
ATSHA204A, ATECC108A, and ATECC508A

Firmware Development Library

USER GUIDE
Features

 Layered and Modular Design

 Compact and Optimized for 8-bit Microcontrollers

 Easy to Port

 Supports I2C and Single-Wire Communication

 Distributed as Source Code

Introduction

This user guide describes how to use the Atmel® ATSHA204A and ATECC108A/508A Firmware Development

Library with your customized security project and how to tune it towards your hardware. To fully understand this

document, it is required to have the library code base available at:

www.atmel.com/tools/CryptoAuthentication_ATECCx08A_Development_Library.aspx.

The ATECC108A and ATECC508A are fully backwards compatible with the ATSHA204A. As a result, the

ATECC108A/508A library is an extension of the ATSHA204 library. All ATSHA204A references can be found in

the ATECC108A/508A library as well, with the difference only in the prefix, eccx08... instead of sha204.... There

are additional definitions added into ATECC108A/508A library to support ATECC508A specific commands.
XXXXXXXX
Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015

http://www.atmel.com/products/microcontrollers/arm/default.aspx
http://www.atmel.com/tools/CryptoAuthentication_ATECCx08A_Development_Library.aspx

 2
Table of Contents

Overview . 3

Layered Design . 3

Physical Layer . 4

Communication Layer . 4

Command Marshaling Layer . 4

Application Layer (API) . 4

Portability . 4

Robustness. 5

Optimization . 5

Example Projects . 5

Project Integration . 5

Folder Structure . 6

Porting . 6

Physical Layer Modules . 6

Communication Layer Timeout Tuning . 7

Timer Functions . 8

Tuning. 8

Removal of Command Marshaling Layer . 8

Removal of Communication Layer . 8

SWI Interface Using UART Instead of GPIO . 8

I2C Interface Using GPIO bit-bang instead of an I2C Hardware . 8

Revision History . 9
ATSHA204A and ATECC108A/508A Firmware Development Library [USER GUIDE]
Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015

Overview

Layered Design

The library consists of logically layered components in each successive layer. Since the library is

distributed as C source code, a customer application project can use or include specific parts of the

library code. For instance, you can compile and link the command marshaling layer functionality or

exclude it. For an embedded application that only wants authentication from the device, it would make

sense for that application to construct the byte stream per the device specification and communicate

directly with the silicon via one of the communication methods available. This would generate the

smallest code size and simplest code.

Figure 1. ATSHA204A and ATECCx08A Design

Note: The difference between the libraries are only in the prefix, eccx08... instead of sha204.... There are

additional definitions added into the ATECC108A library to support ATECC508A specific commands.

Additional ATSHA204As

I2C Interface
(i2c_phys.c)

Single-Wire Interface
Bit-banged

(bitbang_phys.c)

Single-Wire Interface
UART

(uart_phys.c)

Devices

Physical,
Hardware

Independent

Command
Marshaling

Application

ATSHA204A

I2C Interface
(sha204_i2c.c)

Physical,
Hardware
Dependent

Communications Interface (sha204_comm.c)
sha204c_wakeup(), sha204_send_and_receive(), sha204c_calculate_crc()

Commands (sha204_comm_marshaling.c)
sha204m_execute()

Customer
Application

Single-Wire Interface
(sha204_swi.c)

Communication

I2C Interface
Bit-banged

(i2c_phys_bitbang.c)
 3ATSHA204A and ATECC108A/508A Firmware Development Library [USER GUIDE]
Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015

 4
Physical Layer

The Physical layer is divided into hardware-dependent and hardware-independent parts. Two physical

interfaces are provided:

 I2C Interface

 Single-Wire Interface (SWI)

The Physical layer provides a common calling interface that abstracts the hardware (or SWI). By

keeping the hardware-independent function names the same for the interfaces, the driver modules can

easily be exchanged in a project/makefile without touching the source code.

Atmel provides an implementation of the I2C and SWI interfaces for the Atmel AVR® AT90USB1287

microcontroller.

Communication Layer

The Communication layer provides a straightforward conduit for data exchange between the device

and the application software. Data exchange is based on sending a command and reading its

response after command execution. This layer retries a communication sequence in case of certain

communication errors reported by the Physical layer or the Device Status Register, or when there is an

inconsistent response packet (value in Count byte, CRC).

