

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

© Parallax, Inc. • SoundPAL (2007.10.29) Page 1 of 12

SoundPAL (#28825): Miniature Sound Player
General Description
The SoundPAL is a tiny module that plays canned and custom sound sequences. It is completely self-
contained, including a microcontroller for generating the sounds and a small speaker for producing them.
The SoundPAL interfaces easily to a BASIC Stamp and can play sounds while the BASIC Stamp is busy
with other chores.

Features
• Plugs into servo headers, and works with protoboards.
• Virtually goof-proof power sourcing makes it nearly impossible to connect wrong.
• Single-pin interface uses a simple serial protocol to define and initiate sound production.
• Canned tunes and sound effects can be played with simple commands.
• Custom tunes and effects are simple to program using musical notation instead of frequencies.
• Total audio range is 6½ octaves in four different tempos and four playing styles.
• Onboard EEPROM permits saving custom sound sequences for later playback.
• Autoplay feature permits playing a pre-designated EEPROM sequence with only a power supply.
• Compact size: stackable side-to-side with additional modules on 0.1” servo headers.

What’s Included

SoundPAL module Sonic Resonator

What You Need to Provide
• BASIC Stamp 2 or better and a carrier board, such as Parallax’s Board of Education (BOE).

© Parallax, Inc. • SoundPAL (2007.10.29) Page 2 of 12

Installation
Installation of the SoundPAL is a simple. If you’re using a system that incorporates three-pin servo
headers (such as the BOE), just plug the SoundPAL into one of them. It has two three-conductor sockets
to choose from for this purpose, and you can insert either one in either direction, yielding four possible
orientations. The SoundPAL will adapt to whichever way you plug it in. Here’s a diagram showing the
SoundPAL’s pinout:

+5V

+5V

Gnd or I/OI/O or Gnd

Gnd or I/OI/O or Gnd

The photo below shows the SoundPAL plugged into a servo connector on the BOE Bot.

You will notice from the photo that the “sonic resonator” has been installed on the speaker. This is
provided both to increase the volume level of the SoundPAL and to give it a richer sound.

Important Note: The SoundPAL is designed to work from 5 volts only! Do not jumper your servo
headers to Vin or use any supply higher than 5 volts to operate the SoundPAL. Operation at lower
voltages down to about 3.3V is okay but will result in diminished output volume.

© Parallax, Inc. • SoundPAL (2007.10.29) Page 3 of 12

By installing a 3-pin header (included with the BOE-Bot Full Kit, p/n 28132) in one of the SoundPAL’s
connectors, you can also use it with a wireless breadboard, as the following diagram illustrates:

Vdd Vin Vss

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

In lieu of the three-pin header, you can also use three jumper wires or Parallax’s 14-inch LCD Extension
Cable and 3-Pin Header (p/n 805-00012).

Hardware Interface and Initialization
Interface to the SoundPAL takes place through either one of its I/O pins. When the SoundPAL powers
up, both pins are configured as normally-high inputs, pulled up to a nominal +5V through internal 20K to
50K resistances. The BASIC Stamp can thus tell when the SoundPAL has powered up by monitoring the
ungrounded I/O pin for a high value. This is an important feature when the SoundPAL is plugged into
one of the BOE’s servo headers, since the BOE’s three-way power switch powers up the servos after the
BASIC Stamp’s program starts to run.

Communication with the SoundPAL takes place using the BASIC Stamp’s SEROUT and SERIN
commands at any baud rate between 9600 and 19200, positive logic, 8-bit, no-parity. The SoundPAL’s
I/O pin should always be configured as an input by the BASIC Stamp, except when it’s being pulled low.
It should never be driven high. Therefore, when configuring the baud rate, be sure to set the high bit of
the Baudmode to a “one” (i.e. add 32768, or $8000 to the normal Baudmode value). This will configure
the pin as an open collector output.

The SoundPAL runs autonomously on power obtained from the servo headers or from another 5V supply.
Therefore, it does not reset when the BASIC Stamp resets, and may continue to produce sound during
and after reset if it was producing sound before. But it can be reset, nonetheless, by outputting a low
pulse of 2ms or more to its I/O pin. This can be a little tricky with the BASIC Stamp, since the Stamp’s
PULSOUT command always leaves the pin in an output state, which we don’t want to do. But there’s a
simple workaround. Just send a zero byte with SEROUT to the SoundPAL at a low baud rate, using the
same open-collector protocol used for normal communication.

