
Radio FeatherWing
Created by lady ada

Last updated on 2016-11-03 03:18:57 PM UTC

2
4
6
6

8
8
8
9

10
11
11
11
12
13
13
13

13
16
19
19
20
20

20
20
23

27
28

28
28
29
29
30

Guide Contents

Guide Contents
Overview

RFM69 Specs
RFM9x Specs

Pinouts
SPI Data Pins (Fixed)
SPI Control Pins (Flexible)
RFM GPIO
Antenna
Wiring
ESP8266 Wiring
Feather 32u4
Feather M0
Assembly
Antenna Options

Wire Antenna

uFL Connector
SMA Edge-Mount Connector
Using the RFM69 Radio
"Raw" vs Packetized
Arduino Libraries

LowPowerLab RFM69 Library example

Basic RX & TX example
Transmitter example code
Receiver example code

Radio Net & ID Configuration
Radio Type Config

Feather Radio Pinout
Setup

Initializing Radio
Transmission Code
Receiver Code

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 2 of 48

30
35
35
35

36
36
39

43
43
43
43
44
44

46
47
47
47
48

Receiver/Transmitter Demo
Using the RFM9X Radio
Arduino Library

RadioHead RFM9x Library example

Basic RX & TX example
Transmitter example code
Receiver example code

Feather Radio Pinout
Frequency
Setup

Initializing Radio
Transmission Code
Receiver Code

Radio Range F.A.Q.
Downloads
Datasheets & Files
Schematic
Fabrication Print

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 3 of 48

Overview

Add short-hop wireless to your Feather with these Radio Featherwings. These add-ons for any Feather board will
let you integrate packetized radio (with the RFM69 radio) or LoRa radio (with the RFM9x's). These radios are
good options for kilometer-range radio, and paired with one of our WiFi, cellular or Bluetooth Feathers, will let you
bridge from 433/900 MHz to the Internet or your mobile device.

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 4 of 48

These radio modules come in four variants (two modulation types and two frequencies) The RFM69's are easiest
to work with, and are well known and understood. The LoRa radios are exciting, longer-range and more powerful
but also more expensive.

RFM69 @ 433 MHz - basic packetized FSK/GFSK/MSK/GMSK/OOK radio at 433 MHz for use in Europe
ITU 1 license-free ISM, or for amateur use with restrictions (check your local amateur regulations!)
RFM69 @ 900 MHz - basic packetized FSK/GFSK/MSK/GMSK/OOK radio at 868 or 915 MHz for use in
Americas ITU 2 license-free ISM, or for amateur use with restrictions (check your amateur regulations!)
RFM98 @ 433 MHz - LoRa capable radio at 433 MHz for use in Europe ITU 1 license-free ISM, or for
amateur use with restrictions (check your local amateur regulations!)
RFM95 @ 900 MHz - LoRa capable radio at 868 or 915 MHz for use in Americas ITU 2 license-free ISM, or
for amateur use with restrictions (check your local amateur regulations!)

The radio modules themselves have the same pinout so the PCB is the same, but the library usage and wiring
may vary. All use SPI for interfacing, and there are great Arduino libraries available for both.

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 5 of 48

RFM69 Specs

SX1231 based module with SPI interface
Packet radio with ready-to-go Arduino libraries
Uses the license-free ISM bands
+13 to +20 dBm up to 100 mW Power Output Capability (power output selectable in software)
50mA (+13 dBm) to 150mA (+20dBm) current draw for transmissions
Range of approx. 350 meters, depending on obstructions, frequency, antenna and power output
Create multipoint networks with individual node addresses
Encrypted packet engine with AES-128

RFM9x Specs

SX127x LoRa® based module with SPI interface
Packet radio with ready-to-go Arduino libraries
Uses the license-free ISM bands
+5 to +20 dBm up to 100 mW Power Output Capability (power output selectable in software)
~300uA during full sleep, ~120mA peak during +20dBm transmit, ~40mA during active radio listening.
Our initial tests with default library settings: over 1.2mi/2Km line-of-sight with wire quarter-wave antennas.
(With setting tweaking and directional antennas, 20Km is possible (http://adafru.it/mGa)).

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 6 of 48

http://forum.anarduino.com/posts/list/46.page#2854

Currently tested to work with the Feather ESP8266, Feather 32u4, Feather M0, WICED Feather (RFM69 library
only) and Teensy 3 Feather series, some wiring is required to configure the FeatherWing for the chipset you plan
to use.

All radios are sold individually and can only talk to radios of the same part number. E.g. RFM69 900 MHz can
only talk to RFM69 900 MHz, LoRa 433 MHz can only talk to LoRa 433, etc.

Each radio 'Wing comes with some header. Some soldering is required to attach the header. You will need to cut
and solder on a small piece of wire (any solid or stranded core is fine) in order to create your antenna. Optionally
you can pick up a uFL or SMA edge-mount connector and attach an external duck.

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 7 of 48

Pinouts

SPI Data Pins (Fixed)
The three SPI data pins (MOSI/MISO/SCK) are hardwired to these three pads, which are use for the default SPI
interface on all Feathers:

SPI Control Pins (Flexible)
You also need three more pins to control the radio: CS, RST and IRQ

Since there is no guaranteed Feather pin that is interrupt-capable, we set it up so you can fly-wire these three to
any three pins available. For the non-Serial/IC pins on the right, we name them A thru F. We also indicate the
RX/TX/SDA/SCL pins if you need to use those:

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 8 of 48

Wire them with three short jumpers like so:

RFM GPIO
There's some other GPIO pins that you may want to use - they can be configured to give you notice of things like
packet completion or incoming data. They're all on the left. DIO0 is also known as IRQ so we don't have that
duplicated on the left breakouts

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 9 of 48

Antenna
For an antenna, you have three options:

Plain wire antenna (cut a quarter-wavelength piece and solder it into the pad/hole
uFL connector (not included) (http://adafru.it/1661), which can be soldered and then used to attach a uFL
antenna or adapter
SMA edge-launch (not included) (http://adafru.it/1865), for use with any SMA connector

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 10 of 48

https://www.adafruit.com/products/1661
https://www.adafruit.com/products/1865

Wiring

Because each Feather uses a differet processor, there is some light wiring that needs to be done to configure the
radio pins. In particular, an interrupt-capable pin is required for IRQ but there is no one irq pin that is the same on
all the Feathers!

So, while MOSI/MISO/SCK are fixed, you will want to solder three short wires for CS, RST and IRQ

Here is our tested/suggested wiring configurations and code snippets for defining the pins

ESP8266 Wiring
The ESP does not have a lot of spare pins, and the SPI pins are taken, so here's what we've tested that works:

#define RFM95_CS 2 // "E"
#define RFM95_RST 16 // "D"
#define RFM95_INT 15 // "B"

#define RFM69_CS 2
#define RFM69_RST 16
#define RFM69_IRQ 15
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)

This leaves the I2C default pins (4 and 5) available

Feather 32u4
 The 32u4 doesn't have a lot of IRQs and the only ones available are on pins 0, 1, 2, 3 which are also the Serial
RX/TX and I2C pins. So it's not great because you have to give up one of those pins.

