T-WING[®] Heat Spreaders

Thin Heat Spreaders

Description

Chomerics' family of thin heat spreaders provides a low-cost, effective means of cooling IC devices in restricted spaces where conventional heat sinks are inappropriate.

T-Wing spreaders consist of 5oz. (0.007inch/0.18mm thick) flexible copper foil between electrically insulating films. High strength silicone PSA (pressure-sensitive adhesive) provides a strong bond to the component. The compliant

Darker Chomerics

nature of these "thermal wing" heat spreaders permits nearly 100% adhesive contact with non-flat package surfaces, optimizing thermal and mechanical performance.

Features/Benefits

- Component junction temperature reduction of 10-20°C is common
- Easily added to existing designs to lower component temperatures and improve reliability
- Custom shapes available for complex designs

Typical Applications

- Microprocessors
- Memory modules
- Laptop PCs and other high density, handheld portable electronics
- High speed disk drives

Design Details

- Low profile (0.33mm/0.013in) allows use in limited space environments
- Easy peel and stick adhesion to all surfaces, including packages with residual silicone mold release
- Offers low cost cooling for many package types
- Low application force (<5psi/ 0.03MPa) minimizes risk of damage to component
- Available in a range of standard sizes
- Pliable nature allows conformance to concave or otherwise non-flat surfaces for optimal thermal and mechanical performance
- Light weight (0.039 oz/inch2)
- Standard parts are scored for easy forming and alignment
- Easy removal for device replacement
- Available die-cut on continuous rolls

	Typical Properties		Test Method	
Physical	Color	Black	Visual	
	Total Thicknesses, inches (mm)	0.013 (0.33)	ASTM D374	
	PSA Type	Silicone based		
	PSA thickness, inches (mm)	0.002 (0.05)	Visual	
	Insulator Type	Black polyester		
	Insulator Layer Thickness, inches (mm)	0.001 (0.025)		
	Weight, oz/inch ²	0.039		
	Themal Conductor	Copper		
	Maximum Operating Temperature °F (°C)	257 (125)		
	Thermal Conductor Thickness, inches (mm)	0.007 (0.178)		
Electrical	Dielectric Strength, Vac/mil (KVac/mm)	5,000 (200) for each dielectric layer	ASTM D149	
	Volume Resistivity, (ohm-cm)	N/A	ASTM D149	
	Dielectric Constant @1,000 MHz	N/A	ASTM D150	
	Dissipation Factor @ 1,000 kHz	N/A	Chomerics Test	
Regulatory	Flammability Rating (See UL File E140244)	V-0	UL 94	
	RoHS Compliant	Yes	Chomerics Certification	
	Shelf Life, months from date of manufacture	12	Chomerics	

T-Wing[®] Heat Spreaders

Typical Thermal Properties (Performed on surface of 196 lead 3 Watt PQFP package)			Standard Part Size inches(mm)					
Environment*	Sizes (inches)	Without T-Wing	0.5x2 (12.7x50.8)	0.5x3 (12.7x76.2)	0.75x3 (19.1x76.2)	1x3 (25.4x76.2)	1x4 (25.4x101.6)	1.5x4 (38.1x101.6)
Restricted	Thermal Resistance Rj-a (°C/W)	26	25	23	23	22	20	19
Convection**	Case Temperature (°C)	92	82	78	76	72	70	68
100 514***	Thermal Resistance Rj-a (°C/W)	18	16	14	14	14	13	12
	Case Temperature (°C)	68	57	52	49	46	44	44

* Measured values do not account for heat losses through bottom of case and leads. Ambient temperature range from 21°C to 24°C

** Restricted convection in a simulated notebook computer environment-a 1x5x6inch (2.54x12.7x15.2cm) plexiglass box

*** T-Wing long axis perpendicular to air flow direction in wind tunnel

Notes

Rj-a = thermal resistance from junction to ambient **LFM** = airflow rate (linear feet per minute)

Typical Adhesion Performance

Test	Procedure	Result	Test Method
Lap Shear - Room Temperature	apply/60 min. R.T. dwell/R.T. pull	960 oz/in² (414 kPa)	ASTM D1000
Lap Shear - Elevated Temperature	apply/60 min. R.T. dwell/100°C pull	53 oz/in² (23 kPa)	ASTM D1000
90° Peel - Room Temperature	apply/1 min. R.T. dwell/R.T. pull	40 oz/in (441 g/cm)	ASTM B571/D2861
90° Peel - Elevated Temperature	apply/60 min. R.T. dwell/100°C pull	20 oz/in (220g/cm)	ASTM B571/D2861
Creep Adhesion, days	275°F (135°C), 7 oz/in² (3 kPa), on aluminum	>80 days, no failure	P.S.T.C. No. 7

Environmental Stress Thermal Performance

Environment	Before	After			
Heat Aging					
Rj-a (°C/W) Restricted Convection	20.3	20.6			
Rj-a (°C/W) 100 LFM	12.7	13.1			
High Temperature/Humidity					
Rj-a (°C/W) Restricted Convection	21.4	21.4			
Rj-a (°C/W) 100 LFM	14.1	14			
Temperature Cycling					
Rj-a (°C/W) Restricted Convection	21.4	21.7			
Rj-a (°C/W) 100 LFM	14.1	13.9			

Note: Tested with a 1" x 4" (25.4 x 101.6 mm) T-WING

Environmental Stress Adhesive Performance

Environment	90° Peel Strength		
Environment	oz/in	(gm/cm)	
Control	36	393	
Heat Aging	36	393	
High Temperature/Humidity	46	514	
Temperature Shock	38	424	
Temperature Cycling	30	335	

Note: Average of three samples tested per ASTM B571/D2861.

