Table of Contents

Azure 10T Fundamentals
Azure 10T Edge Documentation
Overview
About Azure 1oT Edge
Quickstarts
Deploy to the edge - Linux/Mac
Deploy to the edge - Windows
Tutorials
Simulate an Edge device - Linux/Mac
Simulate an Edge device - Windows
Deploy code in a module
C#
Python
Deploy Azure Stream Analytics
Deploy Azure Machine Learning
Deploy Azure Functions
How-to guides
Create gateways
Create a transparent gateway
Modbus gateway
Use the loT extension for Azure CLI 2.0
Deploy and monitor at scale
Provision an loT Core device
Use VS Code to develop IoT Edge solutions
Work with multiple modules
Debug C# module
Debug Azure Functions
CI/CD in VSTS
Store data at the edge

Troubleshoot
Concepts
loT Edge modules
Development
Composition
Edge agent and hub properties
loT Edge runtime
Deployments
loT Edge device as a gateway
Security
loT Edge glossary
Related
Solutions
loT Suite Preconfigured Solutions
loT Central
Platform services
loT Hub
loT Hub Device Provisioning Service
Maps
Service SDKs
Time Series Insights
Edge
loT Edge
loT Device SDKs
Resources
Azure Certified for 10T device catalog
Azure loT Developer Center
Azure Roadmap
DeviceExplorer tool
iothub-diagnostics tool
iothub-explorer tool

Learning path

MSDN forum

Pricing

Pricing calculator
Service updates
Stack Overflow
Technical case studies

Videos

What is Azure l0T Edge - preview

5/11/2018 + 4 min to read « Edit Online

Azure loT Edge moves cloud analytics and custom business logic to devices so that your organization can focus on
business insights instead of data management. Enable your solution to truly scale by configuring your loT software,
deploying it to devices via standard containers, and monitoring it all from the cloud.

NOTE

Azure |oT Edge is available in the free and standard tier of IoT Hub. The free tier is for testing and evaluation only. For more
information about the basic and standard tiers, see How to choose the right loT Hub tier.

Analytics drives business value in 10T solutions, but not all analytics needs to be in the cloud. If you want a device
to respond to emergencies as quickly as possible, you can perform anomaly detection on the device itself. Similarly,
if you want to reduce bandwidth costs and avoid transferring terabytes of raw data, you can perform data cleaning
and aggregation locally. Then send the insights to the cloud.

Azure loT Edge is made up of three components:

e |oT Edge modules are containers that run Azure services, 3rd party services, or your own code. They are
deployed to loT Edge devices and execute locally on those devices.
e The loT Edge runtime runs on each loT Edge device and manages the modules deployed to each device.

e A cloud-based interface enables you to remotely monitor and manage loT Edge devices.

loT Edge modules

loT Edge modules are units of execution, currently implemented as Docker compatible containers, that run your
business logic at the edge. Multiple modules can be configured to communicate with each other, creating a pipeline
of data processing. You can develop custom modules or package certain Azure services into modules that provide
insights offline and at the edge.

Artificial Intelligence on the edge

Azure |oT Edge allows you to deploy complex event processing, machine learning, image recognition and other
high value Al without writing it in house. Azure services like Azure Functions, Azure Stream Analytics, and Azure
Machine Learning can all be run on premises via Azure 1oT Edge; however you're not limited to Azure services.
Anyone is able to create Al modules and make them available to the community for use.

Bring your own code

When you want to deploy your own code to your devices, Azure 10T Edge supports that, too. Azure loT Edge holds
to the same programming model as the other Azure |oT services. The same code can be run on a device or in the
cloud. Azure loT Edge supports both Linux and Windows so you can code to the platform of your choice. It
supports Java, .NET Core 2.0, Nodejs, C, and Python so your developers can code in a language they already know
and use existing business logic without writing it from scratch.

loT Edge runtime

The Azure |oT Edge runtime enables custom and cloud logic on loT Edge devices. It sits on the 10T Edge device,
and performs management and communication operations. The runtime performs several functions:

e |[nstalls and updates workloads on the device.

e Maintains Azure loT Edge security standards on the device.

e Ensures that loT Edge modules are always running.

e Reports module health to the cloud for remote monitoring.

e Facilitates communication between downstream leaf devices and the loT Edge device.
e Facilitates communication between modules on the [oT Edge device.

e Facilitates communication between the 10T Edge device and the cloud.

Azure loT edge device

Module Module Module

alemet &> loT Hub
N4 e "3
° | 1 e @

L i : Insights and i L o ®
\ ,| Azure loT Edge runtime module health

How you use an Azure |oT Edge device is completely up to you. The runtime is often used to deploy Al to gateways
which aggregate and process data from multiple other on premises devices, however this is just one option. Leaf
devices could also be Azure loT Edge devices, regardless of whether they are connected to a gateway or directly to
the cloud.

The Azure |oT Edge runtime runs on a large set of loT devices to enable using the runtime in a wide variety of
ways. It supports both Linux and Windows operating systems as well as abstracts hardware details. Use a device
smaller than a Raspberry Pi 3 if you're not processing much data or scale up to an industrialized server to run
resource intensive workloads.

loT Edge cloud interface

Managing the software lifecycle for enterprise devices is complicated. Managing the software lifecycle for millions
of heterogenous |oT devices is even more difficult. Workloads must be created and configured for a particular type
of device, deployed at scale to the millions of devices in your solution, and monitored to catch any misbehaving
devices. These activities can’t be done on a per device basis and must be done at scale.

Azure |loT Edge integrates seamlessly with Azure 10T Suite to provide one control plane for your solution’s needs.
Cloud services allow users to:

e Create and configure a workload to be run on a specific type of device.
e Send a workload to a set of devices.

e Monitor workloads running on devices in the field.

Send workloads to

i i Azure loT Edge devices

Monitor status
of devices

. 1 Configure workloads

()

Next steps

Try out these concepts by deploying loT Edge on a simulated device.

Quickstart: Deploy your first loT Edge module to a

Linux or Mac device - preview

5/11/2018 « 4 min to read « Edit Online

Azure loT Edge moves the power of the cloud to your Internet of Things devices. In this topic, learn how to use the
cloud interface to deploy prebuilt code remotely to an loT Edge device.

If you don't have an active Azure subscription, create a free account before you begin.

Prerequisites

This quickstart uses your computer or virtual machine like an Internet of Things device. To turn your machine into
an loT Edge device, the following services are required:

e Python pip, to install the 1oT Edge runtime.

o Linux: sudo apt-get install python-pip .

NOTE

On certain distributions (such as Raspbian), you might also need to upgrade certain pip packages and install
additional dependencies:

sudo pip install --upgrade setuptools pip
sudo apt-get install python2.7-dev libffi-dev libssl-dev

o MacOS: sudo easy_install pip .

e Docker, to run the loT Edge modules
o Install Docker for Linux and make sure that it's running.

o Install Docker for Mac and make sure that it's running.

Create an loT hub with Azure CLI

Create an |oT hub in your Azure subscription. The free level of loT Hub works for this quickstart. If you've used loT
Hub in the past and already have a free hub created, you can skip this section and go on to Register an loT Edge
device. Each subscription can only have one free loT hub.

1. Sign in to the Azure portal.
2. Select the Cloud Shell button.

3. Create a resource group. The following code creates a resource group called loTEdge in the West US
region:

az group create --name IoTEdge --location westus

4. Create an loT hub in your new resource group. The following code creates a free F1 hub called MylotHub

in the resource group loTEdge:

az iot hub create --resource-group IoTEdge --name MyIotHub --sku F1

Register an loT Edge device

Create a device identity for your simulated device so that it can communicate with your loT hub. Since loT Edge
devices behave and can be managed differently than typical 10T devices, you declare this to be an loT Edge device
from the beginning.

1. In the Azure portal, navigate to your 1oT hub.
Select 1oT Edge (preview).

Select Add loT Edge device.

Give your simulated device a unique device ID.
Select Save to add your device.

Select your new device from the list of devices.

N o vk WD

Copy the value for Connection string--primary key and save it. You'll use this value to configure the loT Edge
runtime in the next section.

Install and start the loT Edge runtime

The loT Edge runtime is deployed on all loT Edge devices. It comprises two modules. First, the loT Edge agent
facilitates deployment and monitoring of modules on the loT Edge device. Second, the loT Edge hub manages
communications between modules on the loT Edge device, and between the device and loT Hub.

On the machine where you'll run the loT Edge device, download the loT Edge control script:
sudo pip install -U azure-iot-edge-runtime-ctl

Configure the runtime with your loT Edge device connection string from the previous section:
sudo iotedgectl setup --connection-string "{device connection string}" --nopass

Start the runtime:
sudo iotedgectl start

Check Docker to see that the loT Edge agent is running as a module:

sudo docker ps

:~% sudo docker ps --format "table {{.Nam
IMAGE

Deploy a module

One of the key capabilities of Azure |oT Edge is being able to deploy modules to your loT Edge devices from the
cloud. An loT Edge module is an executable package implemented as a container. In this section, you deploy a
module that generates telemetry for your simulated device.

N o vk WD

In the Azure portal, navigate to your loT hub.

Go to loT Edge (preview) and select your [oT Edge device.

Select Set Modules.

Select Add loT Edge Module.

In the Name field, enter tempSensor .

In the Image URI field, enter microsoft/azureiotedge-simulated-temperature-sensor:1.0-preview .

Leave the other settings unchanged, and select Save.

loT Edge Modules

@ Specify the settings for loT Edge module. Learn how to create a module.

* Name

| termpSensor

* |mage UR| @

| microsoft/azureictedge-simulated-temperature-sensor 1.0-preview

Container Create Options @

1}

Restart Policy @

always

Desired Status @

running

Maodule twin's desired properties @

I:‘ Enable

Back in the Add modules step, select Next.

. In the Specify routes step, select Next.
10.
11.

In the Review template step, select Submit.

Return to the device details page and select Refresh. You should see the new tempSensor module running
along the loT Edge runtime.

o)

Deployed Modules Connected Clients

T Edge device supports up to 10 module: u want to remove all

tempSensor running 0 Tue Nov 14 2017 12:18:28 GMT-0800 ..

} running 0

running 0 Tue Nov 14 2017 12

View generated data

In this quickstart, you created a new loT Edge device and installed the 10T Edge runtime on it. Then, you used the
Azure portal to push an loT Edge module to run on the device without having to make changes to the device itself.
In this case, the module that you pushed creates environmental data that you can use for the tutorials.

Open the command prompt on the computer running your simulated device again. Confirm that the module
deployed from the cloud is running on your loT Edge device:

sudo docker ps

--format "table {{.Names

minut
min
13 minutes

View the messages being sent from the tempSensor module to the cloud:

sudo docker logs -f tempSensor

"ambi

“ambient™:
11

"ambi =

11

ambiel {

11
"ambient":
11
ambi '

You can also view the telemetry the device is sending by using the IoT Hub explorer tool.

Clean up resources

If you want to remove the simulated device that you created, along with the Docker containers that were started for
each module, use the following command:

sudo iotedgectl uninstall

When you no longer need the loT Hub you created, you can use the az iot hub delete command to remove the
resource and any devices associated with it:

az iot hub delete --name {your iot hub name} --resource-group {your resource group name}

Next steps

You learned how to deploy an loT Edge module to an loT Edge device. Now try deploying different types of Azure
services as modules, so that you can analyze data at the edge.

e Deploy your own code as a module
e Deploy Azure Function as a module

e Deploy Azure Stream Analytics as a module

Quickstart: Deploy your first loT Edge module from

the Azure portal to a Windows device - preview

4/9/2018 « 4 min to read « Edit Online

In this quickstart, use the Azure loT Edge cloud interface to deploy prebuilt code remotely to an loT Edge device.
To accomplish this task, first use your Windows device to simulate an loT Edge device, then you can deploy a
module to it.

If you don't have an active Azure subscription, create a free account before you begin.

Prerequisites

This tutorial assumes that you're using a computer or virtual machine running Windows to simulate an Internet of
Things device. If you're running Windows in a virtual machine, enable nested virtualization and allocate at least
2GB memory.

1. Make sure you're using a supported Windows version:
e Windows 10
e Windows Server
2. Install Docker for Windows and make sure it's running.
3. Install Python 2.7 on Windows and make sure you can use the pip command.

4. Run the following command to download the loT Edge control script.

pip install -U azure-iot-edge-runtime-ctl

NOTE
Azure loT Edge can run either Windows containers or Linux containers. To use Windows containers, you have to run:
® Windows 10 Fall Creators Update, or

e Windows Server 1709 (Build 16299), or
® Windows loT Core (Build 16299) on a x64-based device

For Windows loT Core, follow the instructions in Install the loT Edge runtime on Windows |oT Core. Otherwise, simply
configure Docker to use Windows containers, and optionally validate your prerequisites with the following powershell

command:

Invoke-Expression (Invoke-WebRequest -useb https://aka.ms/iotedgewin)

Create an loT hub with Azure CLI

Create an |oT hub in your Azure subscription. The free level of loT Hub works for this quickstart. If you've used loT
Hub in the past and already have a free hub created, you can skip this section and go on to Register an loT Edge
device. Each subscription can only have one free loT hub.

1. Sign in to the Azure portal.
2. Select the Cloud Shell button.

3. Create a resource group. The following code creates a resource group called loTEdge in the West US

region:

az group create --name IoTEdge --location westus

4. Create an loT hub in your new resource group. The following code creates a free F1 hub called MylotHub

in the resource group loTEdge:

az iot hub create --resource-group IoTEdge --name MyIotHub --sku F1

Register an |oT Edge device

Create a device identity for your simulated device so that it can communicate with your 10T hub. Since loT Edge

devices behave and can be managed differently than typical 10T devices, you declare this to be an loT Edge device

from the beginning.

1. In the Azure portal, navigate to your loT hub.

2. Select 10T Edge (preview) then select Add loT Edge Device.

Owverview

rr

B Activity log

Access control (JAM)

SETTING

e

Shared access policies
" Pricing and scale
g2 Operations monitoring
3 P Filter
M Certificates
= Properties
n Locks

EX Automation script

I 10T Devices

&4 o7 Edge (preview)

B Query Explorer

Azure loT Edge enables cloud-driven deployment of Azure services and solution- 2
specific code to on-premise devices. loT Edge devices can aggregate data from
@ other devices to perform computing and analytics before the data is sent to the
cloud, From this page, you can create and manage loT Edge devices and
deployments. Learn more about loT Edge.

loT Edge Devices loT Edge Deployments

loT Edge Devices

loT Edge devices have the loT Edge runtime installed and are flagged as “loT Edge =
@ device” in the device details. Each loT Hub supports up to 1000 loT Edge devices.
Learn how to create a simulated loT Edge device.

MESTAT.. MODULECOU.. UNHEALTHY M_. COMMECTEL

DEPLOYMENT .

MNo results

3. Give your simulated device a unique device ID.

4. Select Save to add your device.

5. Select your new device from the list of devices.

6. Copy the value for Connection string—primary key and save it. You'll use this value to configure the loT
Edge runtime in the next section.

Configure the loT Edge runtime

The loT Edge runtime is deployed on all loT Edge devices. It comprises two modules. First, the loT Edge agent
facilitates deployment and monitoring of modules on the 10T Edge device. Second, the 10T Edge hub manages
communications between modules on the 10T Edge device, and between the device and loT Hub.

Configure the runtime with your loT Edge device connection string from the previous section.
iotedgectl setup --connection-string "{device connection string}" --nopass

Start the runtime.
iotedgectl start

Check Docker to see that the lIoT Edge agent is running as a module.

docker ps

Deploy a module

One of the key capabilities of Azure 10T Edge is being able to deploy modules to your loT Edge devices from the
cloud. An IoT Edge module is an executable package implemented as a container. In this section, you deploy a
module that generates telemetry for your simulated device.

1. In the Azure portal, navigate to your loT hub.

Goto loT Edge (preview) and select your |oT Edge device.
Select Set Modules.

Select Add loT Edge Module.

In the Name field, enter tempSensor .

In the Image URI field, enter microsoft/azureiotedge-simulated-temperature-sensor:1.0-preview .

N o vk WD

Leave the other settings unchanged, and select Save.

loT Edge Modules

6 Specify the settings for loT Edge module, Leam how to create a module.

* Name

| tempSensor

* |mage URI @

| microsoft/azureiotedge-simulated-temperature-sensor: 1.0-preview

Container Create Options @

i}

Restart Policy @

always

Desired Status @

running

Madule twin's desired properties @

l:‘ Enable

. Back in the Add modules step, select Next.

. In the Specify routes step, select Next.
10.
11.

In the Review template step, select Submit.

Return to the device details page and select Refresh. You should see the new tempSensor module running
along the loT Edge runtime.

o)

h 10T Edge device supports up to 10 modules. If you want to remove all

ules and Submit.

| tempSensor running 0 Tue Nov 14 2017 12:18:28 GMT-0800 ..
fedgelgent (loT Edge runt } running 0
$edgeHub (loT Edge runtime module) running 0 Tue Nov 14 2017 12:09:56 GMT-0800 ...

View generated data

In this quickstart, you created a new loT Edge device and installed the |oT Edge runtime on it. Then, you used the
Azure portal to push an loT Edge module to run on the device without having to make changes to the device itself.
In this case, the module that you pushed creates environmental data that you can use for the tutorials.

Open the command prompt on the computer running your simulated device again. Confirm that the module

deployed from the cloud is running on your loT Edge device.

docker ps

View the messages being sent from the tempSensor module to the cloud.

docker logs -f tempSensor

You can also view the telemetry the device is sending by using the 1oT Hub explorer tool.

Clean up resources

If you want to remove the simulated device that you created, along with the Docker containers that were started

for each module, use the following command:
iotedgectl uninstall

When you no longer need the loT Hub you created, you can use the az iot hub delete command to remove the

resource and any devices associated with it:

az iot hub delete --name {your iot hub name} --resource-group {your resource group name}

Next steps

You learned how to deploy an loT Edge module to an loT Edge device. Now try deploying different types of Azure
services as modules, so that you can analyze data at the edge.

e Deploy Azure Function as a module
e Deploy Azure Stream Analytics as a module

e Deploy your own code as a module

Deploy Azure loT Edge on a simulated device in

Linux or MacQOS - preview

4/9/2018 « 5 min to read ¢« Edit Online

Azure loT Edge enables you to perform analytics and data processing on your devices, instead of having to push
all the data to the cloud. The loT Edge tutorials demonstrate how to deploy different types of modules, built from
Azure services or custom code, but first you need a device to test.

In this tutorial you learn how to:

1. Create an loT Hub

2. Register an loT Edge device
3. Start the loT Edge runtime
4. Deploy a module

&

Azure Container Registry

Module =
F s ™
N loT Hub
3 1eq 2
% : evices
_!— b . - youredgeDevice
S— - ' R®®
Azure loT Edge runtime telemetry

The simulated device that you create in this tutorial is a monitor that generates temperature, humidity, and
pressure data. The other Azure loT Edge tutorials build upon the work you do here by deploying modules that
analyze the data for business insights.

Prerequisites

This tutorial uses your computer or virtual machine like an Internet of Things device. To turn your machine into an
loT Edge device, the following services are required:

e Python pip, to install the loT Edge runtime.
o Linux: sudo apt-get install python-pip .
o Note that on certain distributions (e.g., Raspbian), you might also need to upgrade certain pip

packages and install additional dependencies:

sudo pip install --upgrade setuptools pip sudo apt-get install python2.7-dev libffi-dev
libssl-dev

o MacOS: sudo easy install pip .
e Docker, to run the loT Edge modules
o |Install Docker for Linux and make sure that it's running.

o |Install Docker for Mac and make sure that it's running.

Create an loT hub

Start the tutorial by creating your loT Hub.

1 - Create an loT hub

1. Signin to the Azure portal.

2. Select Create a resource > Internet of Things > loT Hub.

—I— Create a resource

All services

Azure Marketplace Seeall Featured

Resource groups loT Hub
Get started e

Learn more

All res

Recently created

es
Dashboard Compute loT Hub Device Provisioning Service

N i Learn more
: etworkini
App Services 9

Storage ™ Event Hubs

Function Apps Le i
Web + Mobile B | AR
SQL databases Containers

ime Series |l'|5ighi5

Virtual machines Databases LiarD Mo

) Data + Analytics

Azure Cosmos DB) Stream Analytics job
Al + Cognitive Services) Caa e

! Internet of Things

Load balancers

- : : Machine Learning Experimentation
Storage accounts Enterprise Integration :
- (preview)

Security + |dentit Learn more
Virtual networks ¥ Y
Developer tools Machine Learning Model Management
Azure | Directory o review

Monitoring + Management p]

Learn more

Monitor Add-ons
" Notification Hub
b Advicor Blockchain B (earn more

3. In the 1oT hub pane, enter the following information for your loT hub:

e Name: Create a name for your loT hub. If the name you enter is valid, a green check mark appears.

IMPORTANT

The loT hub will be publicly discoverable as a DNS endpoint, so make sure to avoid any sensitive information while

naming it.

e Pricing and scale tier: For this tutorial, select the F1 - Free tier. For more information, see the
Pricing and scale tier.

e Resource group: Create a resource group to host the 1oT hub or use an existing one. For more
information, see Use resource groups to manage your Azure resources

e Location: Select the closest location to you.

e Pin to dashboard: Check this option for easy access to your loT hub from the dashboard.

loT hub

* Name

Name your hub

* Pricing and scale tier

51 - Standard

* loT Hub units @
1

* Dewice-to-cloud partitions @

4 partitions v

* Subscription

mySub } v

* Resource group @

® Create new Use existing

* Location

East US v

I:‘ Pin to dashboard

Automation options

4. Click Create. Your loT hub might take a few minutes to create. You can monitor the progress in the
Notifications pane.

Register an |oT Edge device

Register an loT Edge device with your newly created |oT Hub.

v Create an loT hub
2 - Register an loT Edge device

2 yourEdgeDevice

Create a device identity for your simulated device so that it can communicate with your loT hub. Since 10T Edge
devices behave and can be managed differently than typical 10T devices, you declare this to be an 10T Edge device
from the beginning.

1. In the Azure portal, navigate to your loT hub.

2. Select 1oT Edge (preview) then select Add loT Edge Device.

AlpineSkiHouseHub - loT Edge (preview)

L2 Search (Ctri+) & | + Add IoT Edge Device | 1=: Add loT Edge Deployment D Refresh

Cwerview . .) . . 2
Azure loT Edge enables cloud-driven deployment of Azure services and solution-
- specific code to on-premise devices, loT Edge devices can aggregate data from
W Actvity log o other devices to perform computing and analytics before the data is sent to the
cloud, From this page, you can create and manage leT Edge devices and

;ﬂ Access control (IAM) deployments. Learn more about loT Edge.

loT Edge Devices loT Edge Deployments
Shared access policies

) loT Edge Devices

(.} Pricing and scale

Ei Operations monitoring

I 1P Filter device® in the device details. Each foT Hub supports up to 1000 loT Edge devices.

o loT Edge devices have the loT Edge runtime installed and are flagged as "loT Edge =
Learn how to create a simulated loT Edge device.