#define RFM95_CS 10 // "B"
#define RFM95_RST 11 // "A"
#define RFM95_INT 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 11 of 48

#define RFM69_CS 10 // "B"
#define RFM69_RST 11 // "A"
#define RFM69_IRQ 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)

Feather M0
The Feather M0 is really easy to use, a ton of interrupts so wiring is easy

#define RFM95_CS 10 // "B"
#define RFM95_RST 11 // "A"
#define RFM95_INT 6 // "D"

#define RFM69_CS 10 // "B"
#define RFM69_RST 11 // "A"
#define RFM69_IRQ 6 // "D"
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 12 of 48

Assembly

Antenna Options
These radio Wings do not have a built-in antenna. Instead, you have three options for attaching an antenna. For
most low cost radio nodes, a wire works great. If you need to put the radio into an enclosure, soldering in uFL and
using a uFL to SMA adapter will let you attach an external antenna. You can also solder an SMA edge-mount
connector directly

Wire Antenna

A wire antenna, aka "quarter wave whip antenna" is low cost and works very well! You just have to cut the wire
down to the right length.

Cut a stranded or solid core wire the the proper length
for the module/frequency

433 MHz - 6.5 inches, or 16.5 cm
868 MHz - 3.25 inches or 8.2 cm
915 MHz - 3 inches or 7.8 cm

Strip a mm or two off the end of the wire, tin and solder
into the ANT pad.

uFL Connector
If you want an external antenna that is a few inches away from the radio, you need to do a tiny bit more work but
its not too difficult.

You'll need to get an SMT uFL connector, these are fairly standard (http://adafru.it/1661)

You'll also need a uFL to SMA adapter (http://adafru.it/851) (or whatever adapter you need for the antenna you'll
be using, SMA is the most common

Of course, you will also need an antenna of some sort, that matches your radio frequency

uFL connectors are rated for 30 connection cycles, but be careful when connecting/disconnecting to not rip the
pads off the PCB. Once a uFL/SMA adapter is connected, use strain relief!

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 13 of 48

https://learn.adafruit.com/assets/35107
https://www.adafruit.com/products/1661
https://www.adafruit.com/products/851

Start by melting solder onto the center signal pad

Check the bottom of the uFL connector, note that
there's two large side pads (ground) and a little inlet
pad. The other small pad is not used!

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 14 of 48

https://learn.adafruit.com/assets/35108
https://learn.adafruit.com/assets/35109
https://learn.adafruit.com/assets/35110

Solder in the first pad while holding the uFL steady

Solder in the two side pads, they are used for signal
and mechanical connectivity so make sure there's
plenty of solder

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 15 of 48

https://learn.adafruit.com/assets/35111
https://learn.adafruit.com/assets/35112
https://learn.adafruit.com/assets/35113
https://learn.adafruit.com/assets/35114

Once done, check your work visually

SMA Edge-Mount Connector
These strong edge connectors are used for many 'duck' antennas, and can also be panel mounted

You'll need an SMA (or, if you need RP-SMA for some
reason) Edge-Mount connector with 1.6mm spacing

The SMA connector 'slides on' the top of the PCB

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 16 of 48

https://learn.adafruit.com/assets/35115
https://learn.adafruit.com/assets/35117

Solder all 5 connections (4 ground/mechanical and 1
signal)

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 17 of 48

https://learn.adafruit.com/assets/35118
https://learn.adafruit.com/assets/35119
https://learn.adafruit.com/assets/35120

Use plenty of solder to make sure you have a good
strong mechanical connection. The duck antennas are
long and make great levers, so they could pry apart the
solder joints if not soldered well

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 18 of 48

https://learn.adafruit.com/assets/35121

Using the RFM69 Radio

Before beginning make sure you have your Feather working smoothly, it will make this part a lot easier. Once you
have the basic Feather functionality going - you can upload code, blink an LED, use the serial output, etc. you
can then upgrade to using the radio itself.

Note that the sub-GHz radio is not designed for streaming audio or video! It's best used for small packets of data.
The data rate is adjustbale but its common to stick to around 19.2 Kbps (thats bits per second). Lower data rates
will be more successful in their transmissions

You will, of course, need at least two paired radios to do any testing! The radios must be matched in
frequency (e.g. 900 MHz & 900 MHz are ok, 900 MHz & 433 MHz are not). They also must use the same
encoding schemes, you cannot have a 900 MHz RFM69 packet radio talk to a 900 MHz RFM9x LoRa radio.

"Raw" vs Packetized
The SX1231 can be used in a 'raw rx/tx' mode where it just modulates incoming bits from pin #2 and sends them
on the radio, however there's no error correction or addressing so we wont be covering that technique.

Instead, 99% of cases are best off using packetized mode. This means you can set up a recipient for your data,
error correction so you can be sure the whole data set was transmitted correctly, automatic re-transmit retries
and return-receipt when the packet was delivered. Basically, you get the transparency of a data pipe without the
annoyances of radio transmission unreliability

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 19 of 48

Arduino Libraries
These radios have really great libraries already written, so rather than coming up with a new standard we suggest
using existing libraries such as LowPowerLab's RFM69 Library (http://adafru.it/mCz) and AirSpayce's Radiohead
library (http://adafru.it/mCA) which also suppors a vast number of other radios

These are really great Arduino Libraries, so please support both companies in thanks for their efforts!

LowPowerLab RFM69 Library example

To begin talking to the radio, you will need to download RFM69 from their github repository (http://adafru.it/mCz).
You can do that by visiting the github repo and manually downloading or, easier, just click this button to download
the zip

Download RFM69 Library
http://adafru.it/mCB

Rename the uncompressed folder RFM69 and check that the RFM69 folder contains RFM69.cpp and RFM69.h

Place the RFM69 library folder your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (http://adafru.it/aYM)

Basic RX & TX example
Lets get a basic demo going, where one Feather transmits and the other receives. We'll start by setting up the
transmitter

Transmitter example code

This code will send a small packet of data once a second to node address #1

Load this code into your Transmitter Arduino/Feather!

