here, add “sudo” to the beginning of your execute command. 
Make sure your build commands look like the window above and click “OK”.

Once you’ve adjusted that setting, you should be ready to go. Click the 
Build menu, then click Build (or click the red cinder-block-looking icon up 
top). Upon building, the IDE will switch focus to the bottom “Compiler” tab, 
and relay the results of your compilation. If the build was successful, go 
ahead and run with it.

To run your built file, click Build > Execute (or click the gear icon up top). 
Executing will bring up a new terminal window, and start your program 
running. You can stop the program by pressing CTRL+C in the terminal 
window.

…with Python

You can also use Geany with Python. To test it out, go ahead an open up 
the “blinker.py” file we created earlier. As with the C file, you’ll be greeted 
with some pleasnt context highlighting.

Page 16 of 17



No building required with Python! Once you’re script is written, simply click 
the “Execute” gear up top. Again, running will produce a separate terminal 
to pop up. To exit, simply press CTRL+C.

Geany has tons of features beyond what we’ve covered here. Check out 
the tabs at the bottom. Check out the menus up top. Experiment and see 
how the IDE can make your programming life easier!

Resources & Going Further
Now that you know how to blink your Pi’s LEDs, check out some of these 
resources for going further:

• RPi Low-level peripherals – A Wiki with tons of details on using the 
Raspberry Pi’s GPIO peripherals.

• WiringPi Hompeage – The home of WiringPi and a variety of other 
Raspberry-Pi-related tools. Check it out!

• RPi.GPIO Homepage – Home of the Raspberry Pi GPIO python 
module. Great source for API and documentation.

If you’re looking for some project inspiration, here are some more SparkFun 
tutorials where you’ll be able to leverage your newfound Pi programming 
skills:

• Raspberry Pi Twitter Monitor – How to use a Raspberry Pi to monitor 
Twitter for hashtags and blink an LED.

• Getting Started with the BrickPi – How to connect your Raspberry Pi 
to Lego Mindstorms, using the BrickPi.

• pcDuino 2 Hookup Guide – An introduction to the pcDuino – an 
equally (if not more) powerful single board computer.

Page 17 of 17

2/2/2016https://learn.sparkfun.com/tutorials/raspberry-gpio?_ga=1.34625633.1939456957.14259139...