M Certificates
*= Properties

B locks

RUNTIME STAT.. MODULE COU.. UNHEALTHY M_. COMNECTEDC.. DEPLOYMENT.

Mo results

Ed Automation script

EXPLORERS

B o7 Devices

&2 10T Edge (preview)

B Query Explorer

3. Give your simulated device a unique device ID.

4. Select Save to add your device.
5. Select your new device from the list of devices.

6. Copy the value for Connection string—primary key and save it. You'll use this value to configure the loT
Edge runtime in the next section.

Install and start the loT Edge runtime

Install and start the Azure loT Edge runtime on your device.

v Create an loT hub
v Register an loT Edge device
3 - Start the loT Edge runtime

yourEdgeDevice

3

Azure |oT Edge runtime

The loT Edge runtime is deployed on all loT Edge devices. It comprises two modules. The loT Edge agent
facilitates deployment and monitoring of modules on the loT Edge device. The loT Edge hub manages
communications between modules on the loT Edge device, and between the device and loT Hub. When you
configure the runtime on your new device, only the loT Edge agent will start at first. The loT Edge hub comes later
when you deploy a module.

On the machine where you'll run the loT Edge device, download the loT Edge control script:

sudo pip install -U azure-iot-edge-runtime-ctl

Configure the runtime with your 10T Edge device connection string from the previous section:

sudo iotedgectl setup --connection-string "{device connection string}" --nopass

Start the runtime:

sudo iotedgectl start

Check Docker to see that the loT Edge agent is running as a module:

sudo docker ps

ker ps --format ‘table {{.Names
MAGE

microsoft/azureiot

Deploy a module

Manage your Azure loT Edge device from the cloud to deploy a module which will send telemetry data to loT
Hub.

v Create an loT hub

v Register an loT Edge device
v Start the loT Edge runtime
4 - Deploy a module which
sends telemetry to loT Hub

yourEdgeDevice

Module w

Azure loT Edge runtime

One of the key capabilities of Azure |oT Edge is being able to deploy modules to your loT Edge devices from the
cloud. An loT Edge module is an executable package implemented as a container. In this section, you deploy a
module that generates telemetry for your simulated device.

1. In the Azure portal, navigate to your 10T hub.

Go to loT Edge (preview) and select your |oT Edge device.
Select Set Modules.

Select Add loT Edge Module.

In the Name field, enter tempSensor .

In the Image URI field, enter microsoft/azureiotedge-simulated-temperature-sensor:1.0-preview .

N vk WD

Leave the other settings unchanged, and select Save.

10.
11.

loT Edge Modules

e Specify the settings for loT Edge module. Learn how to create a module.

* Name

| tempSensor

* |mage UR| @

| microsoft/azureictedge-simulated-temperature-sensor 1.0-preview

Container Create Options @

1}

Restart Policy @

always

Desired Status @

running

Maodule twin's desired properties @

I:‘ Enable

Back in the Add modules step, select Next.

In the Specify routes step, select Next.

In the Review template step, select Submit.

Return to the device details page and select Refresh. You should see the new tempSensor module running

along the loT Edge runtime.

Edge Runtime Response @

200

Deployed Modules Connected Clients Deployments

0 This section reports all the modules that were deployed to this device. Currently each |oT Edge device supports up to 10 modules. i you want to remove all

the modules deployed on this device, you can click Set Module, delete all the modules and Submit.

52 Search Modules

D MAME RUNTIME STATUS EXIT CODE
tempSensor running 0 Tue Nov 14 2017 12:18:28 GMT-0800 ...
fedgelgent (loT Edge runtime module) running 0

$edgeHub (loT Edge runtime module) running 0

Tue Nov 14 2017 12:0%:56 GMT-0800 ...

View generated data

In this tutorial, you created a new loT Edge device and installed the loT Edge runtime on it. Then, you used the
Azure portal to push an loT Edge module to run on the device without having to make changes to the device itself.
In this case, the module that you pushed creates environmental data that you can use for the tutorials.

Open the command prompt on the computer running your simulated device again. Confirm that the module
deployed from the cloud is running on your loT Edge device:

sudo docker ps

Ubuntu:~% sudo

View the messages being sent from the tempSensor module to the cloud:

sudo docker logs -f tempSensor

You can also view the telemetry the device is sending by using the loT Hub explorer tool.

Next steps

In this tutorial, you created a new loT Edge device and used the Azure |oT Edge cloud interface to deploy code
onto the device. Now, you have a simulated device generating raw data about its environment.

This tutorial is the prerequisite for all of the other loT Edge tutorials. You can continue on to any of the other
tutorials to learn how Azure |oT Edge can help you turn this data into business insights at the edge.

Develop and deploy C# code as a module

Deploy Azure loT Edge on a simulated device in

Windows - preview

4/9/2018 « 5 min to read « Edit Online

Azure |oT Edge enables you to perform analytics and data processing on your devices, instead of having to push
all the data to the cloud. The loT Edge tutorials demonstrate how to deploy different types of modules, built from
Azure services or custom code, but first you need a device to test.

In this tutorial you learn how to:

1. Create an loT Hub

2. Register an loT Edge device
3. Start the loT Edge runtime
4

. Deploy a module

&

Azure Container Registry

Module =
& ~,
: |
N loT Hub
3 1 e Y 2
J . evices
_!— ® . - yourEdgeDevice
— - & L
Azure loT Edge runtime telemetry

The simulated device that you create in this tutorial is a monitor on a wind turbine that generates temperature,
humidity, and pressure data. You're interested in this data because your turbines perform at different levels of
efficiency depending on the weather conditions. The other Azure loT Edge tutorials build upon the work you do
here by deploying modules that analyze the data for business insights.

Prerequisites

This tutorial assumes that you're using a computer or virtual machine running Windows to simulate an Internet of
Things device.

TIP

If you're running Windows in a virtual machine, enable nested virtualization and allocate at least 2GB memory.

1. Make sure you're using a supported Windows version:

e Windows 10
e Windows Server
2. Install Docker for Windows and make sure it's running.
3. Install Python 2.7 on Windows and make sure you can use the pip command.

4. Run the following command to download the 10T Edge control script.

pip install -U azure-iot-edge-runtime-ctl

NOTE
Azure loT Edge can run either Windows containers or Linux containers. If you're running one of the following Windows

versions, you can use Windows containers:

® Windows 10 Fall Creators Update
® Windows Server 1709 (Build 16299)
® Windows loT Core (Build 16299) on a x64-based device

For Windows loT Core, follow the instructions in Install the loT Edge runtime on Windows |oT Core. Otherwise, simply
configure Docker to use Windows containers. Use the following command to validate your prerequisites:

Invoke-Expression (Invoke-WebRequest -useb https://aka.ms/iotedgewin)

Create an loT hub

Start the tutorial by creating your loT Hub.

1 - Create an loT hub

1. Signin to the Azure portal.

2. Select Create a resource > Internet of Things > loT Hub.

—|— Create a resource

All services

Resource groups
All resources
Dashboard

App Services
Function A|

SQL databases
Virtual machines
Azure Cosmos DB
Load balancers
Storage accounts
Virtual networks
Azure Active Directory
Monitor

Advisor

Azure Marketplace See all

Get started
Recently created
Compute
Networking
Storage

Web + Mobile
Containers
Databases

Data + Analytics

Al + Cognitive Services

Enterprise Integration
Security + Identity
Developer tools
Monitoring + Management
Add-ons

Blockchain

Featured

See all

loT Hub

Learn more

it

a

loT Hub Device Provisioning Service

Learn more

Event Hubs

Learn more

Time Series Insights

Learn more

Stream Analytics job

Learn more

Machine Learning Experimentation
(preview)

Learn more

Machine Learning Model Management
(preview)

Learn more

Notification Hub

Learn more

3. Inthe 1oT hub pane, enter the following information for your 10T hub:

o Name: Create a name for your 10T hub. If the name you enter is valid, a green check mark appears.

IMPORTANT

naming it.

The loT hub will be publicly discoverable as a DNS endpoint, so make sure to avoid any sensitive information while

e Pricing and scale tier: For this tutorial, select the F1 - Free tier. For more information, see the

Pricing and scale tier.

e Resource group: Create a resource group to host the loT hub or use an existing one. For more

information, see Use resource groups to manage your Azure resources

e Location: Select the closest location to you.

Pin to dashboard: Check this option for easy access to your [oT hub from the dashboard.

loT hub

Mic

* Name

Name your hub

* Pricing and scale tier

51 - Standard

* loT Hub units @
1

* Device-to-cloud partitions @

4 partitions w

* Subscription

mySub } v

* Resource group @

® Create new Use existing

* Location

East US A4

I:‘ Pin to dashboard

Automation options

4. Click Create. Your 10T hub might take a few minutes to create. You can monitor the progress in the
Notifications pane.

Register an |oT Edge device

Register an loT Edge device with your newly created |oT Hub.

v Create an loT hub
2 - Register an loT Edge device

2 yourEdgeDevice

Create a device identity for your simulated device so that it can communicate with your 10T hub. Since loT Edge
devices behave and can be managed differently than typical loT devices, you declare this to be an loT Edge device
from the beginning.

1. In the Azure portal, navigate to your loT hub.

2. Select 10T Edge (preview) then select Add loT Edge Device.

AlpineSkiHouseHub - loT Edge (preview)

A Overview |) .) . i 2
! Azure |oT Edge enables cloud-driven deployment of Azure services and solution-
o specific code to on-premise devices, loT Edge devices can aggregate data from
ﬁ Activity log | e other devices to perform computing and analytics before the data is sent to the
cloud. From this page, you can create and manage loT Edge devices and
;j Access control (JAM) . deployments. Learn more about loT Edge.
SETTINGE loT Edge Devices loT Edge Deployments

Shared access policies

) loT Edge Devices

' Pricing and scale
Ei Operations monitoring |

| device” in the device details. Each loT Hub supports up to 1000 loT Edge devices.
| Learn how to create a simulated loT Edge device.
M Certificates |

I D ' ﬁ loT Edge devices have the loT Edge runtime installed and are flagged as “loT Edge 2
= |P Filter |

»= Properties

8 Llocks

| Mo results

MODULE COU.. UNHEALTHY M.. (COMNMNECTED C.. DEPLOYMENT.

B3 Automation script |

B 10T Devices |

&8 10T Edge (preview) |

B Query Explorer |

3. Give your simulated device a unique device ID.

4. Select Save to add your device.
5. Select your new device from the list of devices.

6. Copy the value for Connection string—primary key and save it. You'll use this value to configure the loT
Edge runtime in the next section.

Configure the loT Edge runtime

Install and start the Azure loT Edge runtime on your device.

v Create an loT hub
v Register an loT Edge device
3 - Start the loT Edge runtime

yourEdgeDevice

3

Azure loT Edge runtime

The loT Edge runtime is deployed on all loT Edge devices. It comprises two modules. The loT Edge agent
facilitates deployment and monitoring of modules on the loT Edge device. The loT Edge hub manages
communications between modules on the 10T Edge device, and between the device and loT Hub. When you
configure the runtime on your new device, only the loT Edge agent will start at first. The loT Edge hub comes later
when you deploy a module.

Configure the runtime with your loT Edge device connection string from the previous section.

iotedgectl setup --connection-string "{device connection string}" --nopass

Start the runtime.

iotedgectl start

Check Docker to see that the IoT Edge agent is running as a module.

docker ps

Deploy a module

Manage your Azure |oT Edge device from the cloud to deploy a module which will send telemetry data to loT

Hub.
1y

Azure Container Registry

v Create an loT hub

v Register an loT Edge device
v Start the loT Edge runtime
4 - Deploy a module which
sends telemetry to loT Hub v

yourEdgeDevice

Module w
i oT Hub
e "1
\ Devices
—_— ® . - yourEdgeDevice

> ® 9
Azure loT Edge runtime telemeatry \ L

One of the key capabilities of Azure 10T Edge is being able to deploy modules to your loT Edge devices from the
cloud. An loT Edge module is an executable package implemented as a container. In this section, you deploy a
module that generates telemetry for your simulated device.

1. In the Azure portal, navigate to your loT hub.

Goto loT Edge (preview) and select your |oT Edge device.
Select Set Modules.

Select Add loT Edge Module.

In the Name field, enter tempSensor .

In the Image URI field, enter microsoft/azureiotedge-simulated-temperature-sensor:1.0-preview .

N o v s WD

Leave the other settings unchanged, and select Save.

10.
11.

loT Edge Modules

o Specify the settings for loT Edge module. Leam how to create a module.

* Name

| tempSensor

* |mage URl @

| microsoft/azureictedge-simulated-temperature-senson: 1.0-preview

Container Create Options @

i}

Restart Policy @

always

Desired Status @

running

Maodule twin's desired properties @

l:‘ Enable

Back in the Add modules step, select Next.

In the Specify routes step, select Next.

In the Review template step, select Submit.

Return to the device details page and select Refresh. You should see the new tempSensor module running

along the loT Edge runtime.

Edge Runtime Response @

200

Deployed Modules Connected Clients Deployments

0 This section repaorts all the modules that were deployed to this device. Currently each loT Edge device supports up to 10 modules. If you want to remove all

the modules deployed on this device, you can click Set Module, delete all the modules and Submit.

22 Search Modules

I:‘ MAME RUNTIME STATUS EXIT CODE
tempSensor running 0 Tue Nov 14 2017 12:18:28 GMT-0800 ...
fedgelgent (loT Edge runtime module) running 0

$edgeHub (loT Edge runtime module) running 0

Tue Nov 14 2017 12:09:56 GMT-0800 ...

View generated data

In this tutorial, you created a new loT Edge device and installed the loT Edge runtime on it. Then, you used the
Azure portal to push an loT Edge module to run on the device without having to make changes to the device itself.
In this case, the module that you pushed creates environmental data that you can use for the tutorials.

Open the command prompt on the computer running your simulated device again. Confirm that the module
deployed from the cloud is running on your loT Edge device.

docker ps

View the messages being sent from the tempSensor module to the cloud.

docker logs -f tempSensor

You can also view the telemetry the device is sending by using the loT Hub explorer tool.

Next steps

In this tutorial, you created a new |oT Edge device and used the Azure |oT Edge cloud interface to deploy code
onto the device. Now, you have a simulated device generating raw data about its environment.

This tutorial is the prerequisite for all of the other 10T Edge tutorials. You can continue on to any of the other
tutorials to learn how Azure 10T Edge can help you turn this data into business insights at the edge.

Develop and deploy C# code as a module

Develop and deploy a C# loT Edge module to your

simulated device - preview

5/8/2018 « 9 min to read ¢ Edit Online

You can use |loT Edge modules to deploy code that implements your business logic directly to your l1oT Edge
devices. This tutorial walks you through creating and deploying an loT Edge module that filters sensor data. You'll
use the simulated loT Edge device that you created in the Deploy Azure loT Edge on a simulated device in
Windows or Linux tutorials. In this tutorial, you learn how to:

e Use Visual Studio Code to create an loT Edge module based on .NET core 2.0
e Use Visual Studio Code and Docker to create a docker image and publish it to your registry
e Deploy the module to your loT Edge device

e View generated data

The loT Edge module that you create in this tutorial filters the temperature data generated by your device. It only
sends messages upstream if the temperature is above a specified threshold. This type of analysis at the edge is
useful for reducing the amount of data communicated to and stored in the cloud.

Prerequisites

e The Azure loT Edge device that you created in the quickstart or first tutorial.
e The primary key connection string for the loT Edge device.

e Visual Studio Code.

e Azure loT Edge extension for Visual Studio Code.

e C# for Visual Studio Code (powered by OmniSharp) extension.

e Docker on the same computer that has Visual Studio Code. The Community Edition (CE) is sufficient for this
tutorial.

e NET Core 2.0 SDK.

Create a container registry

In this tutorial, you use the Azure 10T Edge extension for VS Code to build a module and create a container
image from the files. Then you push this image to a registry that stores and manages your images. Finally, you
deploy your image from your registry to run on your loT Edge device.

You can use any Docker-compatible registry for this tutorial. Two popular Docker registry services available in
the cloud are Azure Container Registry and Docker Hub. This tutorial uses Azure Container Registry.

1. In the Azure portal, select Create a resource > Containers > Azure Container Registry.

Give your registry a name, choose a subscription, choose a resource group, and set the SKU to Basic.
Select Create.

Once your container registry is created, navigate to it and select Access keys.

Toggle Admin user to Enable.

o Uk W

Copy the values for Login server, Username, and Password. You'll use these values later in the tutorial
when you publish the Docker image to your registry, and when you add the registry credentials to the Edge
runtime.

Create an loT Edge module project

The following steps show you how to create an loT Edge module based on .NET core 2.0 using Visual Studio

Code and the Azure loT Edge extension.

1.
2.

7.

In Visual Studio Code, select View > Integrated Terminal to open the VS Code integrated terminal.

In the integrated terminal, enter the following command to install (or update) the AzureloTEdgeModule
template in dotnet:

dotnet new -i Microsoft.Azure.IoT.Edge.Module

Create a project for the new module. The following command creates the project folder, FilterModule,
with your container repository. The second parameter should be in the form of
<your container registry name>.azurecr.io if you are using Azure container registry. Enter the following

command in the current working folder:
dotnet new aziotedgemodule -n FilterModule -r <your container registry address>/filtermodule

Select File > Open Folder.

Browse to the FilterModule folder and click Select Folder to open the projectin VS Code.

In VS Code explorer, click Program.cs to open it.

ﬂ FilterModule - Visual Studic Code

File Go Debug Tasks

o
4 OPEN EDITORS

p 4 FILTERMODULE
b bin

Docker

Edit Selection View Help

obj

.gitignore

At the top of the FilterModule namespace, add three using statements for types used later on:

using System.Collections.Generic; // for KeyValuePair<>
using Microsoft.Azure.Devices.Shared; // for TwinCollection
using Newtonsoft.Json; // for JsonConvert

Add the temperatureThreshold variable to the Program class. This variable sets the value that the

measured temperature must exceed in order for the data to be sent to 1oT Hub.

static int temperatureThreshold { get; set; } = 25;

Add the MessageBody , Machine ,and Ambient classes tothe Program class. These classes define the

expected schema for the body of incoming messages.

class MessageBody

{
public Machine machine {get;set;}
public Ambient ambient {get; set;}
public string timeCreated {get; set;}

}

class Machine

{
public double temperature {get; set;}
public double pressure {get; set;}

}

class Ambient

{
public double temperature {get; set;}
public int humidity {get; set;}

10. In the Init method, the code creates and configures a DeviceClient object. This object allows the module
to connect to the local Azure loT Edge runtime to send and receive messages. The connection string used
in the Init method is supplied to the module by loT Edge runtime. After creating the DeviceClient, the
code reads the TemperatureThreshold from the Module Twin's desired properties and registers a callback
for receiving messages from the loT Edge hub via the input1 endpoint. Replace the

SetInputMessageHandlerAsync method with a new one, and add a SetDesiredPropertyUpdateCallbackAsync
method for desired properties updates. To make this change, replace the last line of the Init method with
the following code:

// Register callback to be called when a message is received by the module
// await ioTHubModuleClient.SetImputMessageHandlerAsync("inputl", PipeMessage, iotHubModuleClient);

// Read TemperatureThreshold from Module Twin Desired Properties
var moduleTwin = await ioTHubModuleClient.GetTwinAsync();
var moduleTwinCollection = moduleTwin.Properties.Desired;

try {

temperatureThreshold = moduleTwinCollection["TemperatureThreshold"];
} catch(ArgumentOutOfRangeException e) {

Console.WriteLine("Property TemperatureThreshold not exist");

// Attach callback for Twin desired properties updates
await ioTHubModuleClient.SetDesiredPropertyUpdateCallbackAsync(onDesiredPropertiesUpdate, null);

// Register callback to be called when a message is received by the module
await ioTHubModuleClient.SetInputMessageHandlerAsync("inputl", FilterMessages, ioTHubModuleClient);

11. Add the onDesiredPropertiesupdate method to the Program class. This method receives updates on the
desired properties from the module twin, and updates the temperatureThreshold variable to match. All
modules have their own module twin, which lets you configure the code running inside a module directly
from the cloud.

static Task onDesiredPropertiesUpdate(TwinCollection desiredProperties, object userContext)

{
try
{
Console.WriteLine("Desired property change:");
Console.WriteLine(JsonConvert.SerializeObject(desiredProperties));
if (desiredProperties["TemperatureThreshold"]!=null)
temperatureThreshold = desiredProperties["TemperatureThreshold"];
}
catch (AggregateException ex)
{
foreach (Exception exception in ex.InnerExceptions)
{
Console.WriteLine();
Console.WriteLine("Error when receiving desired property: {0}", exception);
}
}
catch (Exception ex)
{
Console.WriteLine();
Console.WriteLine("Error when receiving desired property: {0}", ex.Message);
}
return Task.CompletedTask;
}

12. Replace the PipeMessage method with the FilterMessages method. This method is called whenever the
module receives a message from the loT Edge hub. It filters out messages that report temperatures below
the temperature threshold set via the module twin. It also adds the MessageType property to the
message with the value set to Alert.

static async Task<MessageResponse> FilterMessages(Message message, object userContext)

{

var counterValue = Interlocked.Increment(ref counter);

try {
DeviceClient deviceClient = (DeviceClient)userContext;

var messageBytes = message.GetBytes();
var messageString = Encoding.UTF8.GetString(messageBytes);
Console.WriteLine($"Received message {counterValue}: [{messageString}]");

// Get message body
var messageBody = JsonConvert.DeserializeObject<MessageBody>(messageString);

if (messageBody != null && messageBody.machine.temperature > temperatureThreshold)
{
Console.WriteLine($"Machine temperature {messageBody.machine.temperature} " +
$"exceeds threshold {temperatureThreshold}");
var filteredMessage = new Message(messageBytes);
foreach (KeyValuePair<string, string> prop in message.Properties)
{

filteredMessage.Properties.Add(prop.Key, prop.vValue);

filteredMessage.Properties.Add("MessageType", "Alert");
await deviceClient.SendEventAsync("outputl", filteredMessage);

// Indicate that the message treatment is completed
return MessageResponse.Completed;

}

catch (AggregateException ex)

{

foreach (Exception exception in ex.InnerExceptions)

{
Console.WriteLine();

Console.WriteLine("Error in sample: {@}", exception);

}

// Indicate that the message treatment is not completed
var deviceClient = (DeviceClient)userContext;

return MessageResponse.Abandoned;

}

catch (Exception ex)

{

Console.WriteLine();

Console.WriteLine("Error in sample: {@}", ex.Message);
// Indicate that the message treatment is not completed
DeviceClient deviceClient = (DeviceClient)userContext;
return MessageResponse.Abandoned;

13. Save this file.

Create a Docker image and publish it to your registry

1. Sign in to Docker by entering the following command in the VS Code integrated terminal:

docker login -u <ACR username> -p <ACR password> <ACR login server>

To find the user name, password and login server to use in this command, go to the Azure portal. From
All resources, click the tile for your Azure container registry to open its properties, then click Access
keys. Copy the values in the Username, password, and Login server fields.