Before uploading, check for the #define FREQUENCY RF69_915MHZ line and comment that out (and
uncomment the line above) to match the frequency of the hardware you're using
Uncomment/comment the sections defining the pins for Feather 32u4, Feather M0, etc depending on which
chipset and wiring you are using! The pins used will vary depending on your setup!
On the ESP8266, change the LED pin from 13 to 0

/* RFM69 library and code by Felix Rusu - felix@lowpowerlab.com
// Get libraries at: https://github.com/LowPowerLab/
// Make sure you adjust the settings in the configuration section below !!!
// **
// Copyright Felix Rusu, LowPowerLab.com
// Library and code by Felix Rusu - felix@lowpowerlab.com
// **
// License
// **
// This program is free software; you can redistribute it

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 20 of 48

https://github.com/LowPowerLab/RFM69
http://www.airspayce.com/mikem/arduino/RadioHead/
https://github.com/LowPowerLab/RFM69
https://github.com/LowPowerLab/RFM69/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

// and/or modify it under the terms of the GNU General
// Public License as published by the Free Software
// Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will
// be useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General
// Public License along with this program.
// If not, see <http://www.gnu.org/licenses></http:>.
//
// Licence can be viewed at
// http://www.gnu.org/licenses/gpl-3.0.txt
//
// Please maintain this license information along with authorship
// and copyright notices in any redistribution of this code
// **/

#include <RFM69.h> //get it here: https://www.github.com/lowpowerlab/rfm69
#include <SPI.h>

//***
// *********** IMPORTANT SETTINGS - YOU MUST CHANGE/ONFIGURE TO FIT YOUR HARDWARE *************
//***
#define NETWORKID 100 // The same on all nodes that talk to each other
#define NODEID 2 // The unique identifier of this node
#define RECEIVER 1 // The recipient of packets

//Match frequency to the hardware version of the radio on your Feather
//#define FREQUENCY RF69_433MHZ
//#define FREQUENCY RF69_868MHZ
#define FREQUENCY RF69_915MHZ
#define ENCRYPTKEY "sampleEncryptKey" //exactly the same 16 characters/bytes on all nodes!
#define IS_RFM69HCW true // set to 'true' if you are using an RFM69HCW module

//***
#define SERIAL_BAUD 115200

/* for Feather 32u4 Radio
#define RFM69_CS 8
#define RFM69_IRQ 7
#define RFM69_IRQN 4 // Pin 7 is IRQ 4!
#define RFM69_RST 4
*/

/* for Feather M0 Radio
#define RFM69_CS 8
#define RFM69_IRQ 3
#define RFM69_IRQN 3 // Pin 3 is IRQ 3!
#define RFM69_RST 4
*/

/* ESP8266 feather w/wing
#define RFM69_CS 2
#define RFM69_IRQ 15
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
#define RFM69_RST 16
*/

/* Feather 32u4 w/wing

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 21 of 48

#define RFM69_RST 11 // "A"
#define RFM69_CS 10 // "B"
#define RFM69_IRQ 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
*/

/* Feather m0 w/wing
#define RFM69_RST 11 // "A"
#define RFM69_CS 10 // "B"
#define RFM69_IRQ 6 // "D"
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
*/

/* Teensy 3.x w/wing
#define RFM69_RST 9 // "A"
#define RFM69_CS 10 // "B"
#define RFM69_IRQ 4 // "C"
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
*/

/* WICED Feather w/wing
#define RFM69_RST PA4 // "A"
#define RFM69_CS PB4 // "B"
#define RFM69_IRQ PA15 // "C"
#define RFM69_IRQN RFM69_IRQ
*/

#define LED 13 // onboard blinky
//#define LED 0 //use 0 on ESP8266

int16_t packetnum = 0; // packet counter, we increment per xmission

RFM69 radio = RFM69(RFM69_CS, RFM69_IRQ, IS_RFM69HCW, RFM69_IRQN);

void setup() {
 while (!Serial); // wait until serial console is open, remove if not tethered to computer. Delete this line on ESP8266
 Serial.begin(SERIAL_BAUD);

 Serial.println("Feather RFM69HCW Transmitter");

 // Hard Reset the RFM module
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, HIGH);
 delay(100);
 digitalWrite(RFM69_RST, LOW);
 delay(100);

 // Initialize radio
 radio.initialize(FREQUENCY,NODEID,NETWORKID);
 if (IS_RFM69HCW) {
 radio.setHighPower(); // Only for RFM69HCW & HW!
 }
 radio.setPowerLevel(31); // power output ranges from 0 (5dBm) to 31 (20dBm)

 radio.encrypt(ENCRYPTKEY);

 pinMode(LED, OUTPUT);
 Serial.print("\nTransmitting at ");
 Serial.print(FREQUENCY==RF69_433MHZ ? 433 : FREQUENCY==RF69_868MHZ ? 868 : 915);
 Serial.println(" MHz");
}

void loop() {

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 22 of 48

 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!

 char radiopacket[20] = "Hello World #";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);

 if (radio.sendWithRetry(RECEIVER, radiopacket, strlen(radiopacket))) { //target node Id, message as string or byte array, message length
 Serial.println("OK");
 Blink(LED, 50, 3); //blink LED 3 times, 50ms between blinks
 }

 radio.receiveDone(); //put radio in RX mode
 Serial.flush(); //make sure all serial data is clocked out before sleeping the MCU
}

void Blink(byte PIN, byte DELAY_MS, byte loops)
{
 for (byte i=0; i<loops; i++)
 {
 digitalWrite(PIN,HIGH);
 delay(DELAY_MS);
 digitalWrite(PIN,LOW);
 delay(DELAY_MS);
 }
}

Once uploaded you should see the following on the serial console

Now open up another instance of the Arduino IDE - this is so you can see the serial console output from the TX
Feather while you set up the RX Feather.

Receiver example code

This code will receive and acknowledge a small packet of data.

Load this code into your Receiver Arduino/Feather!

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 23 of 48

Before uploading, check for the #define FREQUENCY RF69_915MHZ line and comment that out (and
uncomment the line above) to match the frequency of the hardware you're using
Uncomment/comment the sections defining the pins for Feather 32u4, Feather M0, etc depending on which
chipset and wiring you are using! The pins used will vary depending on your setup!
On the ESP8266, change the LED pin from 13 to 0

/* RFM69 library and code by Felix Rusu - felix@lowpowerlab.com
// Get libraries at: https://github.com/LowPowerLab/
// Make sure you adjust the settings in the configuration section below !!!
// **
// Copyright Felix Rusu, LowPowerLab.com
// Library and code by Felix Rusu - felix@lowpowerlab.com
// **
// License
// **
// This program is free software; you can redistribute it
// and/or modify it under the terms of the GNU General
// Public License as published by the Free Software
// Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will
// be useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General
// Public License along with this program.
// If not, see <http://www.gnu.org/licenses></http:>.
//
// Licence can be viewed at
// http://www.gnu.org/licenses/gpl-3.0.txt
//
// Please maintain this license information along with authorship
// and copyright notices in any redistribution of this code
// **/

#include <RFM69.h> //get it here: https://www.github.com/lowpowerlab/rfm69
#include <SPI.h>

//***
// *********** IMPORTANT SETTINGS - YOU MUST CHANGE/ONFIGURE TO FIT YOUR HARDWARE *************
//***
#define NETWORKID 100 //the same on all nodes that talk to each other
#define NODEID 1

//Match frequency to the hardware version of the radio on your Feather
//#define FREQUENCY RF69_433MHZ
//#define FREQUENCY RF69_868MHZ
#define FREQUENCY RF69_915MHZ
#define ENCRYPTKEY "sampleEncryptKey" //exactly the same 16 characters/bytes on all nodes!
#define IS_RFM69HCW true // set to 'true' if you are using an RFM69HCW module

//***
#define SERIAL_BAUD 115200

/* for Feather 32u4 */
#define RFM69_CS 8
#define RFM69_IRQ 7
#define RFM69_IRQN 4 // Pin 7 is IRQ 4!
#define RFM69_RST 4