When the SoundPAL resets, all output ceases immediately, and it returns to its initial state. Resetting is
the only way to halt infinite sound sequences, such as the siren effect included in the SoundPAL’s internal
repertoire.

The following code snippet illustrates baud rate settings both for communication and for resetting the
SoundPAL. It also includes a reset subroutine.

© Parallax, Inc. • SoundPAL (2007.10.29) Page 4 of 12

iopin PIN 15 'Pin number used for communicaiton with SoundPAL.
baud CON $8000 + 84 'Communication baudrate is 9600 for BS2, BS2e, and BS2pe.
reset CON $8000 + 813 'Reset baudrate is 1200 for BS2, BS2e, and BS2pe.

'See BASIC Stamp Manual for settings with other Stamps.

'----Reset the SoundPAL---------------------

DoReset:
DO:LOOP UNTIL iopin 'Make sure SoundPAL is powered up.
SEROUT iopin, reset, [0] 'Output 9 low bits at 1200 baud (i.e. a 7.5ms pulse).
RETURN

Playing Individual Notes

Pitch and Duration
Sounds are played by the SoundPAL as musical notes, each having an associated pitch and duration. The
pitches available to the programmer are those of the 12-note chromatic scale, and spanning 2½ octaves,
plus four programmable octave offsets, yielding a total range of 6½ octaves. In addition, there is one
pitch corresponding to a “rest”, which makes it possible to program silent intervals as well. The
illustration below shows the notes available in octave zero (oct0).

The note names shown between the staffs above are defined later in a sequence of CON statements in a
PBASIC code template. This template is also available for download from the SoundPAL product page on
the Parallax website.

Three additional octave ranges (oct1 – oct3) are available, each one an octave higher than its
predecessor. Without specifiying an octave range, the SoundPAL defaults to oct2, in which C_0 is middle
C, and A_0 is A440.

Each note or rest may have one of eight durations. These durations, along with their musical equivalents
and PBASIC names from the SoundPAL template, are shown below:

A single note in PBASIC consists of a pitch and duration and occupies one byte. If the note is a quarter
note, only the pitch need be given, since quarter notes are the default. To change to a different duration,
just add the duration name to the note name. For example, middle C in oct0 played as a dotted eighth
note would be de+C_2, and an eighth rest would be e+ZZZ. For consistency, always put the duration
ahead of the pitch.

The actual note duration depends on the tempo. Four tempos are available (tmp0 - tmp3). Without
specifying a tempo, the SoundPAL defaults to tmp1, in which there are 266 quarter note beats per
minute. Each successive tempo is double the speed of its predecessor, so the range for quarter note

© Parallax, Inc. • SoundPAL (2007.10.29) Page 5 of 12

beats per minute is from 133 to 1064. That makes the shortest sixteenth note 14ms long and the longest
dotted half note 677ms long. Although the fastest tempo is too fast for most music, it comes in handy for
certain non-musical sound effects.

Now we know how to express individual notes, but how do we make the SoundPAL play them? This is a
two-step process. First we have to get the notes into the SoundPAL. This is done by loading them into a
48-byte RAM buffer. Next, we have to tell the SoundPAL to execute (i.e. play) what’s in the buffer. Both
tasks are performed by issuing commands to the SoundPAL. The load command is an equal sign (=). It
tells the SoundPAL to put everything that follows it, up to and including the first zero byte, into the RAM
buffer. The execute command is an exclamation point (!). Every time the SoundPAL sees one of these, it
will execute the sounds in its buffer, stopping when it encounters the zero. For example, to play a simple
C major scale ending on a half-note, we would issue the following:

SEROUT iopin, baud, ["=", C_1, D_1, E_1, F_1, G_1, A_1, B_1, h+C_2, 0, "!"]

To specify an octave or tempo other than the defaults, just prepend an octave or tempo command to the
sound sequence you want played that way. In the following example, the arpeggio C, E, G, C is played in
the highest octave at the lowest speed:

SEROUT iopin, baud, ["=", oct3, tmp0, h+C_0, h+E_0, h+G_0, h+C_1, 0, "!"]