2. In VS Code explorer, Right-click the module.json file and click Build and Push loT Edge module
Docker image. In the pop-up dropdown box at the top of the VS Code window, select your container
platform, either amd64 for Linux container or windows-amd64 for Windows container. VS Code then

builds your code, containerize the FilterModule.d1l and push it to the container registry you specified.

3. You can get the full container image address with tag in the VS Code integrated terminal. For more
infomation about the build and push definition, you can refer to the module.json file.

Add registry credentials to Edge runtime

Add the credentials for your registry to the Edge runtime on the computer where you are running your Edge
device. These credentials give the runtime access to pull the container.

e For Windows, run the following command:

iotedgectl login --address <your container registry address> --username <username> --password
<password>

e For Linux, run the following command:

sudo iotedgectl login --address <your container registry address> --username <username> --password
<password>

Run the solution

1. In the Azure portal, navigate to your loT hub.
Go to loT Edge (preview) and select your |oT Edge device.
Select Set Modules.

> won

Check that the tempSensor module is automatically populated. If it's not, use the following steps to add it:
. Select Add loT Edge Module.

Q

b. In the Name field, enter tempSensor .
¢. Inthe Image URI field, enter microsoft/azureiotedge-simulated-temperature-sensor:1.@-preview .
d. Leave the other settings unchanged and click Save.

5. Add the filterModule module that you created in the previous sections.

Q

. Select Add loT Edge Module.
b. In the Name field, enter filterModule .
¢. Inthe Image URI field, enter your image address; for example
<your container registry address>/filtermodule:0.0.1-amd64 . The full image address can be found from
the previous section.

d. Check the Enable box so that you can edit the module twin.

[0)

. Replace the JSON in the text box for the module twin with the following JSSON:

"properties.desired":{
"TemperatureThreshold":25
¥

f. Click Save.

6.
7.

Click Next.

In the Specify Routes step, copy the JSON below into the text box. Modules publish all messages to the
Edge runtime. Declarative rules in the runtime define where the messages flow. In this tutorial, you need
two routes. The first route transports messages from the temperature sensor to the filter module via the
"input1" endpoint, which is the endpoint that you configured with the FilterMessages handler. The second
route transports messages from the filter module to loT Hub. In this route, upstream is a special

destination that tells Edge Hub to send messages to loT Hub.

"routes":{
"sensorToFilter":"FROM /messages/modules/tempSensor/outputs/temperatureOutput INTO
BrokeredEndpoint(\"/modules/filterModule/inputs/input1i\")",
"filterToIoTHub":"FROM /messages/modules/filterModule/outputs/outputl INTO $upstream”
¥

. Click Next.

9. In the Review Template step, click Submit.

. Return to the loT Edge device details page and click Refresh. You should see the new filtermodule running

along with the tempSensor module and the loT Edge runtime.

View generated data

To monitor device to cloud messages sent from your |oT Edge device to your 10T hub:

1.

2.

3.

Configure the Azure loT Toolkit extension with connection string for your loT hub:

a. Open the VS Code explorer by selecting View > Explorer.

b. In the explorer, click IOT HUB DEVICES and then click Click Set loT Hub Connection String
and enter the connection string for the |oT hub that your 10T Edge device connects to in the pop-up
window.

To find the connection string, click the tile for your 10T hub in the Azure portal and then click
Shared access policies. In Shared access policies, click the iothubowner policy and copy the
loT Hub connection string in the iothubowner window.

To monitor data arriving at the 1oT hub, select View > Command Palette and search for the loT: Start
monitoring D2C message menu command.

To stop monitoring data, use the loT: Stop monitoring D2C message menu command.

Next steps

In this tutorial, you created an loT Edge module that contains code to filter raw data generated by your l1oT Edge

device. You can continue on to either of the following tutorials to learn about other ways that Azure 10T Edge can

help you turn data into business insights at the edge.

Deploy Azure Function as a module Deploy Azure Stream Analytics as a module

Develop and deploy a Python loT Edge module to

your simulated device - preview

4/26/2018 + 8 min to read ¢ Edit Online

You can use loT Edge modules to deploy code that implements your business logic directly to your loT Edge
devices. This tutorial walks you through creating and deploying an loT Edge module that filters sensor data. You'll
use the simulated loT Edge device that you created in the Deploy Azure |oT Edge on a simulated device in
Windows or Linux tutorials. In this tutorial, you learn how to:

e Use Visual Studio Code to create an loT Edge Python module
e Use Visual Studio Code and Docker to create a docker image and publish it to your registry
e Deploy the module to your loT Edge device

e View generated data

The loT Edge module that you create in this tutorial filters the temperature data generated by your device. It only
sends messages upstream if the temperature is above a specified threshold. This type of analysis at the edge is
useful for reducing the amount of data communicated to and stored in the cloud.

IMPORTANT

Currently the Python module can only be run in amd64 Linux containers; it cannot run in Windows containers or ARM-based
containers.

Prerequisites

e The Azure |oT Edge device that you created in the quickstart or first tutorial.
e The primary key connection string for the loT Edge device.

e Visual Studio Code.

e Azure loT Edge extension for Visual Studio Code.

e Python extension for Visual Studio Code.

e Docker on the same computer that has Visual Studio Code. The Community Edition (CE) is sufficient for this
tutorial.

e Python.
e Pip for installing Python packages (typically included with your Python installation).

Create a container registry

In this tutorial, you use the Azure loT Edge extension for VS Code to build a module and create a container
image from the files. Then you push this image to a registry that stores and manages your images. Finally, you
deploy your image from your registry to run on your loT Edge device.

You can use any Docker-compatible registry for this tutorial. Two popular Docker registry services available in the
cloud are Azure Container Registry and Docker Hub. This tutorial uses Azure Container Registry.

1. In the Azure portal, select Create a resource > Containers > Azure Container Registry.

2. Give your registry a name, choose a subscription, choose a resource group, and set the SKU to Basic.
3. Select Create.
4

. Once your container registry is created, navigate to it and select Access keys.

5. Toggle Admin user to Enable.

6. Copy the values for Login server, Username, and Password. You'll use these values later in the tutorial.

Create an loT Edge module project

The following steps show you how to create an loT Edge Python module using Visual Studio Code and the Azure
loT Edge extension.

1. In Visual Studio Code, select View > Integrated Terminal to open the VS Code integrated terminal.

2. In the integrated terminal, enter the following command to install (or update) cookiecutter (we suggest
doing this either into a virtual environment or as a user install as shown below):

pip install --upgrade --user cookiecutter

3. Create a project for the new module. The following command creates the project folder, FilterModule, with
your container repository. The parameter of image_repository should be in the form of
<your container registry name>.azurecr.io/filtermodule if you are using Azure container registry. Enter the

following command in the current working folder:

cookiecutter --no-input https://github.com/Azure/cookiecutter-azure-iot-edge-module
module_name=FilterModule image_repository=<your container registry address>/filtermodule

4. Select File > Open Folder.

5. Browse to the FilterModule folder and click Select Folder to open the projectin VS Code.
6. In VS Code explorer, click main.py to open it.

7. Atthe top of the FilterModule namespace, import the json library:
import json

8. Add the TEMPERATURE_THRESHOLD , RECEIVE_CALLBACKS , and TWIN_CALLBACKS under the global counters. The
temperature threshold sets the value that the measured temperature must exceed in order for the data to be
sent to loT Hub.

TEMPERATURE_THRESHOLD = 25
TWIN_CALLBACKS = RECEIVE_CALLBACKS = @

9. Update the function receive_message_callback with below content.

receive_message_callback is invoked when an incoming message arrives on the specified
input queue (in the case of this sample, "inputl"). Because this is a filter module,
we will forward this message onto the "outputl" queue.
def receive_message_callback(message, hubManager):

global RECEIVE_CALLBACKS

global TEMPERATURE_THRESHOLD

message_buffer = message.get_bytearray()

size = len(message_buffer)

message_text = message_buffer[:size].decode('utf-8")

print(" Data: <<<{}>>> & Size={:d}".format(message_text, size))

map_properties = message.properties()

key_value_pair = map_properties.get_internals()

print(" Properties: {}".format(key_value_pair))
RECEIVE_CALLBACKS += 1
print(" Total calls received: {:d}".format(RECEIVE_CALLBACKS))

data = json.loads(message_text)
if "machine" in data and "temperature" in data["machine"] and data["machine"]["temperature"] >
TEMPERATURE_THRESHOLD:
map_properties.add("MessageType", "Alert")
print("Machine temperature {} exceeds threshold {}".format(data["machine"]["temperature"],
TEMPERATURE_THRESHOLD))
hubManager.forward_event_to_output("outputl”, message, 0)
return IoTHubMessageDispositionResult.ACCEPTED

10. Add a new function device_twin_callback . This function will be invoked when the desired properties are
updated.

device_twin_callback is invoked when twin's desired properties are updated.
def device_twin_callback(update_state, payload, user_context):
global TWIN_CALLBACKS
global TEMPERATURE_THRESHOLD
print("\nTwin callback called with:\nupdateStatus = {}\npayload = {}\ncontext =
{}".format(update_state, payload, user_context))
data = json.loads(payload)
if "desired" in data and "TemperatureThreshold" in data["desired"]:
TEMPERATURE_THRESHOLD = data["desired"]["TemperatureThreshold"]
if "TemperatureThreshold" in data:
TEMPERATURE_THRESHOLD = data["TemperatureThreshold"]
TWIN_CALLBACKS += 1
print("Total calls confirmed: {:d}\n".format(TWIN_CALLBACKS))

11. In class HubManager , add a new lineto the __init__ method to initialize the device twin_callback function
you just added.

sets the callback when a twin's desired properties are updated.
self.client.set_device_twin_callback(device_twin_callback, self)

12. Save this file.

Create a Docker image and pubilish it to your registry

1. Sign in to Docker by entering the following command in the VS Code integrated terminal:

docker login -u <username> -p <password> <Login server>

Use the user name, password, and login server that you copied from your Azure container registry when
you created it.

2. In VS Code explorer, Right-click the module.json file and click Build and Push loT Edge module Docker

image. In the pop-up dropdown box at the top of the VS Code window, select your container platform, for
example, amd64 for Linux container. VS Code containerize the main.py and required dependencies, then

push it to the container registry you specified. It might take several minutes for your first time to build the
image.

3. You can get the full container image address with tag in the VS Code integrated terminal. For more
infomation about the build and push definition, you can refer to the module.json file.

Add registry credentials to Edge runtime

Add the credentials for your registry to the Edge runtime on the computer where you are running your Edge
device. These credentials give the runtime access to pull the container.

e For Windows, run the following command:

iotedgectl login --address <your container registry address> --username <username> --password <password>

d |

e For Linux, run the following command:

sudo iotedgectl login --address <your container registry address> --username <username> --password
<password>

Run the solution

1. In the Azure portal, navigate to your 1oT hub.
. Goto loT Edge (preview) and select your 10T Edge device.
. Select Set Modules.

A ow N

. Check that the tempSensor module is automatically populated. If it's not, use the following steps to add it:
a. Select Add loT Edge Module.
b. In the Name field, enter tempSensor .
c. Inthe Image URI field, enter microsoft/azureiotedge-simulated-temperature-sensor:1.0-preview .
d. Leave the other settings unchanged and click Save.

5. Add the filterModule module that you created in the previous sections.

a. Select Add loT Edge Module.
b. In the Name field, enter filterModule .

c¢. Inthe Image URI field, enter your image address; for example
<your container registry address>/filtermodule:@.0.1-amd64 . The full image address can be found from
the previous section.

d. Check the Enable box so that you can edit the module twin.
e. Replace the JSON in the text box for the module twin with the following JSON:

"properties.desired":{
"TemperatureThreshold":25

}

f. Click Save.

6. Click Next.

7. In the Specify Routes step, copy the JSON below into the text box. Modules publish all messages to the
Edge runtime. Declarative rules in the runtime define where the messages flow. In this tutorial, you need two
routes. The first route transports messages from the temperature sensor to the filter module via the "input1”
endpoint, which is the endpoint that you configured with the FilterMessages handler. The second route
transports messages from the filter module to oT Hub. In this route, upstream is a special destination that

tells Edge Hub to send messages to loT Hub.

"routes":{
"sensorToFilter":"FROM /messages/modules/tempSensor/outputs/temperatureOutput INTO
BrokeredEndpoint(\"/modules/filterModule/inputs/input1\")",
"filterToIoTHub":"FROM /messages/modules/filterModule/outputs/outputl INTO $upstream"

}

8. Click Next.

9. In the Review Template step, click Submit.
10. Return to the loT Edge device details page and click Refresh. You should see the new filtermodule running
along with the tempSensor module and the l1oT Edge runtime.

View generated data

To monitor device to cloud messages sent from your loT Edge device to your 10T hub:
1. Configure the Azure loT Toolkit extension with connection string for your loT hub:

a. Open the VS Code explorer by selecting View > Explorer.

b. In the explorer, click IOT HUB DEVICES and then click Click Set loT Hub Connection String
and enter the connection string for the IoT hub that your 1oT Edge device connects to in the pop-up

window.

To find the connection string, click the tile for your loT hub in the Azure portal and then click Shared
access policies. In Shared access policies, click the iothubowner policy and copy the loT Hub

connection string in the iothubowner window.

2. To monitor data arriving at the loT hub, select View > Command Palette and search for the loT: Start

monitoring D2C message menu command.

3. To stop monitoring data, use the loT: Stop monitoring D2C message menu command.

Next steps

In this tutorial, you created an loT Edge module that contains code to filter raw data generated by your loT Edge
device. You can continue on to either of the following tutorials to learn about other ways that Azure loT Edge can

help you turn data into business insights at the edge.

Deploy Azure Function as a module Deploy Azure Stream Analytics as a module

Deploy Azure Stream Analytics as an loT Edge

module - preview

4/9/2018 « 5 min to read « Edit Online

loT devices can produce large quantities of data. To reduce the amount of uploaded data or to eliminate the
round-trip latency of an actionable insight, the data must sometimes be analyzed or processed before it reaches
the cloud.

Azure loT Edge takes advantage of pre-built Azure service loT Edge modules for quick deployment. Azure Stream
Analytics is one such module. You can create an Azure Stream Analytics job from its portal and then go to the
Azure loT Hub portal to deploy it as an loT Edge module.

Azure Stream Analytics provides a richly structured query syntax for data analysis both in the cloud and on loT
Edge devices. For more information about Azure Stream Analytics on 10T Edge, see Azure Stream Analytics
documentation.

This tutorial walks you through creating an Azure Stream Analytics job and deploying it on an loT Edge device.
Doing so lets you process a local telemetry stream directly on the device and generate alerts that drive immediate
action on the device.

The tutorial presents two modules:

e A simulated temperature sensor module (tempSensor) that generates temperature data from 20 to 120
degrees, incremented by 1 every 5 seconds.

e A Stream Analytics module that resets the tempSensor when the 30-second average reaches 70. In a
production environment, you might use this functionality to shut off a machine or take preventative measures
when the temperature reaches dangerous levels.

In this tutorial, you learn how to:

e (Create an Azure Stream Analytics job to process data on the edge.
e Connect the new Azure Stream Analytics job with other 1oT Edge modules.

e Deploy the Azure Stream Analytics job to an loT Edge device.

Prerequisites

e An loT hub.

e The device that you created and configured in the quickstart or in the articles about deploying Azure loT Edge
on a simulated device in Windows or in Linux. You need to know the device connection key and the device ID.

e Docker running on your loT Edge device.
o Install Docker on Windows.
o Install Docker on Linux.

e Python 2.7.x on your loT Edge device.
o Install Python 2.7 on Windows.

o Most Linux distributions, including Ubuntu, already have Python 2.7 installed. To ensure that pip is
installed, use the following command: sudo apt-get install python-pip .

Create an Azure Stream Analytics job

In this section, you create an Azure Stream Analytics job to take data from your loT hub, query the sent telemetry

data from your device, and then forward the results to an Azure Blob storage container. For more information, see
the "Overview" section of the Stream Analytics documentation.

Create a storage account

An Azure Storage account is required to provide an endpoint to be used as an output in your Azure Stream
Analytics job. The example in this section uses the Blob storage type. For more information, see the "Blobs"
section of the Azure Storage documentation.

1. In the Azure portal, go to Create a resource, enter Storage account in the search box, and then select
Storage account - blob, file, table, queue.

2. In the Create storage account pane, enter a name for your storage account, select the same location
where your 10T hub is stored, and then select Create. Note the name for later use.

Create storage account

The cost of your storage account depends on the
usage and the options you choose below.

Learn more

* Name @

| iotedgestorage v
«corewindows.net

Deployment model @

Resource manager | Classic

Account kind @

General purpose v

Performance @
Premium

Replication @
Locally-redundant storage (LRS) v

* Secure transfer required @
Enabled

* Subscription

Microsoft Azure Internal Consumption (4a5€ v

* Resource group

~ = .
() Create new @) Uss= existing

iotedge w
* Location
West US v

Virtual networks (Preview)

Configure virtual networks @

Enabled

l:' Pin to dashboard

Automation options

3. Go to the storage account that you just created, and then select Browse blobs.

4. Create a new container for the Azure Stream Analytics module to store data, set the access level to

Container, and then select OK.

iotedgestoragel - Browse blobs

L Searc +/] « Container |) Refresh

MNew container

Overview
H. Activity log
* Name
;ﬂ Access control (JAM) asa-cantainer
& Tags

. Container (anonymous read access for containers and blobs) LV
X Diagnose and solve problems

SETTINGS Lo IR

Access keys
& Configuration You don't have any containers yet. Click '+ Container' to get started.
Shared access signature

i Firewalls and virtual network...

fisl Metrics (preview)

Properties
ﬂ Locks
Automation script

BLOB SERVICE

Browse blobs

&) CORS

Bl Custom domain

Create a Stream Analytics job

1.

In the Azure portal, go to Create a resource > Internet of Things, and then select Stream Analytics
Job.

In the New Stream Analytics Job pane, do the following:
a. In the Job name box, type a job name.
b. Under Hosting environment, select Edge.

¢. In the remaining fields, use the default values.

NOTE

Currently, Azure Stream Analytics jobs on loT Edge aren't supported in the West US 2 region.

Select Create.

In the created job, under Job Topology, select Inputs, and then select Add.
In the New input pane, do the following:

a. In the Input alias box, enter temperature.

b. In the Source Type box, select Data stream.

c. In the remaining fields, use the default values.

New input

* Input alias

temperature W

* Source Type ©

Data stream A
* Source @
Edge Hub w

* Event serialization format @

JS0N A
Encading @
UTF-8 Av

6. Select Create.
7. Under Job Topology, select Outputs, and then select Add.
8. In the New output pane, do the following:

a. In the Output alias box, type alert.

b. In the remaining fields, use the default values.

c. Select Create.

New output

* Qutput alias

| alerﬂ \/|
* Sink @
| Edge Hub ~ |

* Event serialization format @

JSON ~
Encoding @
UTF-2 ~

9. Under Job Topology, select Query, and then replace the default text with the following query:

SELECT
'reset’ AS command

INTO

alert
FROM

temperature TIMESTAMP BY timeCreated
GROUP BY TumblingWindow(second,30)
HAVING Avg(machine.temperature) > 70

10. Select Save.

Deploy the job

You are now ready to deploy the Azure Stream Analytics job on your loT Edge device.

1.

In the Azure portal, in your loT hub, go to l1oT Edge (preview), and then open the details page for your
loT Edge device.

Select Set modules.
If you previously deployed the tempSensor module on this device, it might autopopulate. If it does not, add

the module by doing the following:

a.Select Add loT Edge Module.

b. For the name, type tempSensor.

c. For the image URI, enter microsoft/azureiotedge-simulated-temperature-sensor:1.0-preview.
d. Leave the other settings unchanged.

e. Select Save.

. To add your Azure Stream Analytics Edge job, select Import Azure Stream Analytics loT Edge Module.
. Select your subscription and the Azure Stream Analytics Edge job that you created.

. Select your subscription and the storage account that you created, and then select Save.

Edge Deployment

Stream Analytics - Edge Job

* Subscription

Visual Studio Enterprise with M3DN ~
* Edge job
loTEdgelob ~

You can also create a new ASA job here

Storage Account

* Subscription

Visual Studio Enterprise with MSDN b4
* Storage account

alpineskihousesa ~
* Container

asa-container ~

6. Copy the name of your Azure Stream Analytics module.

1 Add Modules
(optional)

An loT Edge module is a Docker container you can deploy to loT Edge devices. It communicates with other modules and sends data to the loT Edge runtime. £
Using this Ul you can import Azure Service loT Edge modules or specify the settings for an loT Edge module, Setting medules on each device will be counted

@ towards the quota and throttled based on the loT Hub sku and units, For example, for $1 SKU, modules can be set 10 times per second if no other updates are
happening in the loT Hub. Currentfy we only support importing modules from Azure Stream Analytics. Azure Machine Leamning and Azure Functions will come
soon. Learn how to create and deploy an Azure Stream Analytics module.

NAME VERSION DESIRED STATUS OPERATION

asa_iotedgejob_7268a611-46b3-4cce... | 1.0.0.0 running
tempSensor 1.0 running

| Import Azure Stream Analytics loT Edge Module H Add loT Edge Module

7. To configure routes, select Next.

8. Copy the following code to Routes. Replace {moduleName} with the module name that you copied:

"routes": {
"telemetryToCloud": "FROM /messages/modules/tempSensor/* INTO $upstream”,
"alertsToCloud": "FROM /messages/modules/{moduleName}/* INTO $upstream”,
"alertsToReset": "FROM /messages/modules/{moduleName}/* INTO
BrokeredEndpoint(\"/modules/tempSensor/inputs/control\")",
"telemetryToAsa": "FROM /messages/modules/tempSensor/* INTO
BrokeredEndpoint (\"/modules/{moduleName}/inputs/temperature\")"
}

9. Select Next.
10. In the Review Template step, select Submit.

11. Return to the device details page, and then select Refresh.
You should see the new Stream Analytics module running, along with the loT Edge agent module and the
loT Edge hub.

Edge Runtime Response @
= o)

Deployed Modules Connected Clients Deployments

This section reports all the modules that were deployed to this device. Currently each loT Edge device supports up to 10 modules. If you want to remove all the modules deployed ...
this device, you can click Set Module, delete all the modules and Submit.

PO Search Modules

I:l NAME RUNTIME STATUS EXIT CODE LAST START TIME (UTC)
asa_iotedgejob_7268a611-46b3-4cce-9093... running 0 Mon Nov 27 2017 16:06:13 GMT-0800 (Paci...
tempSensor running 0 Mon Nov 27 2017 16:06:12 GMT-0800 (Padi...
$edgeAgent (loT Edge runtime module) running 0 Mon Nov 27 2017 15:33:01 GMT-0800 (Paci...
$edgeHub (loT Edge runtime module) running 0 Mon Nov 27 2017 16:06:11 GMT-0800 (Paci...

View data

Now you can go to your loT Edge device to check out the interaction between the Azure Stream Analytics module
and the tempSensor module.