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 24 of 48

/* for Feather M0
#define RFM69_CS 8
#define RFM69_IRQ 3
#define RFM69_IRQN 3 // Pin 3 is IRQ 3!
#define RFM69_RST 4
*/

/* ESP8266 feather w/wing
#define RFM69_CS 2
#define RFM69_IRQ 15
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
#define RFM69_RST 16
*/

/* Feather 32u4 w/wing
#define RFM69_CS 10 // "B"
#define RFM69_RST 11 // "A"
#define RFM69_IRQ 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
*/

/* Feather m0 w/wing
#define RFM69_CS 10 // "B"
#define RFM69_RST 11 // "A"
#define RFM69_IRQ 6 // "D"
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
*/

/* Teensy 3.x w/wing
#define RFM69_RST 9 // "A"
#define RFM69_CS 10 // "B"
#define RFM69_IRQ 4 // "C"
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
*/

/* WICED Feather w/wing
#define RFM69_RST PA4 // "A"
#define RFM69_CS PB4 // "B"
#define RFM69_IRQ PA15 // "C"
#define RFM69_IRQN RFM69_IRQ
*/

#define LED 13 // onboard blinky
//#define LED 0 //use 0 on ESP8266

int16_t packetnum = 0; // packet counter, we increment per xmission

RFM69 radio = RFM69(RFM69_CS, RFM69_IRQ, IS_RFM69HCW, RFM69_IRQN);

void setup() {
 while (!Serial); // wait until serial console is open, remove if not tethered to computer. Delete this line on ESP8266
 Serial.begin(SERIAL_BAUD);

 Serial.println("Feather RFM69HCW Receiver");

 // Hard Reset the RFM module
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, HIGH);
 delay(100);
 digitalWrite(RFM69_RST, LOW);
 delay(100);

 // Initialize radio
 radio.initialize(FREQUENCY,NODEID,NETWORKID);

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 25 of 48

 if (IS_RFM69HCW) {
 radio.setHighPower(); // Only for RFM69HCW & HW!
 }
 radio.setPowerLevel(31); // power output ranges from 0 (5dBm) to 31 (20dBm)

 radio.encrypt(ENCRYPTKEY);

 pinMode(LED, OUTPUT);

 Serial.print("\nListening at ");
 Serial.print(FREQUENCY==RF69_433MHZ ? 433 : FREQUENCY==RF69_868MHZ ? 868 : 915);
 Serial.println(" MHz");
}

void loop() {
 //check if something was received (could be an interrupt from the radio)
 if (radio.receiveDone())
 {
 //print message received to serial
 Serial.print('[');Serial.print(radio.SENDERID);Serial.print("] ");
 Serial.print((char*)radio.DATA);
 Serial.print(" [RX_RSSI:");Serial.print(radio.RSSI);Serial.print("]");

 //check if received message contains Hello World
 if (strstr((char *)radio.DATA, "Hello World"))
 {
 //check if sender wanted an ACK
 if (radio.ACKRequested())
 {
 radio.sendACK();
 Serial.println(" - ACK sent");
 }
 Blink(LED, 40, 3); //blink LED 3 times, 40ms between blinks
 }
 }

 radio.receiveDone(); //put radio in RX mode
 Serial.flush(); //make sure all serial data is clocked out before sleeping the MCU
}

void Blink(byte PIN, byte DELAY_MS, byte loops)
{
 for (byte i=0; i<loops; i++)
 {
 digitalWrite(PIN,HIGH);
 delay(DELAY_MS);
 digitalWrite(PIN,LOW);
 delay(DELAY_MS);
 }
}

Now open up the Serial console on the receiver, while also checking in on the transmitter's serial console. You
should see the receiver is...well, receiving packets

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 26 of 48

And, on the transmitter side, it is now printing OK after each transmisssion because it got an acknowledgement
from the receiver

That's pretty much the basics of it! Lets take a look at the examples so you know how to adapt to your own radio
network

Radio Net & ID Configuration
The first thing you need to do for all radio nodes on your network is to configure the network ID (the identifier
shared by all radio nodes you are using) and individual ID's for each node.

//***
// *********** IMPORTANT SETTINGS - YOU MUST CHANGE/ONFIGURE TO FIT YOUR HARDWARE *************
//***
#define NETWORKID 100 // The same on all nodes that talk to each other

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 27 of 48

#define NODEID 2 // The unique identifier of this node

Make sure all radios you are using are sharing the same network ID and all have different/unique Node ID's!

Radio Type Config

You will also have to set up type of radio you are using, an encryption key if you're using it, and the type of radio
(high or low power)

//Match frequency to the hardware version of the radio on your Feather
//#define FREQUENCY RF69_433MHZ
//#define FREQUENCY RF69_868MHZ
#define FREQUENCY RF69_915MHZ
#define ENCRYPTKEY "sampleEncryptKey" //exactly the same 16 characters/bytes on all nodes!
#define IS_RFM69HCW true // set to 'true' if you are using an RFM69HCW module

For all radios they will need to be on the same frequency. If you have a 433MHz radio you will have to stick to
433. If you have a 900 Mhz radio, go with 868 or 915MHz, just make sure all radios are on the same frequency

The ENCRYPTKEY is 16 characters long and keeps your messages a little more secret than just plain text

IS_RFM69HCW is used for telling the library that we are using the high power version of the radio, make sure its
set to true

Feather Radio Pinout
 This is the pinout setup for all Feather 32u4 RFM69's so keep this the same

/* for Feather 32u4 */
#define RFM69_CS 8
#define RFM69_IRQ 7
#define RFM69_IRQN 4 // Pin 7 is IRQ 4!
#define RFM69_RST 4

If you're using a Feather M0, the pinout is slightly different:

/* for Feather M0 */
#define RFM69_CS 8
#define RFM69_IRQ 3
#define RFM69_IRQN 3 // Pin 3 is IRQ 3!
#define RFM69_RST 4

If you're using the FeatherWings, you'll have to set the #define statements to match your wiring

You can then instantiate the radio object with our custom pin numbers. Note that the IRQ is defined by the IRQ
number not the pin.

RFM69 radio = RFM69(RFM69_CS, RFM69_IRQ, IS_RFM69HCW, RFM69_IRQN);

Setup
We begin by setting up the serial console and hard-resetting the RFM69

void setup() {
 while (!Serial); // wait until serial console is open, remove if not tethered to computer. Delete this line on ESP8266
 Serial.begin(SERIAL_BAUD);

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 28 of 48

 Serial.println("Feather RFM69HCW Transmitter");

 // Hard Reset the RFM module
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, HIGH);
 delay(100);
 digitalWrite(RFM69_RST, LOW);
 delay(100);

Remove the while (!Serial); line if you are not tethering to a computer, as it will cause the Feather to halt until a
USB connection is made!