Style
In addition to pitch and duration, notes can be played in one of four different styles. These are named
marcato, legato, staccato, and glissando. (Musical nomenclature is, by custom, in Italian.) Marcato
is the default style and simply means that the notes played are demarcated by brief silences between
them. That way, two notes in sequence having the same pitch will be heard separately. By contrast,
notes played legato follow each other without intervening gaps. Two sequential notes having the same
pitch and played legato will sound like one long note. At the other extreme, notes played staccato all
have the same, very short length, with the remaining time (defined by the note duration) being filled by
silence. And finally, notes played glissando are not only played legato, but their pitches also slide into
one another, as though they were being played by a trombone or slide whistle. Glissando style is used
mostly for sound effects, such as the siren and wolf whistle included in the SoundPAL’s canned
sequences.

To choose a playing style, all you have to do is prepend a style command to the sequence you want to
play in that style. For example, to play “Mary Had a Little Lamb” in staccato, you’d do the following:

SEROUT iopin, baud, ["=", staccato, E_0, D_0, C_0, D_0, E_0, E_0, E_0, 0, "!"]

When glissando is chosen as the playing style, you can choose from one of 15 glide rates, ranging from
gl1 (fastest) to gl15 (slowest). Selecting a glide rate by including the glide rate constant in a note
sequence automatically selects glissando as the playing style, so you don’t have to do that separately.
The following example shows how the SoundPAL defines a “wolf whistle”:

SEROUT iopin, baud, ["=",legato,S+G_0,gl2,h+G_1,ZZZ,legato,S+G_0,gl4,C_1,h+C_0,0, "!"]

On thing to note from this example is the use of the legato style. This is used ahead of the notes that
you don’t want to glide into. In other words, these notes will begin at their defined pitch but, because of
the subsequent gl2 and gl4 commands, glide into the notes that follow.

Sometimes you want to play most of a tune marcato or staccato, but occasionally there will be two or
three notes that you want to play legato. In musical parlance, this is known as a slur when the two
notes have different pitches, or a tie when they have the same pitch. To this end, the SoundPAL has a
special style command called slur which is just a legato applied to the next note only, causing it to

© Parallax, Inc. • SoundPAL (2007.10.29) Page 6 of 12

extend to the note following without any gaps. It is used most frequently to extend the length of a single
note beyond the longest duration, which is the dotted half. In the following example, the first three notes
of Taps are played with the last being held an extra long time by means of the slur command:

SEROUT iopin, baud, ["=", tmp0, dq+G_0, e+G_0, slur, dh+C_1, dh+C_1, 0, "!"]

Repetition
Many musical sequences and sound effects involve repeated phrases. The SoundPAL provides a repeat
command to accommodate the need for repetition. Each repeat must be followed by a byte indicating
how many times (1 – 254) to repeat the phrase that follows. You can also repeat a phrase ad infinitum
by specifying a repetition of 255. The end of each repeated phrase is indicated by an again command.
This tells the SoundPAL to go back to the repeat until the requisite number of repetitions has been met.
A repeat … again construct with a finite number of repetitions is similar to a FOR … NEXT loop in
PBASIC. With an infinite number of repetitions, it’s more similar to a DO … LOOP construct. Like their
counterparts in PBASIC, repeat … again sequences can be nested. And also like these constructs in
PBASIC, it is necessary that each repeat be matched with exactly one again. Otherwise, the SoundPAL
will behave very erratically.

The following example plays some phrases from “Frere Jacques” using the repeat … again construct:

SEROUT iopin, baud, ["=", repeat, 2, C_0, D_0, E_0, C_0, again]
SEROUT iopin, baud, [repeat, 2, E_0, F_0, h+G_0, again, 0, "!"]

This example also illustrates the fact that that you don’t need to include an entire sequence in one
SEROUT statement. It can be broken up into pieces, with the zero terminator appearing at the end of
the last piece. This is true, so long as the total number of bytes doesn’t exceed the RAM buffer size.

One thing to note here is that the size of the RAM buffer, although stated to be 48 bytes, is elastic,
depending on the complexity of the sequence it contains. The reason for this is that, after the RAM
buffer, there’s a 16-byte stack area. The stack holds temporary data that the SoundPAL needs to keep
track of what it’s doing. It starts at the end of the stack area and builds down toward the RAM buffer.
Repeat … again sequences make use of the stack, as do the SoundPAL’s internal subroutines. Each
time a repeat is encountered, two bytes get “pushed” onto the stack, nudging it two bytes closer to the
end of the RAM buffer. For complex sequences with nested repeats, the stack may actually encroach
upon the RAM buffer, effectively shortening its useable size. If it overwrites part of a sequence that’s
stored there, erratic playback will occur. There is no error checking done by the SoundPAL to prevent this
from occurring, so it is up to the programmer to balance program length and nesting complexity to keep
this from happening.