Command Marshaling Layer

The Command Marshaling layer is built on top of the Communication layer to implement commands

that the device supports. Such commands are assembled or marshaled into the correct byte streams

expected by the device.

Application Layer (API)

Customers may build an API layer on top of the library to provide an easier interface for their security

solution.

Portability

The library has been tested for building applications and running them without errors for several target

platforms, including the Atmel AVR 8 bit MCU family. To make porting the library to a different target as

easy as possible, specific coding rules were applied as noted below.

 No structures are used to avoid any “packed” and addressing issues on 32-bit targets

 Functions in hardware-dependent modules (spi_phys.c and i2c_phys.c) do not “know” any

specifics of the device. It will be easy to replace these functions with others from target libraries

or with your own. Many I2C peripherals on 32-bit CPUs implement hardware-dependent module

functionality. For such cases, porting involves discarding the hardware-dependent I2C module

altogether and adapting the functions in the hardware-independent I2C module to the peripheral,

or to an I2C library provided by the CPU manufacturer or firmware development tool

 Where 16-bit variables are inserted into or extracted from a communication buffer (LSB first), no

type casting is used [(uint8_t *) &uint16_variable], but the MSB and LSB are calculated

(msb = uint16_variable >> 8; lsb = uint16_variable & 0xFF). There is no need for a distinction

between big-endian and little-endian targets

 Delays and timeouts are implemented using loop counters instead of hardware timers. They

need to be tuned to your specific CPU. If hardware or software timers are available in your

system, you might replace the pieces of the library that use loop counters with calls to those

timer functions. All timing values that all layers need to access are defined in sha204_config.h.
ATSHA204A and ATECC108A/508A Firmware Development Library [USER GUIDE]
Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015

Robustness

The library applies retry mechanisms in its communication layer (sha204_comm.c) in case of

communication failures. Therefore, there is no need for an application to implement such retries.

Optimization

In addition to the size and speed optimizations left to the compiler, certain requirements were

established for the code:

 Only 8-bit and 16-bit variables are used, and so there is no need to import 32-bit compiler

libraries. This also makes the library run faster on 8-bit targets.

 The layered architecture makes it easy to reduce code size by removing layers and/or functions

that are not needed in your project.

 Some speed and size penalties are incurred in the communication layer (sha204_comm.c) due

to increased robustness. For instance, implementing retries increases code size, while error

checking (CRC, Count byte in response buffer) reduces speed and increases code size.

 Arrays for certain commands and memory addresses are declared as “const,” which allows

compilers to skip copying such arrays to RAM at startup.

Example Projects

Atmel provides example projects for an AT90USB1287 microcontroller. To become familiar with the

library, we advise customers to use an Atmel development kit, such as an Atmel AT88CK101 or

CryptoAuthXplained PRO. With this and an integrated development environment (some can be

downloaded for free, such as Atmel Studio), you will be able to rebuild the library, download the binary

to the target, and start a debug session.

Project Integration

Integrating the library into your project is straightforward. What to modify in the physical layer modules

and in certain header files is explained in the following subchapters. The header file “includes” do not

contain paths, but only file names. Only one compilation switch to select the interface is used. The

source compiles under C99, but should also compile under ANSI C, with the exception of double

slashes used for comments.

Figure 2. CryptoAuthXplained PRO Daughterboard

on an Atmel Xplained Development Board

Figure 3. AT88CK101 Development Kit
 5ATSHA204A and ATECC108A/508A Firmware Development Library [USER GUIDE]
Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015

 6
Folder Structure

All modules reside in one folder. Because of this, you can either add the entire folder to your project

and then exclude the modules you don't need from compilation, or you can add the modules that you

do need one by one. Which modules to exclude from compilation depend on the interface you plan to

use. The table below shows which modules to include in your project, depending on your interface. The

modules in the other three columns must be excluded if they do not appear in the column you selected.

Table 1. Interface Modules

Porting

When porting the library to other targets or when using CPU clock speeds other than the ones provided

by the examples, certain modules have to be modified, including the physical layer modules you plan

to use (SWI or I2C) and the timer_utilities.c timer function (see Section, "Timer Functions" on page 8).

Physical Layer Modules

To port the hardware-dependent modules for SWI or I2C to your target, you have several options:

 Implement the modules from scratch.

 Modify the UART or I2C module(s) provided by your target library.