Initializing Radio

The library gets initialized with the frequency, unique identifier and network identifier. For HCW type modules
(which you are using) it will also turn on the amplifier. You can also configure the output power level, the number
ranges from 0 to 31. Start with the highest power level (31) and then scale down as necessary

Finally, if you are encrypting data transmission, set up the encryption key

 // Initialize radio
 radio.initialize(FREQUENCY,NODEID,NETWORKID);
 if (IS_RFM69HCW) {
 radio.setHighPower(); // Only for RFM69HCW & HW!
 }
 radio.setPowerLevel(31); // power output ranges from 0 (5dBm) to 31 (20dBm)

 radio.encrypt(ENCRYPTKEY);

Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet with "Hello World #" and an
incrementing packet number, then check for an acknowledgement

void loop() {
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!

 char radiopacket[20] = "Hello World #";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);

 if (radio.sendWithRetry(RECEIVER, radiopacket, strlen(radiopacket))) { //target node Id, message as string or byte array, message length
 Serial.println("OK");
 Blink(LED, 50, 3); //blink LED 3 times, 50ms between blinks
 }

 radio.receiveDone(); //put radio in RX mode
 Serial.flush(); //make sure all serial data is clocked out before sleeping the MCU
}

Its pretty simple, the delay does the waiting, you can replace that with low power sleep code. Then it generates
the packet and appends a number that increases every tx. Then it simply calls sendWithRetry to the address in
the first argument (RECEIVER), and passes in the array of data and the length of the data.

If you receive a true from that call it means an acknowledgement was received and print OK - either way the
transmitter will continue the loop and sleep for a second until the next TX.

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 29 of 48

Receiver Code

The Receiver has the same exact setup code, but the loop is different

void loop() {
 //check if something was received (could be an interrupt from the radio)
 if (radio.receiveDone())
 {
 //print message received to serial
 Serial.print('[');Serial.print(radio.SENDERID);Serial.print("] ");
 Serial.print((char*)radio.DATA);
 Serial.print(" [RX_RSSI:");Serial.print(radio.RSSI);Serial.print("]");

 //check if received message contains Hello World
 if (strstr((char *)radio.DATA, "Hello World"))
 {
 //check if sender wanted an ACK
 if (radio.ACKRequested())
 {
 radio.sendACK();
 Serial.println(" - ACK sent");
 }
 Blink(LED, 40, 3); //blink LED 3 times, 40ms between blinks
 }
 }

 Serial.flush(); //make sure all serial data is clocked out before sleeping the MCU
}

Instead of transmitting, it is constantly checking if there's any data packets that have been received.
receiveDone() will return true if a packet for the current node, in the right network and with the proper encryption
has been received. If so, the receiver prints it out.

It also prints out the RSSI which is the receiver signal strength indicator. This number will range from about -15 to
-80. The larger the number (-15 being the highest you'll likely see) the stronger the signal.

If the data contains the text "Hello World" it will also acknowledge the packet.

Once done it will continue waiting for a new packet

Receiver/Transmitter Demo
OK once you have that going you can try this example, we're using the Feather with an OLED wing but you can
run the code without the OLED and connect three buttons to GPIO #9, 6, and 5 on the Feathers. Upload the
same code to each Feather but change the following lines

#define NODEID NODE1 // Swap these two for other Feather
#define RECEIVER NODE2 // Swap these two for other Feather

swap the NODE1/NODE2 identifers for the second Feather (one is NODE1 and the receiver is NODE 2, the other
is NODE2 and the receiver is NODE1)

On the ESP8266, change the LED pin from 13 to 0

/* RFM69 library and code by Felix Rusu - felix@lowpowerlab.com
// Get libraries at: https://github.com/LowPowerLab/
// Make sure you adjust the settings in the configuration section below !!!
// **

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 30 of 48

// Copyright Felix Rusu, LowPowerLab.com
// Library and code by Felix Rusu - felix@lowpowerlab.com
// **
// License
// **
// This program is free software; you can redistribute it
// and/or modify it under the terms of the GNU General
// Public License as published by the Free Software
// Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will
// be useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General
// Public License along with this program.
// If not, see <http://www.gnu.org/licenses></http:>.
//
// Licence can be viewed at
// http://www.gnu.org/licenses/gpl-3.0.txt
//
// Please maintain this license information along with authorship
// and copyright notices in any redistribution of this code
// **/

#include <RFM69.h> //get it here: https://www.github.com/lowpowerlab/rfm69
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>

Adafruit_SSD1306 oled = Adafruit_SSD1306();
#define BUTTON_A 9
#define BUTTON_B 6
#define BUTTON_C 5

//***
// *********** IMPORTANT SETTINGS - YOU MUST CHANGE/ONFIGURE TO FIT YOUR HARDWARE *************
//***
#define NETWORKID 100 //the same on all nodes that talk to each other
#define NODE1 1
#define NODE2 2

#define NODEID NODE1 // Swap these two for other Feather
#define RECEIVER NODE2 // Swap these two for other Feather

//Match frequency to the hardware version of the radio on your Feather
//#define FREQUENCY RF69_433MHZ
//#define FREQUENCY RF69_868MHZ
#define FREQUENCY RF69_915MHZ
#define ENCRYPTKEY "sampleEncryptKey" //exactly the same 16 characters/bytes on all nodes!
#define IS_RFM69HCW true // set to 'true' if you are using an RFM69HCW module

//***
#define SERIAL_BAUD 115200

/* for Feather 32u4 */
#define RFM69_CS 8
#define RFM69_IRQ 7
#define RFM69_IRQN 4 // Pin 7 is IRQ 4!
#define RFM69_RST 4

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 31 of 48

/* for Feather M0
#define RFM69_CS 8
#define RFM69_IRQ 3
#define RFM69_IRQN 3 // Pin 3 is IRQ 3!
#define RFM69_RST 4
*/
/* ESP8266 feather w/wing
#define RFM69_CS 2
#define RFM69_IRQ 15
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
#define RFM69_RST 16
*/

/* Feather 32u4 w/wing
#define RFM69_CS 10 // "B"
#define RFM69_RST 11 // "A"
#define RFM69_IRQ 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
*/

/* Feather m0 w/wing
#define RFM69_CS 10 // "B"
#define RFM69_RST 11 // "A"
#define RFM69_IRQ 6 // "D"
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
*/

/* Teensy 3.x w/wing
#define RFM69_RST 9 // "A"
#define RFM69_CS 10 // "B"
#define RFM69_IRQ 4 // "C"
#define RFM69_IRQN digitalPinToInterrupt(RFM69_IRQ)
*/

/* WICED Feather w/wing
#define RFM69_RST PA4 // "A"
#define RFM69_CS PB4 // "B"
#define RFM69_IRQ PA15 // "C"
#define RFM69_IRQN RFM69_IRQ
*/

#define LED 13 // onboard blinky
//#define LED 0 //use 0 on ESP8266

int16_t packetnum = 0; // packet counter, we increment per xmission

RFM69 radio = RFM69(RFM69_CS, RFM69_IRQ, IS_RFM69HCW, RFM69_IRQN);

void setup() {
 //while (!Serial); // wait until serial console is open, remove if not tethered to computer
 Serial.begin(SERIAL_BAUD);