Testing Summary

Summaries of test procedures used for T-Wing heat spreaders are described below. Thermal performance, adhesion strength and visual inspection were used as pass/fail criteria.

Apparatus

Anatek® Thermal Analyzer: The ATA was used to measure Rj-a before and after environmental stressing. PQFP: 196 lead, plastic PQFPs known to contain silicone mold release were evaluated. T-Wing Heat Spreader: 1 inch x 4 inch TWing parts were applied to the PQFP packages with a 5 psi (0.03 MPa) mounting pressure.

Thermal Performance

Various sizes of T-Wing heat spreaders were applied to a 196 lead PQFP using less than 5 psi (0.03 MPa) bonding pressure. Within 30 minutes of application, the test boards were mounted in an Analysis Tech® thermal analyzer. The devices were heated to equilibrium (45 to 60 minutes) with approximately 3 watt load on 3 x 3 inch (7.6 x 7.6 cm) test boards. Two test environments were used: restricted convention, achieved with a 1 x 5 x 6 inch (2.5 x 12.7 x 15.2 cm) plexiglass box; and 100 LFM (30m/min) air flow. Results were obtained using thermocouples for Tc (centered on case) and Rj-a.

Environmental Stressing

Control: Specimens were maintained for 1000 hours at standard laboratory conditions, 23°C, 35-60% RH.

Heat Aging: Test specimens were placed in a forced convection hot air oven maintained at 150°C ±5°C for 1000 hours. Test specimens were then removed and tested.

Elevated Temperature/High Humidity: Specimens were placed in a humidity chamber maintained at $85^{\circ}C \pm 2^{\circ}C$ and 90%-0 +10% RH for 1000 hours.

Temperature Cycling: Specimens were subjected to 500 cycles from -50°C to +150°C in a Tenney Temperature Cycling Oven.

Temperature Shock: Specimens were subjected to 100 temperature shocks by immersion into -50° and +150°C liquids. Temperatures were monitored with thermocouples.

Evaluation Procedure

Visual: All test specimens were examined for de-bonding, delamination or other signs that the tape was failing after environmental stress.

Thermal Performance: T-Wing was applied to the PQFP with 5 psi mounting pressure. After a one hour dwell, the Rj-a of each specimen was measured at 100 LFM and under restricted convection conditions. The Rj-a was again measured after environmental stressing.

90° Peel Strength: A T-Wing heat spreader was applied to each PQFP with 5 psi mounting pressure. The specimens were subjected to environmental stress and then tested for 90° peel strength at room temperature.

Destables	Size (inches/mm)				
Part Numbers	A: Length inches (mm)	B: Width inches (mm))	C: Adhesive Width inches (mm)		
60-12-20264-TW10	2.0 (50.8)	0.50 (12.7)	0.50 (12.7)		
60-12-20265-TW10	3.0 (76.2)	0.50 (12.7)	0.50 (12.7)		
60-12-20266-TW10	3.0 (76.2)	0.75 (19.1)	0.75 (19.1)		
60-12-20267-TW10	3.0 (76.2)	1.00 (25.4)	1.00 (25.4)		
60-12-20268-TW10	4.0 (101.6)	1.00 (25.4)	1.00 (25.4)		
60-12-20269-TW10	4.0 (101.6)	1.50 (38.1)	1.50 (38.1)		

Ordering Information —

Available in standard sizes 1,000 parts per plastic tray. Also available die-cut on continuous rolls.

Figure 1.

Dimensions are typical

Ordering Information

Standard Parts: Refer to table below for Part Numbers and sizes. T-Wing heat spreaders are available in standard packages of 100 parts/pkg.

Custom Parts: Custom configured T-Wing parts are also available. Contact Chomerics' Applications Engineering Department for details.

Results

Visual: There was no visual evidence of T-Wing adhesion failure to the PQFP after the environmental stresses.

Thermal Performance: The before and after thermal resistances are given in Table 4. The data shows that the thermal resistances were essentially unchanged by the exposures.

90° Peel Strength: The results of the peel strength tests are given above.

The data shows that the average peel strength actually increases with high temperature/humidity and temperature shock, while remaining unchanged with heat aging and decreasing slightly with temperature cycling.

Application Instructions

Materials needed: Clean cotton cloth or rag, industrial solvent, rubber gloves.

Step 1: For best results, clean the top surface of the component using a lint-free cotton cloth.

Step 2: Wipe the bonding surface of the component with an industrial solvent, such as MEK, acetone or isopropyl alcohol. In the case of a plastic package, select a cleaner that will not chemically attack the plastic substrate. Do not touch the cleaned surface during any part of the assembly process. If the

surface has been contaminated, repeat Steps 1 and 2.

Step 3: Remove the clear release liner from the T-Wing part, exposing the pressure-sensitive adhesive (PSA). Avoid touching exposed adhesive with fingers.

Step 4: For best bond strength and contact area, center the exposed PSA onto the component. Press and smooth the entire T-Wing bonding area with firm finger pressure of about 5 psi, for 5 seconds.

Note: Bond strength will increase as a function of time as the adhesive continues to wet out the bonding surface. Increasing any of the application variables (pressure, temperature and time) can improve bonding results.