Playing Pre-programmed Sequences
In additional to individual notes, the SoundPAL can play complete passages stored in its own ROM or
EEPROM memory. The SoundPAL comes pre-programmed with 384 bytes of canned sequences in its
ROM memory. Its 64-byte EEPROM is available for you to store your own sequences. Playing a pre-
programmed sequence is equivalent to calling a subroutine in PBASIC using the GOSUB statement.
When the sequence has finished playing, it returns to the calling sequence, which then resumes from the
calling point. To play a sequence, you have to know its starting address in ROM or EEPROM. Starting
addresses for the SoundPAL’s canned ROM sequences are provided in the SoundPAL PBASIC template.
Each address has a name, corresponding to the particular tune or sound effect that it points to.

EEPROM addresses range from 1 to 63 ($01 to $3F in hex). ROM addresses range from 64 to 255 ($40 to
$FF in hex). The ROM address range may appear to include only 192 bytes. But for ROM memory, these
are word addresses, and each ROM sequence begins on a word (even-byte) boundary. This way a total of
448 bytes (ROM + EEPROM) can be addressed with a one-byte address value.

© Parallax, Inc. • SoundPAL (2007.10.29) Page 7 of 12

To play a sequence in ROM or EEPROM, include the play command (defined in the template) in the
calling sequence followed by the sequence’s address. For example, to play the Reveille bugle call, you
would use the following PBASIC code:

SEROUT iopin, baud, ["=", play, reveille, 0, "!"]

The play command can be inserted anywhere a note can be used, and multiple play commands can be
included in any sequence. A sequence that is played can even play other sequences, just as subroutines
in PBASIC can call other subroutines. As with repeats, you have to be careful about such “nesting” of
sequence calls, though. Like repeats, each nested play pushes two bytes onto the SoundPAL’s stack.
So, again, it’s important to balance sequence length and nesting complexity to keep the stack from
encroaching on a sequence in the RAM buffer.

Global and Local Settings
When a sequence is played, the octave, tempo, and style settings extant before play is encountered are
saved and then restored when the played sequence returns. Therefore, it is not possible for a sequence
to influence the octave, tempo, or style of any sequence that calls it. It can only affect its own settings
and those of the sequences it plays, assuming those sequences do not change those settings for
themselves. The tempo, octave, and style settings are thereby considered “local” settings, in that they do
not influence anything outside their “scope”. The glissando rate, on the other hand, is a “global” setting.
It is not saved upon playing a sequence, nor restored when the played sequence returns. Any change to
the glissando rate will persist until it is set to another value.

Local settings are local within an entire sequence. If a setting gets changed inside a repeat block, it is
not automatically restored when the block encounters an again and gets repeated. Therefore, any
octave, tempo, or style setting that gets changed inside a repeat block should be initialized inside the
block at its beginning.

Serial Handshaking
When the SoundPAL is playing a sound sequence, it is not listening to commands coming through its I/O
pin (except for long reset pulses). This makes it impossible to start a new sequence while one is still
playing. However, it is possible to poll the SoundPAL so you can tell when a sequence has finished. This
is done using the enquiry command (?). When the SoundPAL is playing a sequence, it won’t see this
command at all. But as soon as it has finished, it will respond to an enquiry with a byte equal to 255 ($FF
hex), indicating that it’s ready for more commands. Here’s a subroutine that you can call that will wait for
the SoundPAL to finish playing a sequence:

'----Wait for the SoundPAL to finish playing----

WaitDone:
SEROUT iopin, baud, ["?"] 'Send an enquiry.
SERIN iopin, baud, 2, Waitdone, [WAIT($FF)] 'Wait 2msec for reply; else try again.
RETURN 'Reply received: return.

In the following example, random 32-note sequences are sent to the SoundPAL and played. The PBASIC
program waits for each sequence to finish before sending the next one.