1. Check that all the modules are running in Docker:

docker ps

2. View all system logs and metrics data. Use the Stream Analytics module name:

docker logs -f {moduleName}

You should be able to watch the machine's temperature gradually rise until it reaches 70 degrees for 30 seconds.
Then the Stream Analytics module triggers a reset, and the machine temperature drops back to 21.

Next steps

In this tutorial, you configured an Azure storage container and a Streaming Analytics job to analyze data from
your loT Edge device. You then loaded a custom Azure Stream Analytics module to move data from your device,
through the stream, into a blob for download. To see how Azure loT Edge can create more solutions for your

business, continue on to the other tutorials.

Deploy an Azure Machine Learning model as a module

Deploy Azure Machine Learning as an loT Edge

module - preview

5/7/2018 + 4 min to read « Edit Online

You can use loT Edge modules to deploy code that implements your business logic directly to your l1oT Edge
devices. This tutorial walks you through deploying an Azure Machine Learning module that predicts when a device
fails based on sensor data on the simulated loT Edge device that you created in the Deploy Azure loT Edge on a
simulated device on Windows or Linux tutorials.

In this tutorial, you learn how to:

e (Create an Azure Machine Learning module
e Push a module container to an Azure container registry
e Deploy an Azure Machine Learning module to your loT Edge device

e View generated data

The Azure Machine Learning module that you create in this tutorial reads the environmental data generated by
your device and labels the messages as anomalous or not.

Prerequisites

e The Azure loT Edge device that you created in the quickstart or first tutorial.
e The loT Hub connection string for the loT hub that your loT Edge device connects to.

e An Azure Machine Learning account. To create an account, follow the instructions in Create Azure Machine
Learning accounts and install Azure Machine Learning Workbench. You do not need to install the workbench
application for this tutorial.

e Module Management for Azure ML on your machine. To set up your environment and create an account, follow
the instructions in Model management setup.

The Azure Machine Learning module does not support ARM processors.

Create the Azure ML container

In this section, you download the trained model files and convert them into an Azure ML container.

On the machine running Module Management for Azure ML, download and save iot_score.py and model.pkl from
the Azure ML loT Toolkit on GitHub. These files define the trained machine learning model that you will deploy to
your lot Edge device.

Use the trained model to create a container that can be deployed to 10T Edge devices. Use the following command
to:

e Register your model.
o Create a manifest.
e Create a Docker container image named machinelearningmodule.

e Deploy the image to your Azure Kubernetes Service (AKS) cluster.

az ml service create realtime --model-file model.pkl -f iot_score.py -n machinelearningmodule -r python

View the container repository

Check that your container image was successfully created and stored in the Azure container repository that is
associated with your machine learning environment.

1. On the Azure portal, go to All Services and Select Container registries.

2. Select your registry. The name should start with mlcr and it belongs to the resource group, location, and
subscription that you used to set up Module Management.

3. Select Access keys

4. Copy the Login server, Username, and Password. You need these to access the registry from your Edge
devices.

5. Select Repositories
6. Select machinelearningmodule

7. You now have the full image path of the container. Take note of this image path for the next section. It should
look like this: <registry_name>.azureacr.io/machinelearningmodule:1

Add registry credentials to your Edge device

Add the credentials for your registry to the Edge runtime on the computer where you are running your Edge
device. This command gives the runtime access to pull the container.

Linux:

sudo iotedgectl login --address <registry-login-server> --username <registry-username> --password <registry-
password>

Windows:

iotedgectl login --address <registry-login-server> --username <registry-username> --password <registry-
password>

Run the solution

1. On the Azure portal, navigate to your loT hub.

2. Goto loT Edge (preview) and select your 10T Edge device.

3. Select Set modules.

4. If you've previously deployed the tempSensor module to your loT Edge device, it may autopopulate. If it's not
already in your list of modules, add it.

. Select Add loT Edge Module.

Q

b. Inthe Name field, enter tempSensor .
¢. Inthe Image URI field, enter microsoft/azureiotedge-simulated-temperature-sensor:1.@-preview .
d. Select Save.
5. Add the machine learning module that you created.
a. Select Add loT Edge Module.
b. Inthe Name field, enter machinelearningmodule
c¢. Inthe Image field, enter your image address; for example
<registry_name>.azurecr.io/machinelearningmodule:1 .
d. Select Save.
6. Back in the Add Modules step, select Next.

7. In the Specify Routes step, copy the JSON below into the text box. The first route transports messages
from the temperature sensor to the machine learning module via the "amlinput" endpoint, which is the

endpoint that all Azure Machine Learning modules use. The second route transports messages from the
machine learning module to 10T Hub. In this route, "amlOutput" is the endpoint that all Azure Machine
Learning modules use to output data, and '"$upstream'" denotes loT Hub.

"routes": {
"sensorToMachineLearning":"FROM /messages/modules/tempSensor/outputs/temperatureOutput INTO
BrokeredEndpoint(\"/modules/machinelearningmodule/inputs/amlInput\")",
"machineLearningToIoTHub": "FROM /messages/modules/machinelearningmodule/outputs/amlOutput INTO
$upstream”

}

8. Select Next.

9. In the Review Template step, select Submit.

10. Return to the device details page and select Refresh. You should see the new machinelearningmodule
running along with the tempSensor module and the 1oT Edge runtime modules.

View generated data

You can view the device-to-cloud messages that your |oT Edge device sends by using the IoT Hub explorer or the
Azure loT Toolkit extension for Visual Studio Code.

1. In Visual Studio Code, select loT Hub Devices.

2. Select ... then select Set loT Hub Connection String from the menu.

4 1OT HUB DEVICES

103

Prnov28-mi* & QO0AO0

3. In the text box that opens at the top of the page, enter the iothubowner connection string for your 1oT Hub.
Your loT Edge device should appear in the loT Hub Devices list.

4. Select ... again then select Start monitoring D2C message.

5. Observe the messages coming from tempSensor every five seconds. The message body contains a
property called anomaly which the machinelearningmodule provides with a true or false value. The
AzureMLResponse property contains the value "OK" if the model ran successfully.

OUTPUT Azure |oT Tooll ™

}

[IoTHubMonitor] Message received from [EdgeDevicel]:
I
L

\"2017-12-88T01:36:34.55648697\",
\"ambient\": {\"humidity\"™:

\"machine\": pressure\”
53.528228644842485}}"

\"anomaly\": false,
25, \"temperature\": 28.935821842133417},

1 4.704836174728881, \"temperature\”:

1
"applicationProperties”
"AzureMLResponse” :
i
}
[IoTHubMonitor] Message received from [EdgeDevicel]:
{
"body™:

"{\"timeCreated\": \"2817-12-88T01:36:39.5547564Z\", | \"anomaly\"
\“ambient\": {\"humidity\": 25, \"temperature\”:

20.73121880052202
\"machine\": {)

5
&y

{\"pressure\": 4.7985268668550887, \"temperature\":
54.27248249795821}}"

1.
"applicationProperties”
"AzureMLResponse” :

Next steps

In this tutorial, you deployed an loT Edge module powered by Azure Machine Learning. You can continue on to

any of the other tutorials to learn about other ways that Azure loT Edge can help you turn data into business
insights at the edge.

Deploy an Azure Function as a module

Deploy Azure Function as an loT Edge module -

preview

4/9/2018 « 7 min to read » Edit Online

You can use Azure Functions to deploy code that implements your business logic directly to your l1oT Edge
devices. This tutorial walks you through creating and deploying an Azure Function that filters sensor data on the
simulated |oT Edge device that you created in the Deploy Azure loT Edge on a simulated device on Windows or
Linux tutorials. In this tutorial, you learn how to:

e Use Visual Studio Code to create an Azure Function
e Use VS Code and Docker to create a Docker image and publish it to your registry
e Deploy the module to your loT Edge device

e View generated data

The Azure Function that you create in this tutorial filters the temperature data generated by your device and only
sends messages upstream to Azure loT Hub when the temperature is above a specified threshold.

Prerequisites

e The Azure loT Edge device that you created in the quickstart or previous tutorial.

e Visual Studio Code.

e C# for Visual Studio Code (powered by OmniSharp) extension.

e Azure loT Edge extension for Visual Studio Code.

e Docker. The Community Edition (CE) for your platform is sufficient for this tutorial.
e NET Core2.0SDK.

Create a container registry

In this tutorial, you use the Azure 10T Edge extension for VS Code to build a module and create a container
image from the files. Then you push this image to a registry that stores and manages your images. Finally, you
deploy your image from your registry to run on your loT Edge device.

You can use any Docker-compatible registry for this tutorial. Two popular Docker registry services available in the
cloud are Azure Container Registry and Docker Hub. This tutorial uses Azure Container Registry.

. Inthe Azure portal, select Create a resource > Containers > Azure Container Registry.

. Give your registry a name, choose a subscription, choose a resource group, and set the SKU to Basic.
. Select Create.

. Once your container registry is created, navigate to it and select Access keys.

. Toggle Admin user to Enable.

o U1 AW N

. Copy the values for Login server, Username, and Password. You'll use these values later in the tutorial.

Create a function project

The following steps show you how to create an 10T Edge function using Visual Studio Code and the Azure loT
Edge extension.

1. Open Visual Studio Code.

2. To open the VS Code integrated terminal, select View > Integrated Terminal.

. Toinstall (or update) the AzureloTEdgeFunction template in dotnet, run the following command in the
integrated terminal:

dotnet new -i Microsoft.Azure.IoT.Edge.Function

. Create a project for the new module. The following command creates the project folder, FilterFunction,
with your container repository. The second parameter should be in the form of

<your container registry name>.azurecr.io if you are using Azure container registry. Enter the following
command in the current working folder:

dotnet new aziotedgefunction -n FilterFunction -r <your container registry address>/filterfunction

. Select File > Open Folder, then browse to the FilterFunction folder and open the project in VS Code.

. In VS Code explorer, expand the EdgeHubTrigger-Csharp folder, then open the run.csx file.

. Replace the contents of the file with the following code:

#r "Microsoft.Azure.Devices.Client"
#r "Newtonsoft.Json"

using System.IO;
using Microsoft.Azure.Devices.Client;
using Newtonsoft.Json;

// Filter messages based on the temperature value in the body of the message and the temperature
threshold value.

public static async Task Run(Message messageReceived, IAsyncCollector<Message> output, TraceWriter
log)

{

const int temperatureThreshold = 25;
byte[] messageBytes = messageReceived.GetBytes();
var messageString = System.Text.Encoding.UTF8.GetString(messageBytes);

if (!string.IsNullOrEmpty(messageString))
{
// Get the body of the message and deserialize it
var messageBody = JsonConvert.DeserializeObject<MessageBody>(messageString);

if (messageBody != null && messageBody.machine.temperature > temperatureThreshold)
{
// Send the message to the output as the temperature value is greater than the threashold
var filteredMessage = new Message(messageBytes);
// Copy the properties of the original message into the new Message object
foreach (KeyValuePair<string, string> prop in messageReceived.Properties)
{
filteredMessage.Properties.Add(prop.Key, prop.Value); }
// Add a new property to the message to indicate it is an alert
filteredMessage.Properties.Add("MessageType", "Alert");
// Send the message
await output.AddAsync(filteredMessage);
log.Info("Received and transferred a message with temperature above the threshold");

//Define the expected schema for the body of incoming messages
class MessageBody

{
public Machine machine {get;set;}
public Ambient ambient {get; set;}
public string timeCreated {get; set;}
}
class Machine
{
public double temperature {get; set;}
public double pressure {get; set;}
}
class Ambient
{
public double temperature {get; set;}
public int humidity {get; set;}
}

8. Save thefile.

Create a Docker image and pubilish it to your registry

1. Sign in to Docker by entering the following command in the VS Code integrated terminal:

docker login -u <ACR username> -p <ACR password> <ACR login server>

To find the user name, password and login server to use in this command, go to the Azure portal. From All
resources, click the tile for your Azure container registry to open its properties, then click Access keys.
Copy the values in the Username, password, and Login server fields.

2. Open module.json. Optionally, you can update the "version" to eg."1.0". Also the name of the

repository is shown which you entered in the -r parameter of dotnet new aziotedgefunction .
3. Save the module.json file.

4. In VS Code explorer, Right-click the module.json file and click Build and Push loT Edge module
Docker image. In the pop-up dropdown box at the top of the VS Code window, select your container
platform, either amd64 for Linux container or windows-amd64 for Windows container. VS Code then
containerizes your function codes and push it to the container registry you specified.

5. You can get the full container image address with tag in the VS Code integrated terminal. For more
infomation about the build and push definition, you can refer to the module.json file.

Add registry credentials to your Edge device

Add the credentials for your registry to the Edge runtime on the computer where you are running your Edge
device. This gives the runtime access to pull the container.

e For Windows, run the following command:

iotedgectl login --address <your container registry address> --username <username> --password
<password>

e For Linux, run the following command:

sudo iotedgectl login --address <your container registry address> --username <username> --password
<password>

Run the solution

—_

. In the Azure portal, navigate to your loT hub.
. Goto loT Edge (preview) and select your 10T Edge device.
. Select Set Modules.

A WD

. If you've already deployed the tempSensor module to this device, it may be automatically populated. If not,
follow these steps to add it:

a. Select Add loT Edge Module.
b. In the Name field, enter tempsensor .
c. Inthe Image URI field, enter microsoft/azureiotedge-simulated-temperature-sensor:1.8-preview .
d. Leave the other settings unchanged and click Save.
5. Add the filterFunction module.
a. Select Add loT Edge Module again.
b. Inthe Name field, enter filterFunction .
c. Inthe Image URI field, enter your image address; for example
<your container registry address>/filterfunction:0.0.1-amde4 . The full image address can be found
from the previous section.
d. Click Save.
6. Click Next.

7. In the Specify Routes step, copy the JSON below into the text box. The first route transports messages
from the temperature sensor to the filter module via the "input1" endpoint. The second route transports
messages from the filter module to 10T Hub. In this route, $upstream is a special destination that tells Edge

Hub to send messages to |oT Hub.

"routes":{
"sensorToFilter":"FROM /messages/modules/tempSensor/outputs/temperatureOutput INTO
BrokeredEndpoint (\"/modules/filterFunction/inputs/input1\")",
"filterToIoTHub":"FROM /messages/modules/filterFunction/outputs/* INTO $upstream”

}

8. Click Next.

9. In the Review Template step, click Submit.

10. Return to the loT Edge device details page and click Refresh. You should see the new filterfunction module
running along with the tempSensor module and the loT Edge runtime.

View generated data
To monitor device to cloud messages sent from your [oT Edge device to your 10T hub:
1. Configure the Azure loT Toolkit extension with connection string for your loT hub:

a. In the Azure portal, navigate to your 10T hub and select Shared access policies.

b. Select iothubowner then copy the value of Connection string-primary key.

c. Inthe VS Code explorer, click IOT HUB DEVICES and then click

d. Select Set loT Hub Connection String and enter the lot Hub connection string in the pop-up window.

2. To monitor data arriving at the 10T hub, select the View > Command Palette... and search for loT: Start
monitoring D2C message.

3. To stop monitoring data, use the loT: Stop monitoring D2C message command in the Command Palette.

Next steps

In this tutorial, you created an Azure Function that contains code to filter raw data generated by your 10T Edge
device. To keep exploring Azure loT Edge, learn how to use an loT Edge device as a gateway.

Create an loT Edge gateway device

Create an loT Edge device that acts as a transparent

gateway - preview

4/24/2018 « 5 min to read ¢ Edit Online

This article provides detailed instructions for using an loT Edge device as a transparent gateway. For the rest of
this article, the term /oT Edge gateway refers to an |oT Edge device used as a transparent gateway. For more
detailed information, see How an loT Edge device can be used as a gateway, which gives a conceptual overview.

NOTE
Currently:

o [f the gateway is disconnected from loT Hub, downstream devices cannot authenticate with the gateway.

® |oT Edge devices cannot connect to loT Edge gateways.

Understand the Azure loT device SDK

The Edge hub that is installed in all IoT Edge devices exposes the following primitives to downstream devices:

e device-to-cloud and cloud-to-device messages
e direct methods

e device twin operations

Currently, downstream devices are not able to use file upload when connecting through an loT Edge gateway.
When you connect devices to an loT Edge gateway using the Azure loT device SDK, you need to:

e Set up the downstream device with a connection string referring to the gateway device hostname; and

e Make sure that the downstream device trusts the certificate used to accept the connection by the gateway
device.

When you install the Azure 10T Edge runtime using the control script, a certificate is created for the Edge hub, as
you did in the tutorial Install [oT Edge on a simulated device on Windows and Linux. This certificate is used by the
Edge hub to accept incoming TLS connections, and has to be trusted by the downstream device when connecting
to the gateway device.

You can create any certificate infrastructure that enables the trust required for your device-gateway topology. In
this article, we assume the same certificate setup that you would use to enable X.509 CA security in loT Hub,
which involves an X.509 CA certificate associated to a specific loT hub (the IoT hub owner CA), and a series of
certificates, signed with this CA, installed in the loT Edge devices.

IMPORTANT

Currently, loT Edge devices and downstream devices can only use SAS tokens to authenticate with 10T Hub. The certificates

will be used only to validate the TLS connection between the leaf and gateway device.

Our configuration uses 1oT hub owner CA as both:

e A signing certificate for the setup of the loT Edge runtime on all loT Edge devices; and

e A public key certificate installed in downstream devices.

This results in a solution that enables all devices to use any loT Edge device as a gateway, as long as they are
connected to the same |oT hub.

Create the certificates for test scenarios

You can use the sample Powershell and Bash scripts described in Managing CA Certificate Sample to generate a
self-signed loT hub owner CA and device certificates signed with it.

IMPORTANT

This sample is meant only for test purposes. For production scenarios, refer to Secure your loT deployment for the Azure loT
guidelines on how to secure your IoT solution, and provision your certificate accordingly.

1. Clone the Microsoft Azure loT SDKs and libraries for C from GitHub:
git clone -b modules-preview https://github.com/Azure/azure-iot-sdk-c.git

2. Toinstall the certificate scripts, follow the instructions in Step 1 - Initial Setup of Managing CA Certificate
Sample.

3. To generate the loT hub owner CA, follow the instructions in Step 2 - Create the certificate chain. This file
is used by the downstream devices to validate the connection.

4. To generate a certificate for your gateway device, use either the Bash or PowerShell instructions:

Bash

Create the new device certificate. DO NOT name the myGatewayCAName to be the same as your gateway host's
name. Doing so will cause client certification against these certs to fail.

./certGen.sh create_edge_device_certificate myGatewayCAName

New files are created: \certs\new-edge-device.* contains the public key and PFX, and \private\new-edge-
device.key.pem contains the device's private key.

Inthe certs directory, run the following command to get the full chain of the device public key:

cd ./certs
cat ./new-edge-device.cert.pem ./azure-iot-test-only.intermediate.cert.pem ./azure-iot-test-
only.root.ca.cert.pem > ./new-edge-device-full-chain.cert.pem

Powershell

Create the new device certificate:
New-CACertsEdgeDevice myGateway

New myEdgeDevice* files are created, which contain the public key, private key, and PFX of this certificate.

When prompted to enter a password during the signing process, enter "1234".

Configure a gateway device

In order to configure your loT Edge device as a gateway you just need to configure to use the device certificate
created in the previous section.

We assume the following file names from the sample scripts above:

OUTPUT FILE NAME

Device certificate certs/new-edge-device.cert.pem

Device private key private/new-edge-device.cert.pem

Device certificate chain certs/new-edge-device-full-chain.cert.pem
loT hub owner CA certs/azure-iot-test-only.root.ca.cert.pem

Provide the device and certificate information to the loT Edge runtime.

In Linux, using the Bash output:

sudo iotedgectl setup --connection-string {device connection string} \
--edge-hostname {gateway hostname, e.g. mygateway.contoso.com} \
--device-ca-cert-file {full path}/certs/new-edge-device.cert.pem \
--device-ca-chain-cert-file {full path}/certs/new-edge-device-full-chain.cert.pem \
--device-ca-private-key-file {full path}/private/new-edge-device.key.pem \
--owner-ca-cert-file {full path}/certs/azure-iot-test-only.root.ca.cert.pem

In Windows, using the PowerShell output:

iotedgectl setup --connection-string {device connection string}
--edge-hostname {gateway hostname, e.g. mygateway.contoso.com}
--device-ca-cert-file {full path}/certs/new-edge-device.cert.pem
--device-ca-chain-cert-file {full path}/certs/new-edge-device-full-chain.cert.pem
--device-ca-private-key-file {full path}/private/new-edge-device.key.pem
--owner-ca-cert-file {full path}/RootCA.pem

By default the sample scripts do not set a passphrase to the device private key. If you set a passphrase, add the
following parameter: --device-ca-passphrase {passphrase} .

The script prompts you to set a passphrase for the Edge Agent certificate. Restart the loT Edge runtime after this

command:

iotedgectl restart

Configure a downstream device

A downstream device can be any application using the Azure loT device SDK, such as the simple one described in
Connect your device to your loT hub using .NET.

First, a downstream device application has to trust the loT hub owner CA certificate in order to validate the TLS
connections to the gateway devices. This step can usually be performed in two ways: at the OS level, or (for certain
languages) at the application level.

For instance, for .NET applications, you can add the following snippet to trust a certificate in PEM format stored in
path certpath . Depending on which version of the script you used, the path references either

certs/azure-iot-test-only.root.ca.cert.pem (Bash) or RootcA.pem (Powershell)

using System.Security.Cryptography.X509Certificates;

X509Store store = new X509Store(StoreName.Root, StoreLocation.CurrentUser);
store.Open(OpenFlags.ReadWrite);

store.Add(new X509Certificate2(X509Certificate2.CreateFromCertFile(certPath)));
store.Close();

Performing this step at the OS level is different between Windows and across Linux distributions.

The second step is to initialize the loT Hub device sdk with a connection string referring to the hostname of the
gateway device. This is done by appending the GatewayHostName property to your device connection string. For

instance, here is a sample device connection string for a device, to which we appended the GatewayHostName

property:

HostName=yourHub.azure-devices-
int.net;Deviceld=yourDevice;SharedAccessKey=2BUaYca45uBS/01AsawsuQs1H4GX+SPkrytydWNdFxc=;GatewayHostName=mygat
eway.contoso.com

These two steps enable your device application to connect to the gateway device.

Next steps

Understand the requirements and tools for developing loT Edge modules.

Connect Modbus TCP devices through an loT Edge

device gateway - preview

1/4/2018 « 2 min to read « Edit Online

If you want to connect |oT devices that use Modbus TCP or RTU protocols to an Azure loT hub, use an loT Edge
device as a gateway. The gateway device reads data from your Modbus devices, then communicates that data to
the cloud using a supported protocol.

Modbus devices yourEdgeDevice
ol J Modbus
Madbus TCP/RTU 'i module
Devices
Telemetry
- yourEdgeDevice
AMGP f IL. ® @
Azure |loT Edge runtime

This article covers how to create your own container image for a Modbus module (or you can use a prebuilt
sample) and then deploy it to the 10T Edge device that will act as your gateway.