 // Initialize OLED display
 oled.begin(SSD1306_SWITCHCAPVCC, 0x3C); // initialize with the I2C addr 0x3C (for the 128x32)
 oled.display();
 delay(250);
 oled.clearDisplay();
 oled.display();

 // OLED text display tests
 oled.setTextSize(1);
 oled.setTextColor(WHITE);
 oled.setCursor(0,0);

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 32 of 48

 pinMode(BUTTON_A, INPUT_PULLUP);
 pinMode(BUTTON_B, INPUT_PULLUP);
 pinMode(BUTTON_C, INPUT_PULLUP);

 Serial.println("Feather RFM69HCW RX/TX OLED demo");

 // Hard Reset the RFM module
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, HIGH);
 delay(100);
 digitalWrite(RFM69_RST, LOW);
 delay(100);

 // Initialize radio
 radio.initialize(FREQUENCY,NODEID,NETWORKID);
 if (IS_RFM69HCW) {
 radio.setHighPower(); // Only for RFM69HCW & HW!
 }
 radio.setPowerLevel(31); // power output ranges from 0 (5dBm) to 31 (20dBm)

 radio.encrypt(ENCRYPTKEY);

 pinMode(LED, OUTPUT);

 Serial.print("Node #"); Serial.print(NODEID); Serial.print(" radio at ");
 Serial.print(FREQUENCY==RF69_433MHZ ? 433 : FREQUENCY==RF69_868MHZ ? 868 : 915);
 Serial.println(" MHz");

 oled.print("Node #"); oled.print(NODEID); oled.print(" radio at ");
 oled.print(FREQUENCY==RF69_433MHZ ? 433 : FREQUENCY==RF69_868MHZ ? 868 : 915);
 oled.println(" MHz");
 oled.display();
}

void loop() {
 //check if something was received (could be an interrupt from the radio)
 if (radio.receiveDone())
 {
 //print message received to serial
 Serial.print('[');Serial.print(radio.SENDERID);Serial.print("] ");
 Serial.print((char*)radio.DATA);
 Serial.print(" [RX_RSSI:");Serial.print(radio.RSSI);Serial.print("]");

 oled.clearDisplay();
 oled.setCursor(0,0);
 oled.print('[');oled.print(radio.SENDERID);oled.print("] ");
 oled.println((char*)radio.DATA);
 oled.print("[RX_RSSI:"); oled.print(radio.RSSI); oled.print("]");
 oled.display();

 //check if sender wanted an ACK
 if (radio.ACKRequested())
 {
 radio.sendACK();
 Serial.println(" - ACK sent");
 }
 Blink(LED, 40, 3); //blink LED 3 times, 40ms between blinks
 }

 if (!digitalRead(BUTTON_A) || !digitalRead(BUTTON_B) || !digitalRead(BUTTON_C))
 {
 Serial.println("Button pressed!");

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 33 of 48

 char radiopacket[20] = "Button #";
 if (!digitalRead(BUTTON_A)) radiopacket[8] = 'A';
 if (!digitalRead(BUTTON_B)) radiopacket[8] = 'B';
 if (!digitalRead(BUTTON_C)) radiopacket[8] = 'C';
 radiopacket[9] = 0;

 Serial.print("Sending "); Serial.println(radiopacket);

 if (radio.sendWithRetry(RECEIVER, radiopacket, strlen(radiopacket))) { //target node Id, message as string or byte array, message length
 Serial.println("OK");
 Blink(LED, 50, 3); //blink LED 3 times, 50ms between blinks
 }
 delay(250); // delay for retransmission
 }

 radio.receiveDone(); //put radio in RX mode
 Serial.flush(); //make sure all serial data is clocked out before sleeping the MCU
}

void Blink(byte PIN, byte DELAY_MS, byte loops)
{
 for (byte i=0; i<loops; i++)
 {
 digitalWrite(PIN,HIGH);
 delay(DELAY_MS);
 digitalWrite(PIN,LOW);
 delay(DELAY_MS);
 }
}

This demo code shows how you can listen for packets and also check for button presses (or sensor data or
whatever you like) and send them back and forth between the two radios!

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 34 of 48

Using the RFM9X Radio

Before beginning make sure you have your Feather working smoothly, it will make this part a lot easier. Once you
have the basic Feather functionality going - you can upload code, blink an LED, use the serial output, etc. you
can then upgrade to using the radio itself.

Note that the sub-GHz radio is not designed for streaming audio or video! It's best used for small packets of data.
The data rate is adjustbale but its common to stick to around 19.2 Kbps (thats bits per second). Lower data rates
will be more successful in their transmissions

You will, of course, need at least two paired radios to do any testing! The radios must be matched in
frequency (e.g. 900 MHz & 900 MHz are ok, 900 MHz & 433 MHz are not). They also must use the same
encoding schemes, you cannot have a 900 MHz RFM69 packet radio talk to a 900 MHz RFM96 LoRa radio.

Arduino Library
These radios have really excellent code already written, so rather than coming up with a new standard we
suggest using existing libraries such as AirSpayce's Radiohead library (http://adafru.it/mCA) which also suppors a
vast number of other radios

This is a really great Arduino Library, so please support them in thanks for their efforts!

RadioHead RFM9x Library example

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 35 of 48

http://www.airspayce.com/mikem/arduino/RadioHead/

To begin talking to the radio, you will need to download the RadioHead library (http://adafru.it/mCA). You can do
that by visiting the github repo and manually downloading or, easier, just click this button to download the zip
corresponding to version 1.62

Note that while all the code in the examples below are based on this version you can visit the RadioHead
documentation page to get the most recent version which may have bug-fixes or more
functionality (http://adafru.it/mCA)

RadioHead-1.62.zip
http://adafru.it/q6f

Uncompress the zip and find the folder named RadioHead and check that the RadioHead folder contains
RH_RF95.cpp and RH_RF95.h (as well as a few dozen other files for radios that are supported)

Place the RadioHead library folder your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (http://adafru.it/aYM)

Basic RX & TX example
Lets get a basic demo going, where one Feather transmits and the other receives. We'll start by setting up the
transmitter

Transmitter example code

This code will send a small packet of data once a second to node address #1

Load this code into your Transmitter Arduino/Feather!

Before uploading, check for the #define RF95_FREQ 915.0 line and change that to 433.0 if you are using the
433MHz version of the LoRa radio!
Uncomment/comment the sections defining the pins for Feather 32u4, Feather M0, etc depending on which
chipset and wiring you are using! The pins used will vary depending on your setup!