© Parallax, Inc. • SoundPAL (2007.10.29) Page 8 of 12

DO
SEROUT iopin, baud, ["=",oct3,tmp3]
FOR B0 = 1 TO 32

RANDOM W2
SEROUT iopin, baud, [W2 // 31 + $81]

NEXT
SEROUT iopin, baud, [0, "!"]
GOSUB WaitDone

LOOP

Saving Sequences to EEPROM
Once a sequence is loaded into the RAM buffer, it can either be played or saved to EEPROM. The
SoundPAL’s EEPROM has room for 63 bytes of sequence data. You can store one long sequence there or
multiple short sequences. Once saved in EEPROM, a sequence will remain there – even with the power
turned off – until it is overwritten with another sequence. When saving a sequence, you specify the
address in EEPROM where it’s to begin. The entire sequence is saved there, including the zero at the end.
That way, when a saved sequence is played, the SoundPAL knows when it’s finished so it can return to
the calling sequence.

To save a sequence to EEPROM, use the save (#) command, followed by a one-byte address. At this
point, the SoundPAL will begin saving the data. While this is happening, the SoundPAL will be deaf to any
subsequent commands until it’s finished, just as it is when it’s playing a sequence. You can call
WaitDone, though, to tell when its work is done.

In the following example, the first few bars of “Swanee River”, followed by a call to the canned “Intro”
sequence, are saved at location 1. (Fans of old Jackie Gleason “Honeymooners” episodes will recognize
this from the one in which he’s a contestant on “Name That Tune”. He practices with his neighbor,
Norton, at the piano, who prefaces each selection with this sequence. Of course, when he gets to the
studio, the song they play for him to recognize is “Swanee River”, and he is clueless.) Here’s how it’s
saved to EEPROM:

GOSUB DoReset
SEROUT iopin, baud, ["=", tmp0, h+E_0, e+D_0, e+C_0, e+E_0, e+D_0] 'Load to RAM.
SEROUT iopin, baud, [C_0, C_1, e+A_0, C_1, tmp1, play, intro, 0]
WEROUT iopin, baud, ["#", 1] 'Save to EEPROM.
GOSUB WaitDone
END

To play it back, the following sequence is used:

SEROUT iopin, baud, ["=", play, 1, 0, "!"] 'Play the saved sequence.

Autoplay Mode
When the SoundPAL powers up or resets, the RAM buffer is preprogrammed with a command to play the
sequence at EEPROM address 1. Once a sequence has been programmed there, all you have to do to
play it after powerup or reset is to issue a “!”. To try this, save the sequence, as in the example above,
then do the following:

GOSUB DoReset
SEROUT iopin, baud, ["!"]

But it gets better. If, immediately after reset, the SoundPAL senses that its I/O pin is low, it will
automatically begin execution of the sequence in the RAM buffer, which immediately plays the sequence
at EEPROM address 1. This way, you can store a sequence in EEPROM, then connect the SoundPAL so
that both I/O pins are grounded. Then, whenever the SoundPAL powers up, it will play your
programmed sequence. That way, you don’t even need a BASIC Stamp connected to it to play a canned

© Parallax, Inc. • SoundPAL (2007.10.29) Page 9 of 12

sequence. How about a package with a SoundPAL, a battery, and a limit switch that plays “Happy
Birthday” when the package is opened?

And there’s still more. If you hold the SoundPAL’s I/O pin low, then pulse it high for a few microseconds,
it will play your preprogrammed tune. This will happen every time you send it a short, high pulse, so long
as the low time exceeds 2mS each time. Here’s a short code sequence to illustrate:

LOW iopin
DO

PAUSE 7000
PULSOUT iopin, 2

LOOP

This will play your saved sequence once every seven seconds. Notice that we’ve violated the rule not to
drive the I/O pin high. In this case it’s okay, since the high period is so brief; and the SoundPAL won’t try
to drive it low during this time anyway, because it didn’t receive an enquiry command.

SoundPAL Code Template
Here’s the complete code template for the SoundPAL, including all constant definitions, as well as the
DoReset and WaitDone subroutines. It looks quite lengthy, but it takes up only 45 bytes of program
space in a BS2.

' ===
'
' File...... SoundPAL_Template.bs2
' Purpose... Constants and Standard Subroutines for SoundPAL
' Author.... Parallax, Inc.
' E-mail.... support@parallax.com
' Started... 2007.05.01
' Updated... 2007.10.29
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' ===

' -----[Program Description]---

' This is a blank template defining constants and subroutines that
' provide an interface to the Parallax SoundPAL (p/n 28825) Miniature
' Sound Player.