This article assumes that you're using Modbus TCP protocol. For more information about how to configure the
module to support Modbus RTU, refer to the Azure 10T Edge Modbus module project on Github.

Prerequisites

e An Azure loT Edge device. For a walkthrough on how to set up one, see Deploy Azure |oT Edge on a simulated
device in Windows or Linux.

e The primary key connection string for the loT Edge device.

e A physical or simulated Modbus device that supports Modbus TCP.

Prepare a Modbus container

If you want to test the Modbus gateway functionality, Microsoft has a sample module that you can use. To use the
sample module, go to the Run the solution section and enter the following as the Image URI:

microsoft/azureiotedge-modbus-tcp:1.0-preview

If you want to create your own module and customize it for your environment, there is an open source Azure 0T
Edge Modbus module project on Github. Follow the guidance in that project to create your own container image. If
you create your own container image, refer to Develop and deploy a C# |oT Edge module for instructions on
publishing container images to a registry, and deploying a custom module to your device.

Run the solution

1. On the Azure portal, go to your loT hub.
2. Goto loT Edge (preview) and select your |oT Edge device.

3. Select Set modules.

4. Add the Modbus module:

a. Select Add loT Edge module.
b. In the Name field, enter "modbus".

¢. Inthe Image field, enter the image URI of the sample container:

microsoft/azureiotedge-modbus-tcp:1.0-preview
d. Check the Enable box to update the module twin's desired properties.

e. Copy the following JSON into the text box. Change the value of SlaveConnection to the IPv4
address of your Modbus device.

{
"properties.desired":{
"PublishInterval":"2000",
"SlaveConfigs":{
"Slaveol":{

"SlaveConnection":"<IPV4 address>",
"HwId":"PowerMeter-0a:01:01:01:01:01",
"Operations":{

"0po1":{
"PollingInterval": "1000",
"UnitId":"1",
"StartAddress":"400001",
"Count":"2",
"DisplayName":"Voltage"

}

f. Select Save.

5. Back in the Add Modules step, select Next.

6. In the Specify Routes step, copy the following JSON into the text box. This route sends all messages
collected by the Modbus module to loT Hub. In this route, ""'modbusOutput" is the endpoint that Modbus
module use to output data, and "upstream" is a special destination that tells Edge Hub to send messages to
loT Hub.

{
"routes": {
"modbusToIoTHub":"FROM /messages/modules/modbus/outputs/modbusOutput INTO $upstream"

}
¥

7. Select Next.

8. In the Review Template step, select Submit.
9. Return to the device details page and select Refresh. You should see the new modbus running along with the
loT Edge runtime.

View data

View the data coming through the modbus module:

docker logs -f modbus

You can also view the telemetry the device is sending by using the loT Hub explorer tool.

Next steps

e To learn more about how 10T Edge devices can act as gateways, see Create an loT Edge device that acts as a
transparent gateway

e For more information about how |oT Edge modules work, see Understand Azure |oT Edge modules

Deploy modules to an loT Edge device using loT

extension for Azure CLI 2.0

4/25/2018 « 3 min to read ¢ Edit Online

Azure CLI 2.0 is an open-source cross platform command-line tool for managing Azure resources such as loT
Edge. Azure CLI 2.0 is available on Windows, Linux, and MacOS.

Azure CLI 2.0 enables you to manage Azure loT Hub resources, device provisioning service instances, and linked-
hubs out of the box. The new 10T extension enriches Azure CLI 2.0 with features such as device management and
full 1oT Edge capability.

In this article, you set up Azure CLI 2.0 and the loT extension. Then you learn how to deploy modules to an loT
Edge device using the available CLI commands.

Prerequisites
e An Azure account. If you don't have one yet, you can create a free account today.
e Python 2.7x or Python 3 .x.

e Azure CLI 2.0 in your environment. At a minimum, your Azure CLI 2.0 version must be 2.0.24 or above. Use
az --version to validate. This version supports az extension commands and introduces the Knack
command framework. One simple way to install on Windows is to download and install the MSI.

e The loT extension for Azure CLI 2.0:

1. Run az extension add --name azure-cli-iot-ext .

2. After installation, use az extension list to validate the currently installed extensions or

az extension show --name azure-cli-iot-ext to see details about the loT extension.

3. To remove the extension, use az extension remove --name azure-cli-iot-ext .

Create an loT Edge device

This article gives instructions to create an loT Edge deployment. The example shows you how to sign in to your
Azure account, create an Azure Resource Group (a container that holds related resources for an Azure solution),
create an loT Hub, create three |oT Edge devices identity, set tags and then create an |oT Edge deployment that
targets those devices.

Log in to your Azure account. After you enter the following login command, you're prompted to use a web browser
to sign in using a one-time code:

az login
Create a new resource group called loTHubCLI in the East US region:

az group create -1 eastus -n IoTHubCLI

rceGroup oTHubCLI™,

Create an |oT hub called CLIDemoHub in the newly created resource group:

az iot hub create --name CLIDemoHub --resource-group IoTHubCLI --sku S1

TIP

Each subscription is allotted one free IoT hub. To create a free hub with the CLI command, replace the SKU value with
--sku F1 . If you already have a free hub in your subscription, you'll get an error message when you try to create a second
one.

Create an loT Edge device:

az iot hub device-identity create --device-id edge@@l -hub-name CLIDemoHub --edge-enabled

01 -n CLIDemoHub --edge-enabled

null
humbprint™: null

1-01-01TOO:00:00",

Configure the loT Edge device

Create a deployment JSON template, and save it locally as a txt file. You will need the path to the file when you run
the apply-configuration command.

Deployment JSON templates should always include the two system modules, edgeAgent and edgeHub. In addition
to those two, you can use this file to deploy additional modules to the loT Edge device. Use the following sample to
configure you loT Edge device with one tempSensor module:

"moduleContent": {
"$edgeAgent”: {
"properties.desired": {
"schemaVersion": "1.0",
"runtime": {
"type": "docker",
"settings": {
"minDockerVersion": "v1.25",
"loggingOptions": ""
}
s
"systemModules": {
"edgeAgent": {
"type": "docker",
"settings": {

"image": "microsoft/azureiotedge-agent:1.0-preview",
"createOptions": "{}"
}
I3
"edgeHub": {
"type": "docker",
"status": "running",
"restartPolicy": "always",
"settings": {
"image": "microsoft/azureiotedge-hub:1.0-preview",
"createOptions": "{}"
}
}

IS
"modules": {
"tempSensor": {
"version": "1.0",
"type": "docker",
"status": "running",
"restartPolicy": "always",
"settings": {
"image": "microsoft/azureiotedge-simulated-temperature-sensor:1.0-preview",
"createOptions": "{}"

¥
b
"$edgeHub": {
"properties.desired": {
"schemaVersion": "1.0",
"routes": {},
"storeAndForwardConfiguration": {
"timeTolLiveSecs": 7200

¥
})

"tempSensor": {
"properties.desired": {}

Apply the configuration to your loT Edge device:

az iot hub apply-configuration --device-id edge@@l --hub-name CLIDemoHub --content C:\<configuration.txt file
path>

View the modules on your loT Edge device:

az iot hub module-identity list --device-id edge@0l --hub-name CLIDemoHub

vice-id edge00l --hub-name CL

Next steps

e Learn how to use an loT Edge device as a gateway

Deploy and monitor loT Edge modules at scale -

preview

5/7/2018 « 7 min to read « Edit Online

Azure |oT Edge enables you to move analytics to the edge and provides a cloud interface so that you can manage
and monitor your loT Edge devices without having to physically access each one. The capability to remotely
manage devices is increasingly important as Internet of Things solutions are growing larger and more complex.
Azure loT Edge is designed to support your business goals, no matter how many devices you add.

You can manage individual devices and deploy modules to them one at a time. However, if you want to make
changes to devices at a large scale, you can create an loT Edge automatic deployment, which is part of
Automatic Device Management in loT Hub. Deployments are dynamic processes that enable you to deploy
multiple modules to multiple devices at once, track the status and health of the modules, and make changes when
necessary.

|dentify devices using tags

Before you can create a deployment, you have to be able to specify which devices you want to affect. Azure loT
Edge identifies devices using tags in the device twin. Each device can have multiple tags, and you can define them
any way that makes sense for your solution. For example, if you manage a campus of smart buildings, you may
add the following tags to a device:

"tags":{
"location":{
"building": "20",

"Floor": "2"
1

"roomtype": "conference",
"environment”: "prod"

For more information about device twins and tags, see Understand and use device twins in loT Hub.

Create a deployment

1. In the Azure portal, go to your loT hub.
2. Select loT Edge (preview).
3. Select Add loT Edge Deployment.

There are five steps to create a deployment. The following sections walk through each one.

Step 1: Name and Label

1. Give your deployment a unique name. Avoid spaces and the following invalid characters:
EALTI{YNT <>/,

2. Add labels to help track your deployments. Labels are Name, Value pairs that describe your deployment. For
example, HostPlatform, Linux Or Version, 3.0.1 .

3. Select Next to move to step two.

Step 2: Add Modules (optional)

There are two types of modules that you can add to a deployment. The first is a module based off of an Azure

service, like Storage Account or Stream Analytics. The second is a module based off of your own code. You can add
multiple modules of either type to a deployment.

If you create a deployment with no modules, it removes any existing modules from the devices.

NOTE

Azure Machine Learning and Azure Functions don't support the automated Azure service deployment yet. Use the custom
module deployment to manually add those services to your deployment.

To add a module from Azure Stream Analytics, follow these steps:

1. Select Import Azure Stream Analytics loT Edge module.
2. Use the drop-down menus to select the Azure service instances that you want to deploy.

3. Select Save to add your module to the deployment.

To add custom code as a module, or to manually add an Azure service module, follow these steps:

1. Select Add loT Edge module.

2. Give your module a Name.

3. For the Image URI field, enter the Docker container image for your module.
4

. Specify any Container Create Options that should be passed to the container. For more information, see
docker create.

5. Use the drop-down menu to select a Restart policy. Choose from the following options:
e Always - The module always restarts if it shuts down for any reason.
e Never - The module never restarts if it shuts down for any reason.
e On-failed - The module restarts if it crashes, but not if it shuts down cleanly.

e On-unhealthy - The module restarts if it crashes or returns an unhealthy status. It's up to each module
to implement the health status function.

6. Use the drop-down menu to select the Desired Status for the module. Choose from the following options:
e Running - This is the default option. The module will start running immediately after being deployed.

e Stopped - After being deployed, the module will remain idle until called upon to start by you or another
module.

7. Select Enable if you want to add any tags or desired properties to the module twin.

8. Select Save to add your module to the deployment.
Once you have all the modules for a deployment configured, select Next to move to step three.

Step 3: Specify Routes (optional)

Routes define how modules communicate with each other within a deployment. Specify any routes for your
deployment, then select Next to move to step four.

Step 4: Target Devices

Use the tags property from your devices to target the specific devices that should receive this deployment.

Since multiple deployments may target the same device, you should give each deployment a priority number. If
there's ever a conflict, the deployment with the highest priority wins. If two deployments have the same priority
number, the one that was created most recently wins.

1. Enter a positive integer for the deployment Priority.

2. Enter a Target condition to determine which devices will be targeted with this deployment. The condition is
based on device twin tags and should match the expression format. For example, tags.environment="test' .

3. Select Next to move on to the final step.

Step 5: Review Template

Review your deployment information, then select Submit.

Monitor a deployment
To view the details of a deployment and monitor the devices running it, use the following steps:

1. Sign in to the Azure portal and navigate to your loT hub.
2. Select l1oT Edge (preview).
3. Select loT Edge deployments.

+ Add loT Edge Device I=: Add loT Edge Deployment 0 Refresh [Delete

Azure loT Edge enables cloud-driven deployment of Azure services and solution- 2
specific code to on-premise devices. loT Edge devices can aggregate data from
o other devices to perform computing and analytics before the data is sent to the
cloud. From this page, you can create and manage loT Edge devices and
deployments. Learn more about loT Edge.

loT Edge Devices | loT Edge Deployments

. ==p- @ |oT Edge Deployments
®

4. Inspect the deployment list. For each deployment, you can view the following details:

e ID - the name of the deployment.

e Target condition - the tag used to define targeted devices.

e Priority - the priority number assigned to the deployment.

o |oT Edge agent status - the number of devices that received the deployment, and their health statuses.
e Unhealthy modules - the number of modules in the deployment reporting errors.

e Creation time - the timestamp from when the deployment was created. This timestamp is used to
break ties when two deployments have the same priority.

5. Select the deployment that you want to monitor.

6. Inspect the deployment details. You can use tabs to view specific details about the devices that received the
deployment:

e Targeted - the Edge devices that match the target condition.
o Applied - the targeted Edge devices that are not targeted by another deployment of higher priority.

These are the devices that actually receive the deployment.

e Reporting success - the applied Edge devices that reported back to the service that the modules were
deployed successfully.

e Reporting failure - the applied Edge devices that reported back to the service that one or more
modules were not deployed successfully. To further investigate the error, you will need to connect

remotely to those devices and view the log files.

e Reporting unhealthy modules - the applied Edge devices that reported back to the service that one or
more modules were deployed successfully, but are now reporting errors.

Modify a deployment

When you modify a deployment, the changes immediately replicate to all targeted devices.
If you update the target condition, the following updates occur:

e [f a device didn't meet the old target condition, but meets the new target condition and this deployment is the
highest priority for that device, then this deployment is applied to the device.

e |f a device currently running this deployment no longer meets the target condition, it uninstalls this deployment
and takes on the next highest priority deployment.

e |f a device currently running this deployment no longer meets the target condition and doesn't meet the target
condition of any other deployments, then no change occurs on the device. The device continues running its
current modules in their current state, but is not managed as part of this deployment anymore. Once it meets
the target condition of any other deployment, it uninstalls this deployment and takes on the new one.

To modify a deployment, use the following steps:

1. Sign in to the Azure portal and navigate to your 10T hub.
2. Select 1oT Edge (preview).
3. Select loT Edge deployments.

+ Add loT Edge Device I=: Add loT Edge Deployment 0 Refresh [Delete

24

Azure loT Edge enables cloud-driven deployment of Azure services and solution-
specific code to on-premise devices. loT Edge devices can aggregate data from

o other devices to perform computing and analytics before the data is sent to the
cloud. From this page, you can create and manage loT Edge devices and
deployments. Learn more about loT Edge.

loT Edge Devices | loT Edge Deployments

. ==p- @ |oT Edge Deployments
®

4. Select the deployment that you want to modify.

5. Make updates to the following fields:
e Target condition
e Labels
e Priority

6. Select Save.

7. Follow the steps in Monitor a deployment to watch the changes roll out.

Delete a deployment

When you delete a deployment, any devices take on their next highest priority deployment. If your devices don't
meet the target condition of any other deployment, then the modules are not removed when the deployment is
deleted.

1. Sign in to the Azure portal and navigate to your 10T hub.
2. Select 1oT Edge (preview).
3. Select loT Edge deployments.

loT Edge Devices

+ Add loT Edge Device

I=: Add loT Edge Deployment

Azure loT Edge enables cloud-driven deployment of Azure services and solution-
specific code to on-premise devices. loT Edge devices can aggregate data from

o other devices to perform computing and analytics before the data is sent to the
cloud. From this page, you can create and manage loT Edge devices and
deployments. Learn more about loT Edge.

loT Edge Deployments

. ==p- @ |oT Edge Deployments

24

4. Use the checkbox to select the deployment that you want to delete.

5. Select Delete.

6. A prompt will inform you that this action will delete this deployment and revert to the previous state for all
devices. This means that a deployment with a lower priority will apply. If no other deployment is targeted, no
modules will be removed. If customers wish to do this, they need to create a deployment with zero modules
and deploy it to the same devices. Select Yes if you wish to continue.

Next steps

Learn more about Deploying modules to Edge devices.

Install the loT Edge runtime on Windows loT Core -

preview

3/6/2018 « 1 min to read « Edit Online

Azure loT Edge and Windows loT Core work together to enable edge computing on even small devices. The Azure
loT Edge Runtime can run even on tiny Single Board Computer (SBC) devices which are very prevalent in the loT
industry.

This article walks through provisioning the runtime on a MinnowBoard Turbot development board running
Windows loT Core. Windows loT Core supports Azure loT Edge only on Intel x64-based processors.

Install the runtime

1. Install Windows 10 loT Core Dashboard on a host system.

2. Follow the steps in Set up your device to configure your board with the MinnowBoard Turbot/MAX Build
16299 image.

3. Turn on the device, then login remotely with PowerShell.

4. In the PowerShell console, install the container runtime:

Invoke-WebRequest https://master.dockerproject.org/windows/x86_64/docker-0.0.0-dev.zip -o temp.zip
Expand-Archive .\temp.zip $env:ProgramFiles -f

Remove-Item .\temp.zip

$env:Path += ";$env:programfiles\docker"

SETX /M PATH "$env:Path"

dockerd --register-service

start-service docker

NOTE

This container runtime is from the Moby project build server, and is intended for evaluation purposes only. It's not
tested, endorsed, or supported by Docker.

5. Install the loT Edge runtime and verify your configuration:
Invoke-Expression (Invoke-WebRequest -useb https://aka.ms/iotedgewin)

This script provides the following:

e Python 3.6
e The loT Edge control script (iotedgectl.exe)

You may see informational output from the iotedgectl.exe tool in green in the remote PowerShell window. This
doesn't necessarily indicate errors.

Next steps

Now that you have a device running the loT Edge runtime, learn how to Deploy and monitor loT Edge modules at
scale.

Develop an IoT Edge solution with multiple modules

in Visual Studio Code - preview

4/9/2018 + 3 min to read ¢ Edit Online

You can use Visual Studio Code to develop your loT Edge solution with multiple modules. This article walks
through creating, updating, and deploying an loT Edge solution that pipes sensor data on the simulated loT Edge
device in Visual Studio Code. In this article, you learn how to:

Use Visual Studio Code to create an loT Edge solution

Use VS Code to add a new module to your working loT Edge solution.

Deploy the loT Edge solution (multiple modules) to your loT Edge device

e View generated data

Prerequisites

e Complete below tutorials
o Deploy C# module
o Deploy C# Function
o Deploy Python module

e Docker for VS Code with explorer integration for managing Images and Containers.

Prepare your first loT Edge solution

1. In VS Code command palette, type and run the command Edge: New loT Edge solution. Then select your
workspace folder, provide the solution name (The default name is EdgeSolution), and create a C# Module
(SampleModule) as the first user module in this solution. You also need to specify the Docker image
repository for your first module. The default image repository is based on a local Docker registry (

localhost:5000/<first module name>). You can also change it to Azure container registry or Docker Hub.

NOTE

If you are using a local Docker registry, please make sure the registry is running by typing the command

docker run -d -p 5000:5000 --restart=always --name registry registry:2 in your console window.

1. The VS Code window will load your loT Edge solution workspace. There is a modules folder, a .vscode
folder and a deployment manifest template file in the root folder. You can see debug configurations in
.vscode folder. All user module codes will be subfolders under the folder modules . The
deployment.template.json is the deployment manifest template. Some of the parameters in this file will be
parsed from the module.json , which exists in every module folder.

2. Add your second module into this solution project. This time type and run Edge: Add loT Edge module
and select the deployment template file to update. Then select an Azure Function - C# with name
SampleFunction and its Docker image repository to add.

3. Now your first loT Edge solution with two basic modules is ready. The default C# module acts as a pipe
message module while the C# Funtion acts as a pipe message function. In the deployment.template.json ,
you will see this solution contains three modules. The message will be generated from the tempsensor

module, and will be directly piped via sampleModule and SampleFunction , then sentto your loT hub. Update

the routes for these modules with below content.

"routes": {
"SensorToPipeModule": "FROM /messages/modules/tempSensor/outputs/temperatureOutput INTO
BrokeredEndpoint(\"/modules/SampleModule/inputs/input1\")",
"PipeModuleToPipeFunction™: "FROM /messages/modules/SampleModule/outputs/outputl INTO
BrokeredEndpoint(\"/modules/SampleFunction/inputs/input1\")",
"PipeFunctionToIoTHub": "FROM /messages/modules/SampleFunction/outputs/outputl INTO $upstream"
1

4. Save this file.

Build and deploy your IoT Edge solution

1. In VS Code command palette, type and run the command Edge: Build lIoT Edge solution. Based on the
module.json file in each module folder, this command will check and start to build, containerize and push
each module docker image. Then it will parse the required value to deployment.template.json , generate the
deployment.json with actual value under config folder. You can see the build progress in VS Code
integrated terminal.

2. In Azure l1oT Hub Devices explorer, right-click an 10T Edge device ID, then select Create deployment for
Edge device. Select the deployment.json under config folder. Then you can see the deploymentis
successfully created with a deployment ID in VS Code integrated terminal.

3. If you are simulating an loT Edge device on your development machine. You will see that all the module
image containers will be started in a few minutes.

View generated data

1. To monitor data arriving at the [oT hub, select the View > Command Palette... and search for loT: Start
monitoring D2C message.

2. To stop monitoring data, use the loT: Stop monitoring D2C message command in the Command Palette.

Next steps

You can continue on to either of the following articles to learn about other scenarios when developing Azure loT
Edge in Visual Studio Code:

e Debuga C# modulein VS Code
® Debug a C# Function in VS Code

Use Visual Studio Code to debug a C# module with

Azure |oT Edge

5/2/2018 « 2 min to read ¢ Edit Online

This article provides detailed instructions for using Visual Studio Code as the main development tool to debug
your Azure loT Edge modules.

Prerequisites

This article assumes that you are using a computer or virtual machine running Windows or Linux as your
development machine. Your 10T Edge device can be another physical device, or you can simulate your loT Edge
device on your development machine.

NOTE

You can only debug C# module in linux-amd64 containers.

Before following the guidance in this article, complete the steps in Develop an loT Edge solution with multiple
modules in Visual Studio Code. After that, you should have the following items ready:

e A local Docker registry running on your development machine. It is suggested to use a local Docker registry for
prototype and testing purpose. You can update the container registry in the module.json file in each module
folder.

e An loT Edge solution project workspace with a C# module subfolder in it.
® The Pprogram.cs file, with the latest module code.

e An Edge runtime running on your development machine.

Build your loT Edge C# module for debugging

1. To start debugging, you need to use the Dockerfile.amd64.debug to rebuild your docker image and
deploy your Edge solution again. In VS Code explorer, navigate to deployment.template.json file. Update
your function image URL by adding a .debug in the end.

2. Rebuild your solution. In VS Code command palette, type and run the command Edge: Build loT Edge
solution.

3. In Azure loT Hub Devices explorer, right-click an 10T Edge device ID, then select Create deployment for
Edge device. Select the deployment.json under config folder. Then you can see the deployment is
successfully created with a deployment ID in VS Code integrated terminal.

NOTE

You can check your container status in the VS Code Docker explorer or by run the docker images command in the

terminal.