 Create a wrapper around your target library that matches the software interface of the

ATSHA204A and ATECCx08A library’s Physical layer. For instance, your target library for I2C

might use parameters of different type, number, or sequence than those in the i2c_phys.c

module [e.g., i2c_send_bytes(uint8_t count, uint8_t *data)].

 Modify the calls to hardware-dependent functions in the hardware-independent module for the

Physical layer (sha204_swi.c / sha204_i2c.c) to match the functions in your target library. The

hardware-dependent module for I2C reflects a simple I2C peripheral, where single I2C operations

can be performed (Start, Stop, Write Byte, Read Byte, etc.). Many targets contain more

sophisticated I2C peripherals, where registers have to be loaded first with an I2C address, a Start

or Stop condition, a data buffer pointer, etc. In such cases, sha204_i2c.c has to be rewritten.

The hardware-dependent modules provided by Atmel use loop counters for timeout detection. When

porting, you can either adjust the loop counter start values, which get decremented while waiting for

flags to be set or cleared, or you can use hardware timers or timer services provided by a real-time

operating system you may be using. These values are defined in bitbang_phys.h (SWI GPIO),

uart_phys.h (SWI UART), and i2c_phys.h (I2C), respectively.

Interface SWI GPIO SWI UART I2C I2C_bitbang

Hardware

Independent

File

sha204_swi.c sha204_swi.c sha204_i2c.c sha204_i2c.c

Hardware

Dependent

Files

bitbang_phys.c uart_phys.c i2c_phys.c i2c_phys_bitbang.c

bitbang_config.h uart_config.h i2c_phys.h i2c_phys_bitbang.h

swi_phys.h swi_phys.h

avr_compatible.h

Compilation

Switch
SHA204_GPIO_BITBANG SHA204_GPIO_UART SHA204_I2C SHA204_I2C_BITBANG
ATSHA204A and ATECC108A/508A Firmware Development Library [USER GUIDE]
Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015

Communication Layer Timeout Tuning

For SWI, it can take a maximum time of 312.5μs after sending a transmit flag until the device responds.

For I2C, this time depends on the I2C clock frequency. For many AVR 8-bit CPUs, the maximum

frequency is 400kHz.

For SWI, every polling cycle takes 312.5μs, while for I2C at 400kHz, every polling cycle takes 37μs.

These values are defined as SHA204_RESPONSE_TIMEOUT in sha204_config.h. If you are running

I2C at a frequency other than 400kHz, calculate the value using the formulas below or measure it and

change the value in sha204_config.h.

Two descriptions follow about how to establish the SHA204_RESPONSE_TIMEOUT.

1. With an oscilloscope or logic analyzer, measure the time it takes for one loop iteration in the inner

do-while loop inside the sha204c_send_and_receive function or
2. If you cannot measure the time for one device polling iteration, you can derive it by establishing

three separate values:

̶ The transmission time for one byte.

̶ The transmission overhead time (for instance, setting peripheral registers or checking

peripheral status).

̶ The loop iteration time. Consider the following formulas:

Time to poll the device:

tpoll = tcomm + tcommoverhead + tloop

where:

tcomm(GPIO) = 312.5μs,

tcommoverhead(GPIO) = 0, (negligible)

tcomm(I2C, when I2C address gets “nacked”) = + tstart + tstop,

tcommoverhead(I2C) = texecutestart function + tdataregister write + texecutestop function,

tloop = tloop(sha204_send_and_receive), (do-while loop inside function)

I2C example, clocked at 200kHz:

tcomm(I2C, when“nacked”) = + 2.6μs + 3.6μs = 51.2μs,

tcommoverhead(I2C) = 18.6μs,

tloop(I2C) = 13.0μs,

tpoll(I2C) = 51.2μs + 18.6μs + 13.0μs = 82.8μs

I2C_address_byte · 9 clocks

I2C clock

I2C_address_byte · 9 clocks

0.2MHz
 7ATSHA204A and ATECC108A/508A Firmware Development Library [USER GUIDE]
Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015

 8
Timer Functions

The library provides two blocking timer functions, delay_10us and delay_ms. If you have hardware or

software timers available in your system, you may want to replace the library timer functions with

those. This way, you may be able to convert the provided blocking timer functions into non-blocking

(interrupt driven or task switched) ones. Be aware that because delay_ms uses a parameter of uint8_t

type, this function can only provide a delay of up to 255ms. The delay_ms function is used to read the

response buffer after a memory write or command execution delay. Both are shorter than 255ms.