// Feather9x_TX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (transmitter)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example Feather9x_RX

#include <SPI.h>
#include <RH_RF95.h>

/* for feather32u4 */
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 7

/* for feather m0
#define RFM95_CS 8
#define RFM95_RST 4

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 36 of 48

http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/
https://cdn-learn.adafruit.com/assets/assets/000/035/106/original/RadioHead-1.62.zip?1472068723
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

#define RFM95_INT 3
*/

/* for shield
#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 7
*/

/* for ESP w/featherwing
#define RFM95_CS 2 // "E"
#define RFM95_RST 16 // "D"
#define RFM95_INT 15 // "B"
*/

/* Feather 32u4 w/wing
#define RFM95_RST 11 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)
*/

/* Feather m0 w/wing
#define RFM95_RST 11 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 6 // "D"
*/

/* Teensy 3.x w/wing
#define RFM95_RST 9 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 4 // "C"
*/

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

void setup()
{
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial);
 Serial.begin(9600);
 delay(100);

 Serial.println("Feather LoRa TX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 37 of 48

 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

int16_t packetnum = 0; // packet counter, we increment per xmission

void loop()
{
 Serial.println("Sending to rf95_server");
 // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

 Serial.println("Sending..."); delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete..."); delay(10);
 rf95.waitPacketSent();
 // Now wait for a reply
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 Serial.println("Waiting for reply..."); delay(10);
 if (rf95.waitAvailableTimeout(1000))
 {
 // Should be a reply message for us now
 if (rf95.recv(buf, &len))
 {
 Serial.print("Got reply: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);
 }
 else
 {
 Serial.println("Receive failed");
 }
 }
 else
 {
 Serial.println("No reply, is there a listener around?");
 }
 delay(1000);
}

Once uploaded you should see the following on the serial console

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 38 of 48

Now open up another instance of the Arduino IDE - this is so you can see the serial console output from the TX
Feather while you set up the RX Feather.

Receiver example code

This code will receive and acknowledge a small packet of data.

Load this code into your Receiver Arduino/Feather!

Make sure the #define RF95_FREQ 915.0 matches your transmitter Feather!
Uncomment/comment the sections defining the pins for Feather 32u4, Feather M0, etc depending on which
chipset and wiring you are using! The pins used will vary depending on your setup!

// Feather9x_RX
// -*- mode: C++ -*-
// Example sketch showing how to create a simple messaging client (receiver)
// with the RH_RF95 class. RH_RF95 class does not provide for addressing or
// reliability, so you should only use RH_RF95 if you do not need the higher
// level messaging abilities.
// It is designed to work with the other example Feather9x_TX

#include <SPI.h>
#include <RH_RF95.h>

/* for feather32u4 */
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 7

/* for feather m0
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 3
*/

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 39 of 48

/* for shield
#define RFM95_CS 10
#define RFM95_RST 9
#define RFM95_INT 7
*/

/* for ESP w/featherwing
#define RFM95_CS 2 // "E"
#define RFM95_RST 16 // "D"
#define RFM95_INT 15 // "B"
*/

/* Feather 32u4 w/wing
#define RFM95_RST 11 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 2 // "SDA" (only SDA/SCL/RX/TX have IRQ!)
*/

/* Feather m0 w/wing
#define RFM95_RST 11 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 6 // "D"
*/

/* Teensy 3.x w/wing
#define RFM95_RST 9 // "A"
#define RFM95_CS 10 // "B"
#define RFM95_INT 4 // "C"
*/

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

// Blinky on receipt
#define LED 13

void setup()
{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial);
 Serial.begin(9600);
 delay(100);

 Serial.println("Feather LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 40 of 48

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);
}

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);
 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

 // Send a reply
 uint8_t data[] = "And hello back to you";
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");
 digitalWrite(LED, LOW);
 }
 else
 {
 Serial.println("Receive failed");
 }
 }
}

Now open up the Serial console on the receiver, while also checking in on the transmitter's serial console. You
should see the receiver is...well, receiving packets

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 41 of 48

You can see that the library example prints out the hex-bytes received 48 65 6C 6C 6F 20 57 6F 72 6C 64 20 23 30 0 20

20 20 20 0, as well as the ASCII 'string' Hello World. Then it will send a reply.

And, on the transmitter side, it is now printing that it got a reply after each transmisssion And hello back to you

because it got a reply from the receiver

That's pretty much the basics of it! Lets take a look at the examples so you know how to adapt to your own radio
setup

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 42 of 48

Feather Radio Pinout
 This is the pinout setup for all Feather 32u4 RFM9X's:

/* for feather32u4 */
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 7

This is the pinout for all Feather M0 RFM9X's:

/* for feather m0 */
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 3

Frequency
You can dial in the frequency you want the radio to communicate on, such as 915.0, 434.0 or 868.0 or any
number really. Different countries/ITU Zones have different ISM bands so make sure you're using those or if you
are licensed, those frequencies you may use

// Change to 434.0 or other frequency, must match RX's freq!
#define RF95_FREQ 915.0

You can then instantiate the radio object with our custom pin numbers.

// Singleton instance of the radio driver
RH_RF95 rf95(RFM95_CS, RFM95_INT);

Setup
We begin by setting up the serial console and hard-resetting the Radio

void setup()
{
 pinMode(LED, OUTPUT);
 pinMode(RFM95_RST, OUTPUT);
 digitalWrite(RFM95_RST, HIGH);

 while (!Serial); // wait until serial console is open, remove if not tethered to computer
 Serial.begin(9600);
 delay(100);
 Serial.println("Feather LoRa RX Test!");

 // manual reset
 digitalWrite(RFM95_RST, LOW);
 delay(10);
 digitalWrite(RFM95_RST, HIGH);
 delay(10);

Remove the while (!Serial); line if you are not tethering to a computer, as it will cause the Feather to halt until a
USB connection is made!

Initializing Radio

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 43 of 48

The library gets initialized with a call to init(). Once initialized, you can set the frequency. You can also configure
the output power level, the number ranges from 5 to 23. Start with the highest power level (23) and then scale
down as necessary

 while (!rf95.init()) {
 Serial.println("LoRa radio init failed");
 while (1);
 }
 Serial.println("LoRa radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
 if (!rf95.setFrequency(RF95_FREQ)) {
 Serial.println("setFrequency failed");
 while (1);
 }
 Serial.print("Set Freq to: "); Serial.println(RF95_FREQ);

 // Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on

 // The default transmitter power is 13dBm, using PA_BOOST.
 // If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
 // you can set transmitter powers from 5 to 23 dBm:
 rf95.setTxPower(23, false);

Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a packet with "Hello World #" and an
incrementing packet number

void loop()
{
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!
 Serial.println("Transmitting..."); // Send a message to rf95_server

 char radiopacket[20] = "Hello World # ";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);
 radiopacket[19] = 0;

 Serial.println("Sending..."); delay(10);
 rf95.send((uint8_t *)radiopacket, 20);

 Serial.println("Waiting for packet to complete..."); delay(10);
 rf95.waitPacketSent();

Its pretty simple, the delay does the waiting, you can replace that with low power sleep code. Then it generates
the packet and appends a number that increases every tx. Then it simply calls send to transmit the data, and
passes in the array of data and the length of the data.

Note that this does not any addressing or subnetworking - if you want to make sure the packet goes to a
particular radio, you may have to add an identifier/address byte on your own!

Then you call waitPacketSent() to wait until the radio is done transmitting. You will not get an automatic
acknowledgement, from the other radio unless it knows to send back a packet. Think of it like the 'UDP' of radio -
the data is sent, but its not certain it was received! Also, there will not be any automatic retries.