Start debugging C# module in VS Code

1. VS Code keeps debugging configuration information in a 1aunch.json file located ina .vscode folderin

your workspace. This launch.json file has been generated when creating a new loT Edge solution. And it
will be updated each time you add a new module that support debugging. Navigate to the debug view and
select the corresponding debug configuration file.

lj\l DEBUG P Debug loT Edge Module csharj | 4 | {3}

4 VARIABLES

2. Navigate to program.cs . Add a breakpoint in this file.
3. Click Start Debugging button or press F5, and select the process to attach to.

4. In VS Code Debug view, you can see the variables in left panel.

NOTE

The preceding example shows how to debug .NET Core IoT Edge modules on containers. It's based on the debug version of
the Dockerfile.debug , which includes VSDBG (the .NET Core command-line debugger) in your container image while
building it. After you finish debugging your C# modules, we recommend you directly use or customize Dockerfile without
VSDBG for production-ready loT Edge modules.

Next steps

Use Visual Studio Code to debug Azure Functions with Azure loT Edge

Use Visual Studio Code to debug Azure Functions

with Azure loT Edge

5/2/2018 « 2 min to read « Edit Online

This article provides detailed instructions for using Visual Studio Code as the main development tool to debug
your Azure Functions on |oT Edge.

Prerequisites

This article assumes that you are using a computer or virtual machine running Windows or Linux as your
development machine. Your loT Edge device could be another physical device or you can simulate your loT Edge
device on your development machine.

NOTE

You can only debug C# Functions in linux-amd64 containers.

Before following the guidance in this article, complete the steps in Develop an loT Edge solution with multiple
modules in Visual Studio Code. After that, you should have the following items ready:

e A local Docker registry running on your development machine. It is suggested to use a local Docker registry for
prototype and testing purpose. You can update the container registry in the module.json file in each module
folder.

e An loT Edge solution project workspace with an Azure Function module subfolder in it.
® The run.csx file with your function code.

e An Edge runtime running on your development machine.

Build your loT Edge Function module for debugging purpose

1. To start debugging, you need to use the Dockerfile.amd64.debug to rebuild your docker image and
deploy your Edge solution again. In VS Code explorer, navigate to deployment.template.json file. Update
your function image URL by adding a .debug in the end.

"SampleFunction": {
"version": "1.0",
"type": "docker",
"status": "running“,

"restartPolicy": "always",

"settings": {
"image": "${MODULES.SampleFunction.amd64.debug}",
"createOptions": ""

2. Rebuild your solution. In VS Code command palette, type and run the command Edge: Build loT Edge
solution.

3. In Azure loT Hub Devices explorer, right-click an loT Edge device ID, then select Create deployment for
Edge device. Select the deployment.json under config folder. Then you can see the deploymentis
successfully created with a deployment ID in VS Code integrated terminal.

NOTE
You can check your container status in the VS Code Docker explorer or by run the docker images command in the

terminal.

Start debugging C# Function in VS Code

1. VS Code keeps debugging configuration information in a launch.json file locatedina .vscode folderin
your workspace. This launch.json file has been generated when creating a new loT Edge solution. And it
will be updated each time you add a new module that support debugging. Navigate to the debug view and

select the corresponding debug configuration file.

ljl DEBUG P Debug loT Edge Module csharj | 4 | {}

4 VARIABLES

2. Navigate to run.csx . Add a breakpoint in the function.
3. Click Start Debugging button or press F5, and select the process to attach to.

4. In VS Code Debug view, you can see the variables in left panel.

NOTE

Above example shows how to debugging .Net Core loT Edge Function on containers. It's based on the debug version of the
Dockerfile.amd64.debug , which includes VSDBG(the .NET Core command-line debugger) in your container image while
building it. We recommend you directly use or customize the Dockerfile without VSDBG for production-ready loT Edge

function after you finish debugging your C# function.

Next steps

Use Visual Studio Code to debug a C# module with Azure loT Edge

Continuous integration and continuous deployment

to Azure |oT Edge - preview

4/30/2018 + 11 min to read ¢ Edit Online

This tutorial demonstrates how you can use the continuous integration and continuous deployment features of
Visual Studio Team Services (VSTS) and Microsoft Team Foundation Server (TFS) to build, test, and deploy
applications quickly and efficiently to your Azure loT Edge.

In this tutorial, you will learn how to:

e Create and check in a sample loT Edge solution containing unit tests.
e |nstall Azure loT Edge extension for your VSTS.
e Configure continuous integration (Cl) to build the solution and run the unit tests.

e Configure continuous deployment (CD) to deploy the solution and view responses.

It will take 30 minutes to complete this tutorial.

Deployto |-
Prod Device(s) q°* ﬁ

Deploy to Deploy to
Dev Device(s) E Dev Device(s) -/ 2
Merged Merged
Dev-1 A Dev-1
e e o 0000 o—o—o—c;

Master Branch

. Commit

Continuous Integration

@ Pull Request

[£] 1oT Edge Device

Dev-2

Create a sample Azure 10T Edge solution using Visual Studio Code

In this section, you will create a sample |oT Edge solution containing unit tests that you can execute as part of the
build process. Before following the guidance in this section, complete the steps in Develop an loT Edge solution
with multiple modules in Visual Studio Code.

1. In VS Code command palette, type and run the command Edge: New loT Edge solution. Then select your
workspace folder, provide the solution name (The default name is EdgeSolution), and create a C# Module
(FilterModule) as the first user module in this solution. You also need to specify the Docker image
repository for your first module. The default image repository is based on a local Docker registry (

localhost:5000/filtermodule). You need to change it to Azure Container Registry(
<your container registry address>/filtermodule) or Docker Hub for further continuous integration.

xshiacr.azurecr.ioffiltermodule

Provide Docker Image Repository for the Module (Press ‘Enter” to confirm or "Escape’ to cancel)

2. The VS Code window will load your loT Edge solution workspace. You can optionally type and run Edge:
Add l1oT Edge module to add more modules. There is a modules folder,a .vscode folder, and a

deployment manifest template file in the root folder. All user module codes will be subfolders under the

folder modules

. The deployment.template.json is the deployment manifest template. Some of the

parameters in this file will be parsed from the module.json , which exists in every module folder.

Now your sample loT Edge solution is ready. The default C# module acts as a pipe message module. In the

deployment.template.json , you will see this solution contains two modules. The message will be generated

from the tempsensor module, and will be directly piped via FilterModule , then sent to your loT hub.

Replace the entire Program.cs file with below content. For more information about this code snippet, you

can refer to Create an loT Edge C# module project.

namespace FilterModule

{

using System;

using System.IO;
using System.Runtime.InteropServices;
using System.Runtime.Loader;

using System.Security.Cryptography.X509Certificates;
using System.Text;
using System.Threading;

using System.Threading.Tasks;

using Microsoft.Azure.Devices.Client;
using Microsoft.Azure.Devices.Client.Transport.Mqtt;

using System.Collections.Generic; // for KeyValuePair<>

using Microsoft.Azure.Devices.Shared; // for TwinCollection
using Newtonsoft.Json; // for JsonConvert

public class MessageBody

{

public Machine machine { get; set; }

public Ambient ambient { get; set; }
public string timeCreated { get; set; }

}

public class Machine

{

public double temperature { get; set; }
public double pressure { get; set; }

}

public class Ambient

{

public double temperature { get; set; }
public int humidity { get; set; }

public class Program

{

static int counter;

static int temperatureThreshold { get; set; } = 25;

static void Main(string[] args)

{

environment

// The Edge runtime gives us the connection string we need -- it is injected as an
variable
string connectionString = Environment.GetEnvironmentVariable("EdgeHubConnectionString");

// Cert verification is not yet fully functional when using Windows OS for the container
bool bypassCertVerification = RuntimeInformation.IsOSPlatform(OSPlatform.Windows);

if (!bypassCertVerification) InstallCert();

Init(connectionString, bypassCertVerification).Wait();

// Wait until the app unloads or is cancelled

var cts = new CancellationTokenSource();
AssemblylLoadContext.Default.Unloading += (ctx) => cts.Cancel();
Console.CancelKeyPress += (sender, cpe) => cts.Cancel();
WhenCancelled(cts.Token).Wait();

/// <summary>

/// Handles cleanup operations when app is cancelled or unloads

/// </summary>

public static Task WhenCancelled(CancellationToken cancellationToken)

{
var tcs = new TaskCompletionSource<bool>();
cancellationToken.Register(s => ((TaskCompletionSource<bool>)s).SetResult(true), tcs);
return tcs.Task;

}

/// <summary>

/// Add certificate in local cert store for use by client for secure connection to IoT Edge
runtime

/// </summary>

static void InstallCert()

{

string certPath = Environment.GetEnvironmentVariable("EdgeModuleCACertificateFile");

if (string.IsNullOrWhiteSpace(certPath))

{
// We cannot proceed further without a proper cert file
Console.WriteLine($"Missing path to certificate collection file: {certPath}");
throw new InvalidOperationException("Missing path to certificate file.");

}

else if (!File.Exists(certPath))

{
// We cannot proceed further without a proper cert file
Console.WriteLine($"Missing path to certificate collection file: {certPath}");
throw new InvalidOperationException("Missing certificate file.");

}

X509Store store = new X509Store(StoreName.Root, StoreLocation.CurrentUser);

store.Open(OpenFlags.ReadWrite);

store.Add(new X509Certificate2(X509Certificate2.CreateFromCertFile(certPath)));

Console.WriteLine("Added Cert: " + certPath);

store.Close();

}

/// <summary>

/// Initializes the DeviceClient and sets up the callback to receive

/// messages containing temperature information

/// </summary>

static async Task Init(string connectionString, bool bypassCertVerification = false)

{

Console.WriteLine("Connection String {0}", connectionString);

MgttTransportSettings mqttSetting = new MqgttTransportSettings(TransportType.Mgtt_Tcp_Only);

// During dev you might want to bypass the cert verification. It is highly recommended to
verify certs systematically in production

if (bypassCertVerification)

{

mgttSetting.RemoteCertificatevalidationCallback = (sender, certificate, chain,

sslPolicyErrors) => true;

}

ITransportSettings[] settings = { mqttSetting };

// Open a connection to the Edge runtime

DeviceClient ioTHubModuleClient = DeviceClient.CreateFromConnectionString(connectionString,
settings);

await ioTHubModuleClient.OpenAsync();

Console.WriteLine("IoT Hub module client initialized.");

// Register callback to be called when a message is received by the module
// await ioTHubModuleClient.SetImputMessageHandlerAsync("inputl", PipeMessage,
iotHubModuleClient);

// Read TemperatureThreshold from Module Twin Desired Properties
var moduleTwin = await ioTHubModuleClient.GetTwinAsync();
var moduleTwinCollection = moduleTwin.Properties.Desired;
try {
temperatureThreshold = moduleTwinCollection["TemperatureThreshold"];

1 ,matrh/ Anmiman +A+NLD A AL ~Aant S An)

J LALUII(AIBUNIEIILUULUI NAIIBECALEPLLUIL) |

Console.WriteLine("Proerty TemperatureThreshold not exist");

// Attach callback for Twin desired properties updates
await ioTHubModuleClient.SetDesiredPropertyUpdateCallbackAsync(onDesiredPropertiesUpdate,
null);

// Register callback to be called when a message is received by the module
await ioTHubModuleClient.SetInputMessageHandlerAsync("inputl", FilterMessages,
ioTHubModuleClient);

}
static Task onDesiredPropertiesUpdate(TwinCollection desiredProperties, object userContext)
{
try
{
Console.WriteLine("Desired property change:");
Console.WriteLine(JsonConvert.SerializeObject(desiredProperties));
if (desiredProperties["TemperatureThreshold"] != null)
temperatureThreshold = desiredProperties["TemperatureThreshold"];
}
catch (AggregateException ex)
{
foreach (Exception exception in ex.InnerExceptions)
{
Console.WriteLine();
Console.WriteLine("Error when receiving desired property: {@}", exception);
}
}
catch (Exception ex)
{
Console.WriteLine();
Console.WriteLine("Error when receiving desired property: {0}", ex.Message);
}
return Task.CompletedTask;
}
public static Message filter(Message message)
{
var counterValue = Interlocked.Increment(ref counter);
var messageBytes = message.GetBytes();
var messageString = Encoding.UTF8.GetString(messageBytes);
Console.WriteLine($"Received message {counterValue}: [{messageString}]");
// Get message body
var messageBody = JsonConvert.DeserializeObject<MessageBody>(messageString);
if (messageBody != null && messageBody.machine.temperature > temperatureThreshold)
{
Console.WriteLine($"Machine temperature {messageBody.machine.temperature} " +
$"exceeds threshold {temperatureThreshold}");
var filteredMessage = new Message(messageBytes);
foreach (KeyValuePair<string, string> prop in message.Properties)
{
filteredMessage.Properties.Add(prop.Key, prop.Value);
}
filteredMessage.Properties.Add("MessageType", "Alert");
return filteredMessage;
}
return null;
}

static async Task<MessageResponse> FilterMessages(Message message, object userContext)

{

try

{
DeviceClient deviceClient = (DeviceClient)userContext;
var filteredMessage = filter(message);
if (filteredMessage != null)
{
await deviceClient.SendEventAsync("outputl”, filteredMessage);
}
// Indicate that the message treatment is completed
return MessageResponse.Completed;
}
catch (AggregateException ex)
{
foreach (Exception exception in ex.InnerExceptions)
{
Console.WriteLine();
Console.WriteLine("Error in sample: {@}", exception);
}
// Indicate that the message treatment is not completed
var deviceClient = (DeviceClient)userContext;
return MessageResponse.Abandoned;
}
catch (Exception ex)
{
Console.WriteLine();
Console.WriteLine("Error in sample: {@}", ex.Message);
// Indicate that the message treatment is not completed
DeviceClient deviceClient = (DeviceClient)userContext;
return MessageResponse.Abandoned;
}

4. Create a .Net Core unit test project. In VS Code file explorer, create a new folder tests\FilterModuleTest in
your workspace. Then in VS Code integrated terminal (Ctrl + °), run following commands to create a xunit
test project and add reference to the FilterModule project.

cd tests\FilterModuleTest
dotnet new xunit
dotnet add reference ../../modules/FilterModule/FilterModule.csproj

EDGESOLUTION

e

4 tests
4 FilterModuleTest
b obj
FilterModuleTest.csproj
UnitTest1.cs
.gitignore

{} deployment.template.json

5. In the FilterModuleTest folder, update the file name of UnitTest1.cs to FilterModuleTest.cs. Select and
open FilterModuleTest.cs, replace the entire code with below code snippet, which contains the unit tests
against the FilterModule project.

using Xunit;

usine FilterModule:

using Newtonsoft.Json;

using System;

using System.IO;

using System.Runtime.InteropServices;

using System.Runtime.Loader;

using System.Security.Cryptography.X509Certificates;
using System.Text;

using System.Threading;

using System.Threading.Tasks;

using Microsoft.Azure.Devices.Client;

using Microsoft.Azure.Devices.Client.Transport.Mqtt;

namespace FilterModuleTest

{
public class FilterModuleTest
{
[Fact]
public void filterLessThanThresholdTest()
{

var source = createMessage(25 - 1);
var result = Program.filter(source);

Assert.True(result == null);
}
[Fact]
public void filterMoreThanThresholdAlertPropertyTest()
{
var source = createMessage(25 + 1);
var result = Program.filter(source);
Assert.True(result.Properties["MessageType"] == "Alert");
}
[Fact]
public void filterMoreThanThresholdCopyPropertyTest()
{
var source = createMessage(25 + 1);
source.Properties.Add("customTestKey", "customTestValue");
var result = Program.filter(source);
Assert.True(result.Properties["customTestKey"] == "customTestValue");
}
private Message createMessage(int temperature)
{
var messageBody = createMessageBody(temperature);
var messageString = JsonConvert.SerializeObject(messageBody);
var messageBytes = Encoding.UTF8.GetBytes(messageString);
return new Message(messageBytes);
}
private MessageBody createMessageBody(int temperature)
{
var messageBody = new MessageBody
{
machine = new Machine
{
temperature = temperature,
pressure = 0
s
ambient = new Ambient
{
temperature = 0,
humidity = @
1
timeCreated = string.Format("{0:0}", DateTime.Now)
};

return messageBody;

6. In integrated terminal, you can enter following commands to run unit tests locally.

dotnet test

PS D:‘\Workspaces\Edge-test\@8425\EdgeSolution\tests\FilterModuleTest> dotnet test
Build started, please wait...
Build completed.

duleTest\bin\Debug\netcoreapp2.@\FilterModuleTest.d11{.NETCorefpp,Version=v2.8)
86109-81
ation. All rights reserved.

ution, please wait...
6496] Dis

Starting:
:81.00896808] Finished:

7. Save these projects, then check it into your VSTS or TFS repository.

NOTE

For more information about using VSTS code repositories, see Share your code with Visual Studio and VSTS Git.

Configure continuous integration

In this section, you will create a build definition that is configured to run automatically when you check in any
changes to the sample loT Edge solution, and it will automatically execute the unit tests it contains.

1. Sign into your VSTS account (https://your-account.visualstudio.com) and open the project where you
checked in the sample app.

f:j MytFirstProject / MyFirst... ~ Dashboards Code Work Build and Release Test Wiki

4 EdgeSolution ~ Files Commits Pushes Branches Tags Pull Requests

¥ master v EdgeSolution / Type to find a file or folder..

Contents History
4 EdgeSolution ——

Mame T Last change Commits
vscode
modules/FilterModule vscode 5 minutes ago d84dcE4s init Xin Shi
» tests/FilterModuleTest modules/FilterMadule 5 minutes ago d84dcB48 init Xin Shi
[.gitignore tests/FilterModuleTest 5 minutes ago d84dcads init Xin Shi
{} deployment.template json [.gitignore 5 minutes ago d84dc84a8 init Xin Shi
{1 deployment.template json 5 minutes ago dsddcads init Xin Shi

2. Visit Azure loT Edge For VSTS on VSTS Marketplace. Click Get it free and follow the wizard to install this
extension to your VSTS account or download to your TFS.

b Visual Studio | Marketplace

& Account Dane

Azure loT Edge For Select a Visual Studio Team Services account
VSTS

For Team Foundation Server

Download

3. Inyour VSTS, open the Build & Release hub and, in the Builds tab, choose + New definition. Or, if you
already have build definitions, choose the + New button.

G MyFirstProject / MyFirst.. Dashboards Code Work Build and Release Test

Builds Releases Library Task Groups Deployment Groups Builds

) o Releases
Build Definitions
Library

Mine Definitions Queued
. Task Groups

You can use a build definition to automate your Deployment Groups

The MyFirstProject team project doesn't have any build definitions.

~+ New definition (@ Get started

4. If prompted, select the VSTS Git source type; then select the project, repository, and branch where your

code is located. Choose Continue.

Select a source

40 o =

VSTS Git GitHub GitHub Enterprise Subwversion

Team project

=1 MyFirstProject v
Repository
4> EdgeSolution v

Default branch for manual and scheduled builds

£ master v

Continue

5. In Select a template window, choose start with an Empty process.

Select a template

Or start with an} @& Empty process

6. Click + on the right side of Phase 1 to add a task to the phase. Then search and select .Net Core, and click
Add to add this task to the phase.

Process

B ce: 0O
P Add tasks) Refresh # Search

z= Get sources
o4 EdgeSolution § master

All Build UHility Test Package Deploy Tool Marketplace

Phase 1
& Runonagent
= .NET Core

Build, test package, or publish a dotnet
application, or run a custom dotnet command.
For packsge commands, supports NuGetorg
and authenticated feeds like Package
Management and MyGet.

datnet|

7. Update the Display name to dotnet test, and in the Command dropdown list, select test. Add below path
to the Path to project(s).

tests/FilterModuleTest/*.csproj

Process
Build process NET Core ® @ Link settings X Remove

{1 *
z= Get sources Version 2. v

" o4 EdgeSolution % master

Display name *

Phase 1 +
& Runon agent dotnet test
5 i Command* @
[dotnet test Qi
{NET Core e

test ~

Path to project(s) @

tests/FilterModuleTest/*.cspra

8. Click + on the right side of Phase 1 to add a task to the phase. Then search and select Azure loT Edge, and
click Add button twice to add these tasks to the phase.

Process
Build process :
s Add tasks) Refresh Azure loT Edge j

z= Get sources
o] EdgeSolution §¥ master

E: Azure loT Edge
=
Phase 1 - Azure loT Edge
5 Run on agent
dotnet test “

NET Core

dotnet|

9. In the first Azure loT Edge task, update the Display name to Module Build and Push, and in the Action
dropdown list, select Build and Push. In the Module.json File textbox, add below path to it. Then choose
Container Registry Type, make sure you configure and select the same registry in your code. This task will
build and push all your modules in the solution and publish to the container registry you specified.

**/module.json

Process = *
Build pracess Azure loT Edge @ @ Link settings X Remove
== Get sources Version 0 ~
»d EdgeSolution ¥ master
Display name *
Phase 1 4

B Runon agent Module Build and Push

Action* (@

| dotnet test
Core

NET Build and Push modules

a8 Module Build and Push °

Azure loT Edge

Modulejson File* @
**/module.json
Azure loT Edge - Build and Push modules .
Azure loT Edge B
q <

Container Registry Type * (@

Azure Container Registry

Zure subscription (i)} Manage
A bscription @ | Manage

Azure Container Registry @

| v] ©

10. In the second Azure loT Edge task, update the Display name to Deploy to loT Edge device, and in the
Action dropdown list, select Deploy to loT Edge device. Select your Azure subscription and input your
IoT Hub name. You can specify an loT Edge deployment ID and the deployment priority. You can also
choose to deploy to single or multiple devices. If you are deploying to multiple devices, you need to specify
the device target condition. For example, if you want to use device Tags as the condition, you need to update

your corresponding devices Tags before the deployment.

Process
Build process

<= Get sources

v EdgeSolution ¥ master

Phase 1
& Runonagent

dotnet test
o
NET Care

E Module Build and Push

Azure IoT Edge

E Deploy to loT Edge device

Azure IT Edge

Azure loT Edge @

Version 0% ~

Display name *

X Remove

Deploy to loT Edge device

Action* @

Deploy to loT Edge devices

Azure subscription contains loT Hub* (@ | Manage L

loT Hub name* @

loT Edge Deployment ID* (@

vsts-deployment-0

loT Edge Deployment priority * (@

| o

Choose single/multiple device * (@

Single Device

loT Edge device ID* (@

edge-test

Advanced ~~
Control Options ~

Output Variables ~

11. Click the Process and make sure your Agent queue is Hosted Linux Preview.

Process
Bulld process

== Get sources

o EdgeSolution ¥ master

Phase 1

& Run on agent

dotnet test
NET Core

E Module Build and Push

Azure loT Edge

E Deploy to loT Edge device

Azure loT Edge

L]

Name *

‘ loTEdge-Test-Cl

Agentqueue* @ | Manage

‘ Hosted Linux Preview

\/‘O

Parameters @

This definition doesn't have any process parameters yet. You can create and use them

to promote the most important settings in your process.

Leam more 2

12. Open the Triggers tab and turn on the Continuous integration trigger. Make sure the branch containing

your code is included.