Tuning

By decreasing robustness, features, and/or modularity, you can decrease code size and increase

execution speed. This chapter describes a few areas where you could start tuning the library towards

smaller code size and/or faster execution. As most of such modifications affect size and speed, they

are described in unison.

Removal of Command Marshaling Layer

This modification achieves the maximum reduction of code size, but removing the command

marshaling layer makes the library more difficult to use. It does not need any modifications of the

library code.

Removal of Communication Layer

This modification probably achieves the maximum of a combined reduction of code size and increase

in speed, but at the expense of communication robustness and ease of use. It does not need any

modifications of the library code. Without the presence of the communication layer, an application has

to provide the CRC for commands it is sending and for evaluating the status byte in the response. The

application can still use any definitions contained it might need in sha204_comm.h, such as the codes

for the response status byte.

There are other ways to reduce code size and increase the speed of the communication layer. You

could remove the CRC check on responses, or you could disable retries by setting

SHA204_RETRY_COUNT in sha204_config.h to zero.

SWI Interface Using UART Instead of GPIO

The code space for the single-wire interface is smaller when using a UART than GPIO. Also, the code

execution is allowed to be slower than when using GPIO since a UART buffers at least one byte. Since

the maximum UART bit width is 4.34μs, the GPIO code has to be executed at a speed that allows

reliable generation of this bit. There is no such low limit in execution speed for a UART implementation.

I2C Interface Using GPIO bit-bang instead of an I2C Hardware

Usually, the maximum I2C frequency supported by an I2C hardware is 400kHz. When implemented on

a fast processor, the I2C bit-bang can be chosen over I2C hardware to allow the I2C frequency to be

more than 400kHz. The maximum I2C frequency which can be reached by using the bit-bang method

depends on the CPU clock, GPIO pin sink current, and I2C pull-up resistor value.

A theory and example code for I2C bit-bang implementation on AVR microcontroller is described in the

application note, “Atmel AVR156: TWI Master Bit Bang Driver” located at:

http://www.atmel.com/Images/doc42010.pdf.

Although the bit-bang implementation can reach a higher frequency, the maximum I2C

frequency supported by the ATECCx08A devices is 1Mhz; therefore, the I2C

bit-bang frequency should not be set to be higher than 1Mhz.
ATSHA204A and ATECC108A/508A Firmware Development Library [USER GUIDE]
Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015

http://www.atmel.com/Images/doc42010.pdf
http://www.atmel.com/Images/doc42010.pdf
http://www.atmel.com/Images/doc42010.pdf

Revision History

Doc. Rev. Date Comments

8770D 07/2015

Updated to include the ATSHA204A and ATECCx08A, heading from “Using

UART Instead of GPIO” to “SWI Interface using UART Instead of GPIO”, and

section, “I2C Interface Using GPIO bit-bang instead of an I2C Hardware“.

8770C 01/2014 Added I2C Interface Bit-banged.

8770B 06/2013 Added ATECC108 device and update template.

8770A 05/2011 Initial document release.
 9ATSHA204A and ATECC108A/508A Firmware Development Library [USER GUIDE]
Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015

XX X XX X

XXX
ARM Connected Logo

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-8770D-CryptoAuth-ATSHA204A-ATECCx08A-Dev-Library-UserGuide_072015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, CryptoAuthentication™, AVR®, and others are registered trademarks or trademarks of
Atmel Corporation in U.S. and other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and
product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

www.atmel.com
http://community.arm.com/community/arm-partner-directory/partner-atmel
https://plus.google.com/106109247591403112418/posts
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com

	Features
	Introduction
	Table of Contents
	Overview
	Layered Design
	Physical Layer
	Communication Layer
	Command Marshaling Layer
	Application Layer (API)

	Portability
	Robustness
	Optimization

	Example Projects
	Project Integration
	Folder Structure
	Porting
	Physical Layer Modules
	Communication Layer Timeout Tuning
	Timer Functions

	Tuning
	Removal of Command Marshaling Layer
	Removal of Communication Layer
	SWI Interface Using UART Instead of GPIO
	I2C Interface Using GPIO bit-bang instead of an I2C Hardware

	Revision History