Receiver Code

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 44 of 48

The Receiver has the same exact setup code, but the loop is different

void loop()
{
 if (rf95.available())
 {
 // Should be a message for us now
 uint8_t buf[RH_RF95_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf95.recv(buf, &len))
 {
 digitalWrite(LED, HIGH);
 RH_RF95::printBuffer("Received: ", buf, len);
 Serial.print("Got: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf95.lastRssi(), DEC);

Instead of transmitting, it is constantly checking if there's any data packets that have been received. available()
will return true if a packet with proper error-correction was received. If so, the receiver prints it out in hex and also
as a 'character string'

It also prints out the RSSI which is the receiver signal strength indicator. This number will range from about -15 to
about -100. The larger the number (-15 being the highest you'll likely see) the stronger the signal.

Once done it will automatically reply, which is a way for the radios to know that there was an acknowledgement

// Send a reply
 uint8_t data[] = "And hello back to you";
 rf95.send(data, sizeof(data));
 rf95.waitPacketSent();
 Serial.println("Sent a reply");

It simply sends back a string and waits till the reply is completely sent

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 45 of 48

Radio Range F.A.Q.
Which gives better range, LoRa or RFM69?

All other things being equal (antenna, power output, location) you will get better range with LoRa than with
RFM69 modules. We've found 50% to 100% range improvement is common.

What ranges can I expect for RFM69 radios?

The RFM69 radios have a range of approx. 500 meters line of sight with tuned uni-directional antennas.
Depending on obstructions, frequency, antenna and power output, you will get lower ranges - especially if you are
not line of sight.

What ranges can I expect for RFM9X LoRa radios?

The RFM9x radios have a range of up to 2 km line of sight with tuned uni-directional antennas. Depending on
obstructions, frequency, antenna and power output, you will get lower ranges - especially if you are not line of
sight.

I don't seem to be getting the range advetised! Is my module broken?

Your module is probably not broken. Radio range is dependant on a lot of things and all must be attended to to
make sure you get the best performance!

1. Tuned antenna for your frequency - getting a well tuned antenna is incredibly important. Your antenna must
be tuned for the exact frequency you are using

2. Matching frequency - make sure all modules are on the same exact frequency
3. Matching settings - all radios must have the same settings so they can communicate
4. Directional vs non-directional antennas - for the best range, directional antennas like Yagi will direct your

energy in one path instead of all around
5. Good power supply - a nice steady power supply will keep your transmissions clean and strong
6. Max power settings on the radios - they can be set for higher/lower power! Don't forget to set them to max.
7. Line of sight - No obstructions, walls, trees, towers, buildings, mountains, etc can be in the way of your

radio path. Likewise, outdoors is way better than indoors because its very hard to bounce radio paths
around a building

8. Radio transmission speed - trying to transmit more data faster will be hard. Go for small packets, with lots
of retransmissions. Lowering the baud rate on the radio (see the libraries for how to do this) will give you
better reliability

How do I pick/design the right antenna?

Various antennas will cost diferent amounts and give you different directional gain. In general, spending a lot on a
large fixed antenna can give you better power transfer if the antenna is well tuned. For most simple uses, a wire
works pretty well

The ARRL antena book is recommended if you want to learn how to do the modeling and
analysis (http://adafru.it/sdN)

But nothing beats actual tests in your environment!

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 46 of 48

https://www.arrl.org/shop/Antennas/

Downloads

Datasheets & Files
RFM9x

SX127x Datasheet (http://adafru.it/oBm)- The RFM9X LoRa radio chip itself
RFM9X (http://adafru.it/mFX) - The radio module, which contains the SX1272 chipset
FCC Test Report (http://adafru.it/q6A)
ETSI Test Report (http://adafru.it/r6a)
RoHS Report (http://adafru.it/r6b)

RFM69

SX1231 Datasheet (http://adafru.it/mCv) - The RFM69 radio chip itself
RFM69HCW datasheet (http://adafru.it/mCu)- contains the SX1231 datasheet plus details about the
module (http://adafru.it/mFX)
RoHS Test Report (http://adafru.it/oC1)
RoHS Test Report (http://adafru.it/oC2)
REACH Test Report (http://adafru.it/oC3)
ETSI Test Report (http://adafru.it/r6c)
FCC Test Report (http://adafru.it/r6d)

EagleCAD PCB files on GitHub (http://adafru.it/r6e)

Fritzing object in Adafruit Fritzing library (http://adafru.it/aP3)

Schematic
(Pinouts are the same for all four radio versions)

© Adafruit Industries https://learn.adafruit.com/radio-featherwing Page 47 of 48

https://cdn-shop.adafruit.com/product-files/3179/sx1276_77_78_79.pdf
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://cdn-shop.adafruit.com/product-files/3078/LoRa_RFM95-915S2%2813dBm%29_FCC.pdf
https://cdn-shop.adafruit.com/product-files/3078/etsireport_RFM95-868S2%2811dBm%29.pdf
https://cdn-shop.adafruit.com/product-files/3078/rohs_CAN14-015141-02_EC_15137200_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/sx1231.pdf
https://cdn-shop.adafruit.com/product-files/3076/RFM69HCW-V1.1.pdf
https://cdn-learn.adafruit.com/assets/assets/000/031/659/original/RFM95_96_97_98W.pdf?1460518717
https://cdn-shop.adafruit.com/product-files/3076/CAN14-015141-02_EC_15137200_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/CAN15-031854-04_EC_15983075_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/CAN15-031854-07_EC_15983075_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/RFM69HCW-868S2-ETSI.pdf
https://cdn-shop.adafruit.com/product-files/3070/p3070p3076_RFM69HCW-915S2-FCC.pdf
https://github.com/adafruit/Adafruit-Radio-FeatherWing-PCB
https://github.com/adafruit/Fritzing-Library

Fabrication Print
Dimensions in inches

© Adafruit Industries Last Updated: 2016-11-03 03:18:56 PM UTC Page 48 of 48

	Guide Contents
	Overview
	RFM69 Specs
	RFM9x Specs

	Pinouts
	SPI Data Pins (Fixed)
	SPI Control Pins (Flexible)
	RFM GPIO
	Antenna
	Wiring
	ESP8266 Wiring
	Feather 32u4
	Feather M0
	Assembly
	Antenna Options
	Wire Antenna

	uFL Connector
	SMA Edge-Mount Connector
	Using the RFM69 Radio
	"Raw" vs Packetized
	Arduino Libraries
	LowPowerLab RFM69 Library example

	Basic RX & TX example
	Transmitter example code
	Receiver example code

	Radio Net & ID Configuration
	Radio Type Config

	Feather Radio Pinout
	Setup
	Initializing Radio
	Transmission Code
	Receiver Code

	Receiver/Transmitter Demo
	Using the RFM9X Radio
	Arduino Library
	RadioHead RFM9x Library example

	Basic RX & TX example
	Transmitter example code
	Receiver example code

	Feather Radio Pinout
	Frequency
	Setup
	Initializing Radio
	Transmission Code
	Receiver Code

	Radio Range F.A.Q.
	Downloads
	Datasheets & Files
	Schematic
	Fabrication Print