& - > loTEdge-Test-Cl

Tasks Variables Triggers Options

Continuous integration

Dq EdgeSolution

Enabled

Scheduled

Mo builds scheduled

Build completion

Build when another build completes

13. Save the new build definition and queue a new build. Click the Save & queue button.

Retention History

+ Add

Add

“) Discard

Save & queue Summary

™ EdgeSolution

| Enable continuous integration

D Batch changes while a build is in progress

Branch filters

Type Branch specification

Include e ¥ master

~

14. Choose the link to the build in the message bar that appears. Or go to build definition to see the latest

queued build job.

G MyFirstProject / MyFirst... Dashboards Code Work Build and Release

—

Builds | Releases Library Task Groups Deployment Groups

Build Definitions £

Mine Definitions Queued

Requested by me

loTEdge-Test-Cl: #1

i requested 5 minutes ago

15. After the build has finished, you see the summary for each task and the results in the live log file.

) MyFirstProject / MyFi ¢ Dashboards Code Build and Release *= work items in this

Builds Releases Library Task Groups Deployment Groups

— lo est-Cl / Build 1
v Build 1
~ Phase 1 ¢ Editbuild definition &7 Queuenewbuild.. ~ L Downloadall logsaszip @M Retainindefinitely T Release
v Job Build succeeded
v Initialize Agent I Build 1 R
Initialize Job | =mmmmmmee Ran for 4.4 minutes (Hosted Linux Preview), completed 111 seconds ago

Get Sources Summary Timeline Code coverage™ Tests
Build details Test Results

Module Build and Push Definition loTEdge-Test-Cl (edit)
Completed Runs

Total tests

4
4
v dotnet test
4

Source master
4

Deploy to 10T Edge davice Source version Commit d34dc848

v Post Job Cleanup Requested by Xin Shi 3 B Passed (3)
Queue name Hosted Linux Preview (+3) W Failed (0)

+ Finalize build Queued Friday, April 27, 2018 8:55 AM Others (©)

Started Friday, April 27, 2018 8:55 AM

" Report build status Finished Friday, April 27, 2016 9:00 AM
Retained state Build not retained Failed tests Pass percentage

. 0 ®hewo 100%
Associated changes (-0} Existing (0) (+100%)
d84dc84 Authored by Xin Shi
init
Run duration

Work items linked to associated changes 35 553ms
Mo work items linked to associated changes found for this build (+3s 553ms)

Detailed report »
Code Coverage
No build code coverage data available.
Tags
Add tag..

Deployments

No deployments found for this build. Create release.

16. You can go back to VS Code and check the loT Hub device explorer. The Edge device with the module
should start running (Make sure you've added registry credentials to Edge runtime).

4 DOCKER

b Images

1-‘I—nt|:|_,| (E

mulated-temperature-sensor:1.0-previe.

ge-hub:1.0-preview (edgeHub) (Up 3 minute.

4 AFURE 10T HUB DEVICES
%= edge-prod-0
7 edge-prod-1
* edge-prod-2
* edge-test
% s$edgeagent (running)
%" $edgeHub (running)
%’ tempS (running)

%’ FilterModule (running)

Continuous deployment to loT Edge devices

To enable continuous deployment, basically you need to set up Cl jobs with proper loT Edge devices, enabling the
Triggers for your branches in your project. In a classic DevOps practice, a project contains two main branches. The
master branch should be the stable version of the code, and the develop branch contains the latest code changes.
Every developer in the team should fork develop branch to his or her own feature branch when starting updating
the code, which means all commits happens on feature branches off the develop branch. And every pushed commit
should be tested via the Cl system. After fully tested the code locally, the feature branch should be merged to the
develop branch via a pull request. When the code on developer branch is tested via Cl system, it can be merged to
master branch via a pull request.

So, when deploying to 1oT Edge devices, there are three main environments.

e On feature branch, you can use simulated loT Edge device on your development machine or deploy to a
physical 10T Edge device.

e On develop branch, you should deploy to a physical loT Edge device.

e On master branch, the target loT Edge devices should be the production devices.

Next steps

This tutorial demonstrates how you can use the continuous integration and continuous deployment features of
VSTS or TFS.

e Understand the loT Edge deployment in Understand loT Edge deployments for single devices or at scale

e Walk through the steps to create, update, or delete a deployment in [Deploy and monitor loT Edge modules at
scale][how-to-deploy-monitormd].

Store data at the edge with SQL Server databases

4/25/2018 + 8 min to read « Edit Online

Use Azure loT Edge devices to store the data that is generated at the edge. Devices with intermittent internet
connections can maintain their own databases and report changes back to the cloud only when connected. Devices
that have been programmed to send only critical data to the cloud can save the rest of the data for regular bulk
uploads. Once in the cloud, the structured data can be shared with other Azure services, for instance to build a
machine learning model.

This article provides instructions for deploying a SQL Server database to an l1oT Edge device. Azure Functions,
running on the loT Edge device, structures the incoming data then sends it to the database. The steps in this article
can also be applied to other databases that work in containers, like MySQL or PostgreSQL.

Prerequisites

Before you start the instructions in this article, you should complete the following tutorials:

e Deploy Azure loT Edge on a simulated device in Windows or Linux

e Deploy Azure Function as an loT Edge module
The following articles aren't required to successfully complete this tutorial, but may provide helpful context:

e Runthe SQL Server 2017 container image with Docker

e Use Visual Studio Code to develop and deploy Azure Functions to Azure |oT Edge
After you complete the required tutorials, you should have all the required prerequisites ready on your machine:

® An active Azure loT hub.

e An loT Edge device with at least 2-GB RAM and a 2-GB disk drive.

e Visual Studio Code.

e Azure loT Edge extension for Visual Studio Code.

e C# for Visual Studio Code (powered by OmniSharp) extension.

e Docker

e NET Core 2.0 SDK.

e Python 2.7

e |oT Edge control script

o AzureloTEdgeFunction template (dotnet new -i Microsoft.Azure.IoT.Edge.Function)

® An active loT hub with at least an loT Edge device.

Both Windows and Linux containers on x64 processor architectures work for this tutorial. SQL Server does not
support ARM processors.

Deploy a SQL Server container

In this section, you add an MS-SQL database to your simulated loT Edge device. Use the SQL Server 2017 docker
container image, available as a Windows container and as a Linux container.
Deploy SQL Server 2017

By default, the code in this section creates a container with the free Developer edition of SQL Server 2017. If you
want to run production editions instead, see Run production container images for detailed information.

In step 3, you add create options to the SQL Server container, which are important for establishing environment
variables and persistant storage. The configured environment variables accept the End-User License Agreement,
and define a password. The persistant storage is configured using mounts. Mounts create the SQL Server 2017
container with a sqlvolume volume container attached so that your data persists even if the container is deleted.

1. Open the deployment.json file in Visual Studio Code.

2. Replace the modules section of the file with the following code:

"modules": {
"filterFunction": {

"version": "1.0",

"type": "docker",

"status": "running",

"restartPolicy": "always",

"settings": {
"image": "<docker registry address>/filterfunction:latest”,
"createOptions": "{}"

}

1,

"tempSensor": {
"version": "1.0",
"type": "docker",
"status": "running",

"restartPolicy": "always",
"settings": {
"image": "microsoft/azureiotedge-simulated-temperature-sensor:1.0-preview",
"createOptions": "{}"
¥
1,
"sql": {
"version": "1.0",
"type": "docker",
"status": "running",
"restartPolicy": "always",
"settings": {
"image": ""
"createOptions":

}

3. Replace the <docker registry address> with the address filled in at the completed tutorial Deploy Azure
Function as an loT Edge module - preview

NOTE

The container registry address is the same as the login server that you copied from your registry. It should be in the

form of <your container registry name>.azurecr.io

4. Depending on the operating system that you're running, update the settings for the SQL module with the
following code:

e Windows:

"image": "microsoft/mssql-server-windows-developer",

"createOptions": "{\"Env\":
[\"ACCEPT_EULA=Y\",\"MSSQL_SA_PASSWORD=Strong!Password\"],\"HostConfig\": {\"Mounts\":
[{\"Target\": \"C:\\\\mssql\",\"Source\": \"sqlVolume\",\"Type\": \"volume\"}],\"PortBindings\":
{\"1433/tcp\": [{\"HostPort\": \"1401\"}]}}}"

e Linux:

"image": "microsoft/mssql-server-linux:2017-latest",

"createOptions": "{\"Env\":
[\"ACCEPT_EULA=Y\",\"MSSQL_SA_PASSWORD=Strong!Password\"],\"HostConfig\": {\"Mounts\":
[{\"Target\": \"/var/opt/mssql\",\"Source\": \"sqlVolume\",\"Type\":
\"volume\"}],\"PortBindings\": {\"1433/tcp\": [{\"HostPort\": \"1401\"}]}}}"

5. Save the file.

(o)}

. Inthe VS Code Command Palette, select Edge: Create deployment for Edge device.

~

. Select your |oT Edge device ID.
8. Select the deployment.json file that you updated. In the output window, you can see corresponding outputs for
your deployment.

9. To start your Edge runtime, select Edge: Start Edge in the Command Palette.

TIP

Any time that you create a SQL Server container in a production environment, you should change the default system
administrator password.

Create the SQL database

This section guides you through setting up the SQL database to store the temperature data received from the
sensors connected to the loT Edge device. If you're using a simulated device, this data comes from the tempSensor
container.

In a command-line tool, connect to your database:

e Windows container
docker exec -it sql cmd
e Linux container

docker exec -it sql bash

Open the SQL command tool:

e Windows container
sqlcmd -S localhost -U SA -P 'Strong!Passwerd’
e Linux container

/opt/mssql-tools/bin/sqlcmd -S localhost -U SA -P 'Strong!Password’

Create your database:

e Windows container

CREATE DATABASE MeasurementsDB

ON

(NAME = MeasurementsDB, FILENAME = 'C:\mssql\measurementsdb.mdf")
GO

e Linux container

CREATE DATABASE MeasurementsDB

ON

(NAME = MeasurementsDB, FILENAME = '/var/opt/mssql/measurementsdb.mdf")
GO

Define your table:

CREATE TABLE MeasurementsDB.dbo.TemperatureMeasurements (measurementTime DATETIME2, location NVARCHAR(50),
temperature FLOAT)
GO

You can customize your SQL Server docker file to automatically set up your SQL Server to be deployed on
multiple loT Edge devices. For more information, see the Microsoft SQL Server container demo project.

Understand the SQL connection

In other tutorials, we use routes to allow containers to communicate while remaining isolated from each other.
When you work with a SQL Server database, though, a closer relationship is necessary.

loT Edge automatically builds a bridge (Linux) or NAT (Windows) network when it starts. The network is called
azure-iot-edge. If you ever need to debug this connection, you can look up its properties in the command line:

e Windows
docker network inspect azure-iot-edge
e Linux

sudo docker network inspect azure-iot-edge

loT Edge can also resolve the DNS of a container name through docker, so you don't need to refer to your SQL
Server database by its IP address.

As an example, here is the connection string that we use in the next section:

Data Source=tcp:sql,1433;Initial Catalog=MeasurementsDB;User
Id=SA;Password=Strong!Password; TrustServerCertificate=False;Connection Timeout=30;

You can see that the connection string references the container by its name, sql. If you changed the module name
to be something else, update this connection string as well. Otherwise, continue on to the next section.

Update your Azure Function

To send the data to your database, update the FilterFunction Azure Function that you made in the previous tutorial.
Change this file so that it structures the data received by your sensors then stores itin a SQL table.

1. In Visual Studio Code, open your FilterFunction folder.

2. Replace the run.csx file with the following code that includes the SQL connection string from the previous
section:

#r "Microsoft.Azure.Devices.Client"
#r "Newtonsoft.Json"
#r "System.Data.SqlClient"

using System.IO;

using Microsoft.Azure.Devices.Client;
using Newtonsoft.Json;

using Sql = System.Data.SqlClient;
using System.Threading.Tasks;

// Filter messages based on the temperature value in the body of the message and the temperature
threshold value.
public static async Task Run(Message messageReceived, IAsyncCollector<Message> output, TraceWriter log)
{

const int temperatureThreshold = 25;

byte[] messageBytes = messageReceived.GetBytes();

var messageString = System.Text.Encoding.UTF8.GetString(messageBytes);

if (!string.IsNullOrEmpty(messageString))
{
// Get the body of the message and deserialize it
var messageBody = JsonConvert.DeserializeObject<MessageBody>(messageString);

//Store the data in SQL db

const string str = "Data Source=tcp:sql,1433;Initial Catalog=MeasurementsDB;User
Id=SA;Password=Strong!Passwlrd;TrustServerCertificate=False;Connection Timeout=30;";

using (Sql.SqlConnection conn = new Sql.SqlConnection(str))

{
conn.Open();
var insertMachineTemperature = "INSERT INTO MeasurementsDB.dbo.TemperatureMeasurements VALUES

(CONVERT(DATETIME2, '" + messageBody.timeCreated + "', 127), ‘'machine', " +
messageBody.machine.temperature + ");";
var insertAmbientTemperature = "INSERT INTO MeasurementsDB.dbo.TemperatureMeasurements VALUES

(CONVERT(DATETIME2, '" + messageBody.timeCreated + "', 127), ‘'ambient', " +
messageBody.ambient.temperature + ");";

using (Sql.SqlCommand cmd = new Sql.SqlCommand(insertMachineTemperature + "\n" +
insertAmbientTemperature, conn))

{

//Execute the command and log the # rows affected.

var rows = await cmd.ExecuteNonQueryAsync();

log.Info($"{rows} rows were updated");

}
}
if (messageBody != null && messageBody.machine.temperature > temperatureThreshold)
{
// Send the message to the output as the temperature value is greater than the threshold
var filteredMessage = new Message(messageBytes);
// Copy the properties of the original message into the new Message object
foreach (KeyValuePair<string, string> prop in messageReceived.Properties)
{
filteredMessage.Properties.Add(prop.Key, prop.Value);
}
// Add a new property to the message to indicate it is an alert
filteredMessage.Properties.Add("MessageType", "Alert");
// Send the message
await output.AddAsync(filteredMessage);
log.Info("Received and transferred a message with temperature above the threshold");
}

//Define the expected schema for the body of incoming messages

class MessageBody

{
public Machine machine {get;set;}
public Ambient ambient {get; set;}
public string timeCreated {get; set;}

¥

class Machine

{
public double temperature {get; set;}

public double pressure {get; set;}
¥

class Ambient

{
public double temperature {get; set;}
public int humidity {get; set;}

Update your container image

To apply the changes that you've made, update your container image, publish it, and restart loT Edge.

1. In Visual Studio Code, expand the Docker folder.

Based on the platform you're using, expand either the windows-nano or linux-x64 folder.
Right-click the Dockerfile file and select Build loT Edge module Docker image.
Navigate to the FilterFunction project folder and click Select folder as EXE_DIR.

voh W

In the pop-up text box at the top of the VS Code window, enter the image name. For example,
<your container registry address>/filterfunction:latest . If you are deploying to a local registry, the name
should be <localhost:5e@e/filterfunction:latest> .
6. Inthe VS Code command palette, select Edge: Push loT Edge module Docker image.
7. In the pop-up text box, enter the same image name.

8. In the VS Code command palette, select Edge: Restart Edge.

View the local data

Once your containers restart, the data received from the temperature sensors is stored in a local SQL Server 2017
database on your loT Edge device.

In a command-line tool, connect to your database:

e Windows container
docker exec -it sql cmd
e Linux container

docker exec -it sql bash

Open the SQL command tool:

e Windows container
sqlcmd -S localhost -U SA -P 'Strong!Passwerd’

® Linux container

/opt/mssql-tools/bin/sqlcmd -S localhost -U SA -P 'Strong!Password’
View your data:

SELECT * FROM MeasurementsDB.dbo.TemperatureMeasurements
GO

Next steps
e Learn how to configure SQL Server 2017 container images on Docker.

e Visit the mssql-docker GitHub repository for resources, feedback, and known issues.

Common issues and resolutions for Azure loT Edge

4/9/2018 « 4 min to read » Edit Online

If you experience issues running Azure loT Edge in your environment, use this article as a guide for
troubleshooting and resolution.

Standard diagnostic steps

When you encounter an issue, learn more about the state of your loT Edge device by reviewing the container logs
and messages that pass to and from the device. Use the commands and tools in this section to gather information.

e | ook at the logs of the docker containers to detect issues. Start with your deployed containers, then look at
the containers that make up the loT Edge runtime: Edge Agent and Edge Hub. The Edge Agent logs typically
provide info on the lifecycle of each container. The Edge Hub logs provide info on messaging and routing.

docker logs <container name>

e View the messages going through the Edge Hub, and gather insights on device properties updates with
verbose logs from the runtime containers.

iotedgectl setup --connection-string "{device connection string}" --runtime-log-level debug
e View verbose logs from iotedgectl commands:
iotedgectl --verbose DEBUG <command>

o [f you experience connectivity issues, inspect your edge device environment variables like your device
connection string:

docker exec edgeAgent printenv

You can also check the messages being sent between |oT Hub and the 10T Edge devices. View these messages by
using the Azure loT Toolkit extension for Visual Studio Code. For more guidance, see Handy tool when you

develop with Azure loT.

After investigating the logs and messages for information, you can also try restarting the Azure loT Edge runtime:

iotedgectl restart

Edge Agent stops after about a minute

The Edge Agent starts and runs successfully for about a minute, then stops. The logs indicate that the Edge Agent
is attempting to connect to loT Hub over AMQP, and then approximately 30 seconds later attempt to connect using
AMQP over websocket. When that fails, the Edge Agent exits.

Example Edge Agent logs:

2017-11-28 18:46:19 [INF] - Starting module management agent.

2017-11-28 18:46:19 [INF] - Version - 1.0.7516610 (03c94f85d0833a861a43c66984210817924911d5)
2017-11-28 18:46:19 [INF] - Edge agent attempting to connect to IoT Hub via AMQP...

2017-11-28 18:46:49 [INF] - Edge agent attempting to connect to IoT Hub via AMQP over WebSocket...

Root cause

A networking configuration on the host network is preventing the Edge Agent from reaching the network. The
agent attempts to connect over AMQP (port 5671) first. I this fails, it tries websockets (port 443).

The loT Edge runtime sets up a network for each of the modules to communicate on. On Linu, this network is a
bridge network. On Windows, it uses NAT. This issue is more common on Windows devices using Windows
containers that use the NAT network.

Resolution

Ensure that there is a route to the internet for the IP addresses assigned to this bridge/NAT network. Sometimes a
VPN configuration on the host overrides the 10T Edge network.

Edge Hub fails to start

The Edge Hub fails to start, and prints the following message to the logs:

One or more errors occurred.

(Docker API responded with status code=InternalServerError, response=

{\"message\":\"driver failed programming external connectivity on endpoint edgeHub
(6282e5€994bab5187939049684fb64efed7606d2bb8adcc5655b2a9bad5+8c80) :

Error starting userland proxy: Bind for ©.0.0.0:443 failed: port is already allocated\"}\n)

Root cause

Some other process on the host machine has bound port 443. The Edge Hub maps ports 5671 and 443 for use in
gateway scenarios. This port mapping fails if another process has already bound this port.

Resolution

Find and stop the process that is using port 443. This process is usually a web server.

Edge Agent can't access a module's image (403)

A container fails to run, and the Edge Agent logs show a 403 error.

Root cause

The Edge Agent doesn't have permissions to access a module's image.

Resolution

Try running the iotedgectl login command again.

iotedgectl can't find Docker

The commands iotedgectl setup Or iotedgectl start fail and print the following message to the logs:

File "/usr/local/lib/python2.7/dist-packages/edgectl/host/dockerclient.py"”, line 98, in get_os_type
info = self._client.info()

File "/usr/local/lib/python2.7/dist-packages/docker/client.py", line 174, in info
return self.api.info(*args, **kwargs)

File "/usr/local/lib/python2.7/dist-packages/docker/api/daemon.py", line 88, in info
return self._result(self._get(self._ url("/info")), True)

Root cause

iotedgectl can't find Docker, which is a pre-requisite.

Resolution

Install Docker, make sure that it is running and retry.

iotedgectl setup fails with an invalid hostname

The command iotedgectl setup fails and prints the following message:

Error parsing user input data: invalid hostname. Hostname cannot be empty or greater than 64 characters

Root cause

The loT Edge runtime can only support hostnames that are shorter than 64 characters. This usually isn't an issue
for physical machines, but can occur when you set up the runtime on a virtual machine. The automatically
generated hostnames for Windows virtual machines hosted in Azure, in particular, tend to be long.

Resolution

When you see this error, you can resolve it by configuring the DNS name of your virtual machine, and then setting
the DNS name as the hostname in the setup command.

1. In the Azure portal, navigate to the overview page of your virtual machine.

2. Select configure under DNS name. If your virtual machine already has a DNS name configured, you don't
need to configure a new one.

> Connect P Start (¥ Restart W Sicp :ﬁ] Capture =3 Move [Delete {) Refresh
Resource group (changs) Computer name
VM ContosoVM
Status Operating system
Creating Windows
Location Size
West US 2 Standard B1s (1 vepu, 1 GE memory)
Subscription (changs) Public IP address
Visual Studio Enterprise with MSDN [IP Address]
Subscrition D Virtual network/subnet
[Subscription 1D] VM-vnet/default

DMNS name

o

3. Provide a value for DNS name label and select Save.

4. Copy the new DNS name, which should be in the format <DNSnamelabel>.
<vmlocation>.cloudapp.azure.com.

5. Inside the virtual machine, use the following command to set up the loT Edge runtime with your DNS name:

iotedgectl setup --connection-string "<connection string>" --nopass --edge-hostname "<DNS name>"

Next steps

Do you think that you found a bug in the 1oT Edge platform? Please, submit an issue so that we can continue to

improve.

Understand Azure loT Edge modules - preview

2/15/2018 « 3 min to read « Edit Online

Azure loT Edge lets you deploy and manage business logic on the edge in the form of modules. Azure 10T Edge
modules are the smallest unit of computation managed by loT Edge, and can contain Azure services (such as
Azure Stream Analytics) or your own solution-specific code. To understand how modules are developed, deployed,
and maintained, it helps to think of four conceptual pieces that make up a module:

o A module image is a package containing the software that defines a module.

o A module instance is the specific unit of computation running the module image on an loT Edge device. The
module instance is started by the loT Edge runtime.

o A module identity is a piece of information (including security credentials) stored in loT Hub, that is
associated to each module instance.

o A module twin is a JSON document stored in 10T Hub, that contains state information for a module instance,
including metadata, configurations, and conditions.

Module images and instances

loT Edge module images contain applications that take advantage of the management, security, and
communication features of the loT Edge runtime. You can develop your own module images, or export one from a
supported Azure service, such as Azure Stream Analytics. The images exist in the cloud and they can be updated,
changed, and deployed in different solutions. For instance, a module that uses machine learning to predict
production line output exists as a separate image than a module that uses computer vision to control a drone.

