March 1998

DM74S257, DM74S258 3-STATE Quad 1 of

N

Data

Selectors/Multiplexers

FAIRCHILD

SEMICONDUCTOR IM

DM74S257, DM74S258 3-STATE Quad 1 of 2 Data Selectors/Multiplexers

General Description

These Schottky-clamped high-performance multiplexers feature 3-STATE outputs that can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output enable circuitry is designed such that the output disable times are shorter than the output enable times.

This 3-STATE output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

Connection Diagrams

Order Number DM54S257J, DM54S258J, DM54S257W, DM74S257N or DM74S258N See Package Number J16A, N16E or W16A

Features

- 3-STATE versions S157, S158, with same pin-outs
- Schottky-clamped for significant improvement in A-C
- performanceProvides bus interface from multiple sources in
- high-performance systems
- Average propagation delay from data input S257 4.8 ns
 S258 4 ns
- Typical power dissipation S257 320 mW S258 280 mW

© 1998 Fairchild Semiconductor Corporation DS006482

Function Table

	Inputs	Output Y			
Output Control	Select	Α	В	S257	S258
н	Х	Х	Х	Z	Z
L	L	L	X	L	Н
L	L	н	X	н	L
L	н	х	L .	L	н
L	н	х	н	Н	L

H = High Level, L = Low Level, X = Don't Care Z = High Impedance (off)

Absolute Maximum Ratings (Note 1)

DM54S DM74S Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Operating Free Air Temperature Range

Supply Voltage

Input Voltage

Recommended Operating Conditions

Symbol	Parameter	DM54S257			Units			
		Min	Nom	Max	Min	Nom	Max	1
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.8			0.8	V
I _{он}	High Level Output Current			-2			-6.5	mA
IOL	Low Level Output Current			20			20	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

7V

5.5V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

'S257 Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions	Conditions			Max	Units
				(Note 2)			
VI	Input Clamp Voltage	$V_{\rm CC}$ = Min, I _I = -18 mA				-1.2	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.4	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.4	3.2		
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$ $V_{IH} = Min, V_{IL} = Max$				0.5	V
	Voltage						
Ч	Input Current @ Max	Input Current @ Max V _{CC} = Max, V _I = 5.5V				1	mA
	Input Voltage						
I _н	High Level Input	V _{CC} = Max	Select			100	μA
	Current	V ₁ = 2.7V	Other			50	
$I_{\rm IL}$	Low Level Input	V _{CC} = Max,	Select			_4	mA
	Current	$V_1 = 0.5V$	Other			-2	
I _{ozh}	Off-State Output Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 2.4V					
	with High Level Output	V _{IH} = Min, V _{IL} = Max				50	μA
	Voltage Applied						
I _{ozl}	Off-State Output Current with	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.5V					
	Low Level Output	V _{IH} = Min, V _{IL} = Max				-50	μA
	Voltage Applied						
los	Short Circuit	V _{CC} = Max	DM54	-40		-100	mA
	Output Current	(Note 3)	DM74	-40		-100	
I _{CCH}	Supply Current with Outputs High	V _{CC} = Max (Note 4)			44	68	mA
I _{CCL}	Supply Current with Outputs Low	V _{CC} = Max (Note 4)			60	93	mA
I _{ccz}	Supply Current with Outputs Disabled	V _{CC} = Max (Note 4)			64	99	mA

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.

		From (Input)		R _L =	280 Ω		
Symbol	Parameter	To (Output)	C _L =	C _L = 15 pF		50 pF	Units
			Min	Max	Min	50 pF Max 11 10 16 23 24	1
t _{PLH}	Propagation Delay Time	Data to		7.5		11	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Data to		6.5		10	ns
	High to Low Level Output	Output					
t _{PLH}	Propagation Delay Time	Select to		15		16	ns
	Low to High Level Output	Output					
t _{PHL}	Propagation Delay Time	Select to		15		16	ns
	High to Low Level Output	Output					
t _{PZH}	Output Enable Time	Output		19.5		23	ns
	to High Level Output	Control to Y					
t _{PZL}	Output Enable Time	Output		21		24	ns
	to Low Level Output	Control to Y					
t _{PHZ}	Output Disable Time	Output		8.5			ns
	to High Level Output (Note 5)	Control to Y					
t _{PLZ}	Output Disable Time	Output		14			ns
	to Low Level Output (Note 5)	Control to Y					

Note 5: C_L = 5 pF.

Recommended Operating Conditions

Symbol	Parameter	DM54S258				Units		
		Min	Nom	Max	Min	Nom	Max	1
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
VIL	Low Level Input Voltage			0.8			0.8	V
I _{OH}	High Level Output Current			-2			-6.5	mA
I _{OL}	Low Level Output Current			20			20	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

'S258 Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 6)		
VI	Input Clamp Voltage	$V_{CC} = Min, I_1 = -18 mA$				-1.2	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.4	3.4		V
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74	2.4	3.2		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max				0.5	V
	Voltage	V _{IH} = Min, V _{IL} = Max					
l _i	Input Current @ Max	$V_{CC} = Max, V_1 = 5.5V$				1	mA
	Input Voltage						
I _{IH}	High Level Input	V _{CC} = Max,	Select			100	μΑ
	Current	$V_1 = 2.7V$	Other			50	
I _{IL}	Low Level Input	V _{CC} = Max,	Select			-4	mA
	Current	$V_1 = 0.5V$	Other			-2	

	commended operating free air t	· · ·	. ,				
Symbol	Parameter Conditions		Min	Тур	Max	Units	
					(Note 6)		
I _{ozh}	Off-State Output Current	rrent $V_{CC} = Max, V_O = 2.4V$					
	with High Level Output	V _{IH} = Min, V _{IL} = Max				50	μA
	Voltage Applied						
I _{OZL}	Off-State Output Current with	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.5V					
	Low Level Output	V _{IH} = Min, V _{II} = Max				-50	μA
	Voltage Applied						
los	Short Circuit	V _{CC} = Max	DM54	-40		-100	mA
	Output Current	(Note 7)	DM74	-40		-100	
I _{CCH}	Supply Current with	V _{CC} = Max			36	56	mA
	Outputs High	(Note 8)					
I _{CCL}	Supply Current with	V _{CC} = Max			52	81	mA
	Outputs Low	(Note 8)					
I _{ccz}	Supply Current with	V _{CC} = Max			56	87	mA
	Outputs Disabled	(Note 8)					Í

Note 6: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 8: I_{CC} is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.

'S258 Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

		From (Input)						
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L =	50 pF	Units	
			Min	Max	Min	Max		
t _{PLH}	Propagation Delay Time	Data to		6		9	ns	
	Low to High Level Output	Output						
t _{PHL}	Propagation Delay Time	Data to		6		9	ns	
	High to Low Level Output	Output						
t _{PLH}	Propagation Delay Time	Select to		12		15	ns	
	Low to High Level Output	Output						
t _{PHL}	Propagation Delay Time	Select to		12		15	ns	
	High to Low Level Output	Output						
t _{PZH}	Output Enable Time	Output		19.5		23	ns	
	to High Level Output	Control to Y						
t _{PZL}	Output Enable Time	Output		21		24	ns	
	to Low Level Output	Control to Y						
t _{PHZ}	Output Disable Time	Output		8.5			ns	
	to High Level Output (Note 9)	Control to Y						
t _{PLZ}	Output Disable Time	Output		14			ns	
	to Low Level Output (Note 9)	Control to Y						

Note 9: C_L = 5 pF.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.