' -----[I/O Definitions]---

iopin PIN 15 'Pin number used for communicaiton with SoundPAL.
'Change as needed.

' -----[Constants]---

baud CON $8000 + 84 'Communication baudrate is 9600 for BS2, BS2e, and BS2pe.
reset CON $8000 + 813 'Reset baudrate is 1200 for BS2, BS2e, and BS2pe.

'See BASIC Stamp manual for settings with other Stamps.
'Commands

play CON $01 'Play the segment at the following address ($01-$FF).
repeat CON $02 'Begin a repeat block.

' Next arg is repeat count (1-254; 255 = endlessly).
again CON $03 'End the repeat block.

'Playing styles

marcato CON $04 'Normal, separated notes.
staccato CON $05 'Very short notes.
legato CON $06 'Connected notes.
glissando CON $07 'Connected, sliding notes.

'Tempos

© Parallax, Inc. • SoundPAL (2007.10.29) Page 10 of 12

tmp0 CON $08 'Quarter note = 133 beats/min.
tmp1 CON $09 'Quarter note = 266 beats/min. (default)
tmp2 CON $0A 'Quarter note = 532 beats/min.
tmp3 CON $0B 'Quarter note = 1064 beats/min.

'Octaves

oct0 CON $0C 'A_0 = 110Hz
oct1 CON $0D 'A_0 = 220Hz
oct2 CON $0E 'A_0 = 440Hz (default)
oct3 CON $0F 'A_0 = 880Hz

'Slur or tie, connecting two subsequent notes only.

slur CON $10

'Glissando rates: gl1 is fastest; gl15 is slowest.

gl1 CON $11
gl2 CON $12
gl3 CON $13
gl4 CON $14
gl5 CON $15
gl6 CON $16
gl7 CON $17
gl8 CON $18
gl9 CON $19
gl10 CON $1A
gl11 CON $1B
gl12 CON $1C
gl13 CON $1D
gl14 CON $1E
gl15 CON $1F

'Notes. When unmodified by addition of duration, these are all quarter notes.

ZZZ CON $80 'Rest
C_0 CON $81 'Low C natural. (Middle C in oct2.)
Cs0 CON $82 'Low C sharp.
Df0 CON $82 'Low D flat.
D_0 CON $83 'Low D natural.
Ds0 CON $84 'Low D sharp.
Ef0 CON $84 'Low E flat.
E_0 CON $85 'Low E natural.
F_0 CON $86 'Low F natural.
Fs0 CON $87 'Low F sharp.
Gf0 CON $87 'Low G flat.
G_0 CON $88 'Low G natural.
Gs0 CON $89 'Low G sharp.
Af0 CON $89 'Low A flat.
A_0 CON $8A 'Low A natural.
As0 CON $8B 'Low A sharp.
Bf0 CON $8B 'Low B flat.
B_0 CON $8C 'Low B natural.
C_1 CON $8D 'Medium C natural. (Middle C in oct1.)
Cs1 CON $8E 'Medium C sharp.
Df1 CON $8E 'Medium D flat.
D_1 CON $8F 'Medium D natural.
Ds1 CON $90 'Medium D sharp.
Ef1 CON $90 'Medium E flat.
E_1 CON $91 'Medium E natural.
F_1 CON $92 'Medium F natural.
Fs1 CON $93 'Medium F sharp.
Gf1 CON $93 'Medium G flat.
G_1 CON $94 'Medium G natural.
Gs1 CON $95 'Medium G sharp.
Af1 CON $95 'Medium A flat.
A_1 CON $96 'Medium A natural.
As1 CON $97 'Medium A sharp.
Bf1 CON $97 'Medium B flat.
B_1 CON $98 'Medium B natural.
C_2 CON $99 'High C natural. (Middle C in oct0.)
Cs2 CON $9A 'High C sharp.
Df2 CON $9A 'High D flat.
D_2 CON $9B 'High D natural.

© Parallax, Inc. • SoundPAL (2007.10.29) Page 11 of 12

Ds2 CON $9C 'High D sharp.
Ef2 CON $9C 'High E flat.
E_2 CON $9D 'High E natural.
F_2 CON $9E 'High F natural.
Fs2 CON $9F 'High F sharp.
Gf2 CON $9F 'High G flat.

'Duration modifiers. Add value to note to change duration.

s CON $20-$80 'Sixteenth note.
e CON $40-$80 'Eighth note.
de CON $60-$80 'Dotted eighth note.
q CON $80-$80 'Quarter note.
dq CON $C0-$80 'Dotted quarter note.
h CON $A0-$80 'Half note.
dh CON $E0-$80 'Dotted half note.

'Canned sound sequences, accessed via the "play" command.

charge CON $40 'Charge!
taps CON $44 'Taps
reveille CON $5D 'Reveille
firstpost CON $7D 'First Post (horse race bugle call)
intro CON $8D 'Doo-doot doo doot doot DOOT
nyah CON $93 'Nyah nyah nyah nyah NYAH nyah!
dead CON $97 'Funeral dirge
batthymn CON $9D 'Battle Hymn of the Republic
dixie CON $A5 'Dixie
cucaracha CON $AC 'La Cucaracha
popweasel CON $AF 'Pop! Goes the Weasel
marsell CON $B3 'Marsellaise
rulebrit CON $B9 'Rule Brittania
matilda CON $C0 'Walzing Matilda
kradoucha CON $C6 'Kradoutcha ("There's a place in France...")
wedding CON $CD 'Wedding March
ode2joy CON $D2 'Ode to Joy
dudu CON $DA 'Du, Du Liegst Mir im Herzen
notme CON $E1 'Rude sound
uhoh CON $E5 'Uh oh!
siren CON $E8 'American style siren. Infinite loop: reset to exit.
phone CON $EE 'Rings once.
whistle CON $F3 'Wolf whistle.
cricket CON $FA 'Play using oct3 for cricket; oct0 for frog.

' -----[Initialization]--

PAUSE 10
GOSUB DoReset

' -----[Program Code]--

' ********** INSERT YOUR PROGRAM HERE. **********

' -----[Subroutines]---

'------[WaitDone]--

'Wait for the SoundPAL to stop playing.

WaitDone:
SEROUT iopin, baud, ["?"] 'Send an enquiry.
SERIN iopin, baud, 2, Waitdone,[WAIT($FF)] 'Wait 2msec for reply or try again.
RETURN 'Reply received: return.

'------[DoReset]---

'Reset the SoundPAL.

DoReset:
DO UNTIL iopin : LOOP 'Make sure SoundPAL is powered up.
SEROUT iopin, reset, [0] 'Output 9 low bits at 1200 baud (i.e. a 7.5ms pulse).
RETURN

© Parallax, Inc. • SoundPAL (2007.10.29) Page 12 of 12

Command Summary
Direct Commands to SoundPAL

Command Value Description Arguments
“=” $3D Queue following bytes (up through zero byte) in RAM. Sequence data.
“!” $21 Play sequence in RAM buffer.
“#” $23 Save sequence in RAM buffer to EEPROM. EEPROM address.
“?” $3F Enquire whether SoundPAL is ready for new commands.

Response from SoundPAL is $FF when ready.

Commands Within Tune Sequence
Command Value Description Arguments

0 $00 End-of-sequence delimiter: quit if in RAM; return to caller if
in ROM or EEPROM; quit queuing, if queuing.

play $01 Play the EEPROM or ROM sequence. Address of
sequence.

repeat $02 Repeat the following commands up until an again.

Number of times
to repeat (1 –
254), or 255 for
infinite.

again $03 End of repeat sequence.
marcato $04 Play the following notes with slight separations.
staccato $05 Play the following notes with very short durations.
legato $06 Play the following notes in a connected fashion.

glissando $07 Play the following notes by gliding their pitches together.
tmp0 -
tmp3

$08 -
$0B Set the tempo for the following notes.

oct0 -
oct3

$0C -
$0F Set the base octave for the following notes.

slur $10 Play next note legato, extending duration to following note.

gl1 – gl15 $11 -
$1F

Set glissando rate (1: fastest, to 15: slowest) and set
glissando style.

s+C_0 –
dh+Gf2

$20 -
$FF Notes.

Schematic

/RST
PB.3
PB.4
Gnd PB.0

PB.1
PB.2

Vdd

ATTiny13
1
2
3
4 5

6
7
8

Gnd (I/O) I/O (Gnd)

Gnd (I/O) +5V I/O (Gnd)

10K

D1b

D1a

4.7µF

Q1

D1c

+5V