Each time a module image is deployed to a device and started by the loT Edge runtime, a new instance of that
module is created. Two devices in different parts of the world could use the same module image; however each
would have their own module instance when the module is started on the device.

Container
repository

Module image

. . insight
lives in the clouad NSl

Module image

|n5|ght
Module-instance

Dewce m Chma

|n5|ght
Module-instanc

I
Device Ig Germany

:]
Module instances
run on-premises E
e

In implementation, modules images exist as container images in a repository, and module instances are containers
on devices. As use cases for Azure loT Edge grow, new types of module images and instances will be created. For
example, resource constrained devices cannot run containers so may require module images that exist as dynamic

link libraries and instances that are executables.

Module identities

When a new module instance is created by the loT Edge runtime, the instance is associated with a corresponding
module identity. The module identity is stored in 1oT Hub, and is employed as the addressing and security scope
for all local and cloud communications for that specific module instance. The identity associated with a module
instance depends on the identity of the device on which the instance is running and the name you provide to that
module in your solution. For instance, if you call insight a module that uses an Azure Stream Analytics, and you
deploy it on a device called Hannovere1 , the loT Edge runtime creates a corresponding module identity called

/devices/Hannover@l/modules/insight .

Clearly, in scenarios when you need to deploy one module image multiple times on the same device, you can

deploy the same image multiple times with different names.

Device
insight
Module instance Modules
Device in Germany
Device
insight!| insight2
Medle instances Modules

Device in China

Module twins

/devices/HannoverQ1

/devices/HannoverO1/modules/insight

/devices/ShenzhenO1

/devices/Shenzhen01/modules/insight1
/devices/Shenzhen01/modules/insight2

Each module instance also has a corresponding module twin that you can use to configure the module instance.
The instance and the twin are associated with each other through the module identity.

A module twin is a JSON document that stores module information and configuration properties. This concept
parallels the device twin concept from loT Hub. The structure of a module twin is exactly the same as a device
twin. The APIs used to interact with both types of twins are also the same. The only difference between the two is

the identity used to instantiate the client SDK.

// Create a DeviceClient object. This DeviceClient will act on behalf of a
// module since it is created with a module’s connection string instead

// of a device connection string.

DeviceClient client = new DeviceClient.CreateFromConnectionString(moduleConnectionString, settings);

await client.OpenAsync();

// Get the model twin
Twin twin = await client.GetTwinAsync();

Next steps

e Understand the Azure |oT Edge runtime and its architecture

Understand the requirements and tools for

developing loT Edge modules - preview

11/15/2017 « 3 min to read ¢ Edit Online

This article explains what functionalities are available when writing applications that run as loT Edge module, and
how to take advantage of them.

loT Edge runtime environment

The loT Edge runtime provides the infrastructure to integrate the functionality of multiple loT Edge modules and
to deploy them onto loT Edge devices. At a high level, any program can be packaged as an loT Edge module.
However, to take full advantage of loT Edge communication and management functionalities, a program running
in a module can connect to the local loT Edge hub, integrated in the loT Edge runtime.

Using the l1oT Edge hub

The loT Edge hub provides two main functionalities: proxy to loT Hub, and local communications.

loT Hub primitives

loT Hub sees a module instance analogously to a device, in the sense that it:

e it has a module twin, that is distinct and isolated from the device twin and the other module twins of that device;
e it can send device-to-cloud messages;

e it can receive direct methods targeted specifically at its identity.
Currently, a module cannot receive cloud-to-device messages nor use the file upload feature.

When writing a module, you can simply use the Azure [oT Device SDK to connect to the loT Edge hub and use the
above functionality as you would when using loT Hub with a device application, the only difference being that,
from your application back-end, you have to refer to the module identity instead of the device identity.

See Develop and deploy an loT Edge module to a simulated device for an example of a module application that
sends device-to-cloud messages, and uses the module twin.

Device-to-cloud messages

In order to enable complex processing of device-to-cloud messages, 10T Edge hub provides declarative routing of
messages between modules, and between modules and 10T Hub. This allows modules to intercept and process
messages sent by other modules and propagate them into complex pipelines. The article Module composition
explains how to compose modules into complex pipelines using routes.

An loT Edge module, differently than a normal loT Hub device application, can receive device-to-cloud messages
that are being proxied by its local 10T Edge hub, in order to process them.

loT Edge hub propagates the messages to your module based on declarative routes described in the Module
composition article. When developing an loT Edge module, you can receive these messages by setting message
handlers, as shown in the tutorial Develop and deploy an loT Edge module to a simulated device.

In order to simplify the creation of routes, loT Edge adds the concept of module input and output endpoints. A
module can receive all device-to-cloud messages routed to it without specifying any input, and can send device-to-
cloud messages without specifying any output. Using explicit inputs and outputs, though, makes routing rules
simpler to understand. See Module composition for more information on routing rules and input and output

endpoints for modules.

Finally, device-to-cloud messages handled by the Edge hub are stamped with the following system properties:

PROPERTY DESCRIPTION

$connectionDeviceld The device ID of the client that sent the message
$connectionModuleld The module ID of the module that sent the message
$inputName The input that received this message. Can be empty.
$outputName The output used to send the message. Can be empty.

Connecting to loT Edge hub from a module

Connecting to the local loT Edge hub from a module involves two steps: use the connection string provided by the
loT Edge runtime when your module starts, and make sure your application accepts the certificate presented by
the l1oT Edge hub on that device.

The connecting string to use is injected by the loT Edge runtime in the environment variable
EdgeHubConnectionString . This makes it available to any program that wants to use it.

Analogously, the certificate to use to validate the 10T Edge hub connection is injected by the loT Edge runtime in a
file whose path is available in the environment variable EdgeModuleCACertificateFile .

The tutorial Develop and deploy an 10T Edge module to a simulated device shows how to make sure that the
certificate is in the machine store in your module application. Clearly, any other method to trust connections using
that certificate work.

Packaging as an image

loT Edge modules are packaged as Docker images. You can use Docker toolchain directly, or Visual Studio Code as
shown in the tutorial Develop and deploy an loT Edge module to a simulated device.

Next steps

After you develop a module, learn how to Deploy and monitor loT Edge modules at scale.

Understand how loT Edge modules can be used,

configured, and reused - preview

4/25/2018 + 6 min to read ¢« Edit Online

Each loT Edge device runs at least two modules: $edgeAgent and $edgeHub, which make up the l1oT Edge
runtime. In addition to those standard two, any loT Edge device can run multiple modules to perform any number
of processes. When you deploy all these modules to a device at once, you need a way to declare which modules
are included how they interact with each other.

The deployment manifest is a JSON document that describes:

e Which loT Edge modules have to be deployed, along with their creation and management options.

e The configuration of the Edge hub, which includes how messages flow between modules and eventually to loT
Hub.

e Optionally, the values to set in the desired properties of the module twins, to configure the individual module
applications.

All'1oT Edge devices need to be configured with a deployment manifest. A newly installed loT Edge runtime
reports an error code until configured with a valid manifest.

In the Azure loT Edge tutorials, you build a deployment manifest by going through a wizard in the Azure loT Edge
portal. You can also apply a deployment manifest programmatically using REST or the loT Hub Service SDK.
Refer to Deploy and monitor for more information on loT Edge deployments.

Create a deployment manifest

At a high level, the deployment manifest configures a module twin's desired properties for loT Edge modules
deployed on an loT Edge device. Two of these modules are always present: the Edge agent, and the Edge hub.

A deployment manifest that contains only the loT Edge runtime (agent and hub) is valid.

The manifest follows this structure:

"moduleContent": {
"$edgeAgent": {
"properties.desired": {
// desired properties of the Edge agent
// includes the image URIs of all modules

}
s
"$edgeHub": {
"properties.desired": {
// desired properties of the Edge hub
// includes the routing information between modules, and to IoT Hub
}
s

"{module1}": { // optional
"properties.desired": {
// desired properties of module with id {modulel}

s
"{module2}": { // optional

1

Configure modules

In addition to establishing the desired properties of any modules that you want to deploy, you need to tell the loT
Edge runtime how to install them. The configuration and management information for all modules goes inside the
$edgeAgent desired properties. This information includes the configuration parameters for the Edge agent itself.

For a complete list of properties that can or must be included, see Properties of the Edge agent and Edge hub.

The $edgeAgent properties follow this structure:

"$edgeAgent": {
"properties.desired": {
"schemaversion": "1.0",
"runtime": {
b
"systemModules": {
"edgeAgent": {
// configuration and management details
b
"edgeHub": {
// configuration and management details

1
"modules": {
"{modulel}": { //optional
// configuration and management details

1
"{module2}": { // optional
// configuration and management details

B

Declare routes

Edge hub provides a way to declaratively route messages between modules, and between modules and loT Hub.
The Edge hub manages all communication, so the route information goes inside the $edgeHub desired
properties. You can have multiple routes within the same deployment.

Routes are declared in the $edgeHub desired properties with the following syntax:

"$edgeHub": {
"properties.desired": {
"routes": {

"{routel}": "FROM <source> WHERE <condition> INTO <sink>",
"{route2}": "FROM <source> WHERE <condition> INTO <sink>"

3

Every route needs a source and a sink, but the condition is an optional piece that you can use to filter messages.

Source

The source specifies where the messages come from. It can be any of the following values:

SOURCE DESCRIPTION
/* All device-to-cloud messages from any device or module
/messages/* Any device-to-cloud message sent by a device or a module

through some or no output

/messages/modules/* Any device-to-cloud message sent by a module through
some or no output

/messages/modules/{moduleId}/* Any device-to-cloud message sent by {moduleld} with no
output
/messages/modules/{moduleId}/outputs/* Any device-to-cloud message sent by {moduleld} with some
output
/messages/modules/{moduleId}/outputs/{output} Any device-to-cloud message sent by {moduleld} using
{output}
Condition

The condition is optional in a route declaration. If you want to pass all messages from the sink to the source, just
leave out the WHERE clause entirely. Or you can use the loT Hub query language to filter for certain messages or
message types that satisfy the condition.

The messages that pass between modules in 10T Edge are formatted the same as the messages that pass between
your devices and Azure loT Hub. All messages are formatted as JSON and have systemProperties,
appProperties, and body parameters.

You can build queries around all three parameters with the following syntax:

e System properties: $<propertyName> Or {$<propertyName>}
e Application properties: <propertyName>

e Body properties: $body.<propertyName>

For examples about how to create queries for message properties, see Device-to-cloud message routes query
expressions.

An example that is specific to 10T Edge is when you want to filter for messages that arrived at a gateway device
from a leaf device. Messages that come from modules contain a system property called connectionModuleld.
So if you want to route messages from leaf devices directly to 1oT Hub, use the following route to exclude module

messages:

FROM /messages/* WHERE NOT IS_DEFINED($connectionModuleId) INTO $upstream

Sink

The sink defines where the messages are sent. It can be any of the following values:

SINK DESCRIPTION

$upstream Send the message to loT Hub

BrokeredEndpoint("/modules/{moduleId}/inputs/{input}") Send the message to input {input} of module
{moduleId}

Itis important to note that Edge hub provides at-least-once guarantees, which means that messages are stored
locally in case a route cannot deliver the message to its sink, for example, the Edge hub cannot connect to loT Hub,

or the target module is not connected.

Edge hub stores the messages up to the time specified in the storeAndForwardConfiguration.timeToLiveSecs

property of the Edge hub desired properties.

Define or update desired properties

The deployment manifest can specify desired properties for the module twin of each module deployed to the loT
Edge device. When the desired properties are specified in the deployment manifest, they overwrite any desired

properties currently in the module twin.

If you do not specify a module twin's desired properties in the deployment manifest, loT Hub will not modify the
module twin in any way, and you will be able to set the desired properties programmatically.

The same mechanisms that allow you to modify device twins are used to modify module twins. Refer to the device

twin developer guide for further information.

Deployment manifest example

This an example of a deployment manifest JSON document.

{
"moduleContent”: {
"$edgeAgent": {
"properties.desired": {
"schemaVersion": "1.0",
"runtime": {
"type": "docker",
"settings": {
"minDockerVersion": "v1.25",
"loggingOptions™": ""

1
"systemModules": {
"edgeAgent": {
"type": "docker",
"settings": {
"image": "microsoft/azureiotedge-agent:1.0-preview",

“createOptions”:
}
1
"edgeHub": {
"type": "docker",
"status": "running",
"restartPolicy": "always",
"settings": {
"image": "microsoft/azureiotedge-hub:1.0-preview",
"createOptions": ""

¥

I8

"modules": {
"tempSensor": {
"version": "1.0",
"type": "docker",

"status": "running",
"restartPolicy": "always",
"settings": {
"image": "microsoft/azureiotedge-simulated-temperature-sensor:1.0-preview",
"createOptions": "{}"
}
1,
"filtermodule": {
"version": "1.0",
"type": "docker",
"status": "running",
"restartPolicy": "always",
"settings": {
"image": "myacr.azurecr.io/filtermodule:latest",
"createOptions": "{}"
¥
}
}
}
s
"$edgeHub": {
"properties.desired": {
"schemaversion": "1.0",
"routes”: {

"sensorToFilter": "FROM /messages/modules/tempSensor/outputs/temperatureOutput INTO
BrokeredEndpoint(\"/modules/filtermodule/inputs/input1\")",
"filterToIoTHub": "FROM /messages/modules/filtermodule/outputs/outputl INTO $upstream"
1
"storeAndForwardConfiguration": {
"timeToLiveSecs": 10

Next steps

e For a complete list of properties that can or must be included in $edgeAgent and $edgeHub, see Properties
of the Edge agent and Edge hub.

e Now that you know how loT Edge modules are used, Understand the requirements and tools for
developing loT Edge modules.

Properties of the Edge agent and Edge hub module

twins

4/9/2018 + 5 min to read ¢+ Edit Online

The Edge agent and Edge hub are two modules that make up the loT Edge runtime. For more information about

what duties each module performs, see Understand the Azure loT Edge runtime and its architecture.

This article provides the desired properties and reported properties of the runtime module twins. See

Deployment and monitoring for more information on how to deploy modules on loT Edge devices.

EdgeAgent desired properties

The module twin for the Edge agent is called $edgeAgent and coordinates the communications between the Edge

agent running on a device and loT Hub. The desired properties are set when applying a deployment manifest on a

specific device as part of a single-device or at-scale deployment.

PROPERTY

schemaVersion

runtime.type

runtime.settings.minDockerVersion

runtime.settings.loggingOptions

systemModules.edgeAgent.type

systemModules.edgeAgent.settings.ima
ge

systemModules.edgeAgent.settings.cre
ateOptions

systemModules.edgeAgent.configuratio
n.id

systemModules.edgeHub.type

systemModules.edgeHub.status

systemModules.edgeHub.restartPolicy

DESCRIPTION

Has to be "1.0"

Has to be "docker"

Set to the minimum Docker version
required by this deployment manifest

A stringified JSON containing the
logging options for the Edge agent
container. Docker logging options

Has to be "docker"

The URI of the image of the Edge
agent. Currently, the Edge agent is not
able to update itself.

A stringified JSON containing the
options for the creation of the Edge
agent container. Docker create options

The ID of the deployment that
deployed this module.

Has to be "docker"

Has to be "running”

Has to be "always"

REQUIRED

Yes

Yes

Yes

No

Yes

Yes

No

This is set by loT Hub when this
manifest is applied using a deployment.
Not part of a deployment manifest.

Yes

Yes

Yes

PROPERTY

systemModules.edgeHub.settings.imag
e

systemModules.edgeHub.settings.creat
eOptions

systemModules.edgeHub.configuration.

id

modules.{moduleld}.version

modules.{moduleld}.type

modules.{moduleld}.restartPolicy

modules.{moduleld}.settings.image

modules.

{moduleld}.settings.createOptions

modules.{moduleld}.configuration.id

DESCRIPTION

The URI of the image of the Edge hub.

A stringified JSON containing the
options for the creation of the Edge
hub container. Docker create options

The ID of the deployment that
deployed this module.

A user-defined string representing the
version of this module.

Has to be "docker"

{"never" | "on-failed" | "on-unhealthy" |
"always"}

The URI to the module image.

A stringified JSON containing the
options for the creation of the module
container. Docker create options

The ID of the deployment that
deployed this module.

EdgeAgent reported properties

The Edge agent reported properties include three main pieces of information:

1. The status of the application of the last-seen desired properties;

REQUIRED

Yes

No

This is set by loT Hub when this
manifest is applied using a deployment.
Not part of a deployment manifest.

Yes

Yes

Yes

Yes

No

This is set by 10T Hub when this
manifest is applied using a deployment.
Not part of a deployment manifest.

2. The status of the modules currently running on the device, as reported by the Edge agent; and

3. A copy of the desired properties currently running on the device.

This last piece of information is useful in case the latest desired properties are not applied successfully by the

runtime, and the device is still running a previous deployment manifest.

NOTE

The reported properties of the Edge agent are useful as they can be queried with the loT Hub query language to investigate

the status of deployments at scale. Refer to Deployments for more information on how to use this feature.

The following table does not include the information that is copied from the desired properties.

PROPERTY

lastDesiredVersion

DESCRIPTION

This integer refers to the last version of the desired properties
processed by the Edge agent.

PROPERTY

lastDesiredStatus.code

lastDesiredStatus.description

deviceHealth

configurationHealth.{deploymentid}.health

runtime.platform.0S

runtime.platform.architecture

systemModules.edgeAgent.runtimeStatus

systemModules.edgeAgent.statusDescription

systemModules.edgeHub.runtimeStatus

systemModules.edgeHub.statusDescription

systemModules.edgeHub.exitCode

systemModules.edgeHub.startTimeUtc

systemModules.edgeHub.lastExit TimeUtc

systemModules.edgeHub.lastRestartTimeUtc

systemModules.edgeHub.restartCount

modules.{moduleld}.runtimeStatus

modules.{moduleld}.statusDescription

modules.{moduleld}.exitCode

modules.{moduleld}.startTimeUtc

modules.{moduleld}.lastExitTimeUtc

modules.{moduleld}.lastRestartTimeUtc

DESCRIPTION

This is the status code referring to last desired properties seen
by the Edge agent. Allowed values: 20e Success, 400

Invalid configuration, 412 Invalid schema version, 417 the
desired properties are empty, see Failed

Text description of the status

healthy if the runtime status of all modules is either
running or stopped , unhealthy otherwise

healthy if the runtime status of all modules set by the
deployment {deploymentld} is either running or stopped ,
unhealthy otherwise

Reporting the OS running on the device

Reporting the architecture of the CPU on the device

The reported status of Edge agent: {"running" | "unhealthy"}

Text description of the reported status of the Edge agent.

Current status of Edge hub: { "running
"backoff" | "unhealthy" }

stopped” | "failed" |

Text description of the current status of Edge hub if unhealthy.

If exited, the exit code reported by the Edge hub container

Time when Edge hub was last started

Time when Edge hub last exited

Time when Edge hub was last restarted

Number of times this module was restarted as part of the
restart policy.

Current status of the module: { "running” | "stopped" | “failed"
| "backoff" | "unhealthy" }

Text description of the current status of the module if
unhealthy.

If exited, the exit code reported by the module container

Time when the module was last started

Time when the module last exited

Time when the module was last restarted

PROPERTY

modules.{moduleld}.restartCount

EdgeHub desired properties

DESCRIPTION

Number of times this module was restarted as part of the
restart policy.

The module twin for the Edge hub is called $edgeHub and coordinates the communications between the Edge hub

running on a device and loT Hub. The desired properties are set when applying a deployment manifest on a

specific device as part of a single-device or at-scale deployment.

PROPERTY DESCRIPTION

Has to be "1.0"

schemaVersion

routes.{routeName}

A string representing an Edge hub

REQUIRED IN THE DEPLOYMENT MANIFEST

Yes

The routes element can be present

route. but empty.
storeAndForwardConfiguration.timeToLi The time in seconds that Edge hub Yes
veSecs keeps messages in case of disconnected

routing endpoints, for example,
disconnected from loT Hub, or local

module

EdgeHub reported properties

PROPERTY

lastDesiredVersion
lastDesiredStatus.code

lastDesiredStatus.description

clients.{device or module identity}.status

clients.{device or module identity}.lastConnectTime

clients.{device or module identity}.lastDisconnectTime

Next steps

DESCRIPTION

This integer refers to the last version of the desired properties
processed by the Edge hub.

This is the status code referring to last desired properties seen
by the Edge hub. Allowed values: 2ee Success, 4ee Invalid
configuration, see Failed

Text description of the status

The connectivity status of this device or module. Possible
values {"connected" | "disconnected"}. Only module identities
can be in disconnected state. Downstream devices connecting
to Edge hub appear only when connected.

Last time the device or module connected

Last time the device or module disconnected

To learn how to use these properties to build out deployment manifests, see Understand how 10T Edge modules

can be used, configured, and reused.

Understand the Azure IoT Edge runtime and its

architecture - preview

2/22/2018 « 6 min to read « Edit Online

The loT Edge runtime is a collection of programs that need to be installed on a device for it to be considered an
loT Edge device. Collectively, the components of the loT Edge runtime enable loT Edge devices to receive code to
run at the edge, and communicate the results.

The loT Edge runtime performs the following functions on loT Edge devices:

e |nstalls and updates workloads on the device.

e Maintains Azure loT Edge security standards on the device.

e Ensures that loT Edge modules are always running.

e Reports module health to the cloud for remote monitoring.

e Facilitates communication between downstream leaf devices and the loT Edge device.
e Facilitates communication between modules on the [oT Edge device.

e Facilitates communication between the loT Edge device and the cloud.

Azure loT edge device

— - — -

/ N \ N
loT Hub
Telemetry ? < > 1
! | Insight | | Action .
L e _/ - 2
1 o O
} Insights and g L - ®
Azure loT Edge runtime module health

The responsibilities of the loT Edge runtime fall into two categories: module management and communication.
These two roles are performed by two components that make up the loT Edge runtime. The loT Edge hub is

responsible for communication, while the loT Edge agent manages deploying and monitoring the modules.

Both the Edge agent and the Edge hub are modules, just like any other module running on an loT Edge device. For
more information about how modules work, see Ink-modules.

loT Edge hub

The Edge hub is one of two modules that make up the Azure 10T Edge runtime. It acts as a local proxy for loT Hub
by exposing the same protocol endpoints as loT Hub. This consistency means that clients (whether devices or
modules) can connect to the loT Edge runtime just as they would to 1oT Hub.

NOTE
During public preview Edge Hub only supports clients that connect using MQTT.

The Edge hub is not a full version of 1oT Hub running locally. There are some things that the Edge hub silently
delegates to IoT Hub. For example, Edge hub forwards authentication requests to loT Hub when a device first tries

to connect. After the first connection is established, security information is cached locally by Edge hub. Subsequent
connections from that device are allowed without having to authenticate to the cloud.

NOTE

During public preview the runtime must be connected every time it tries to authenticate a device.

To reduce the bandwidth your |oT Edge solution uses, the Edge hub optimizes how many actual connections are
made to the cloud. Edge hub takes logical connections from clients like modules or leaf devices and combines
them for a single physical connection to the cloud. The details of this process are transparent to the rest of the
solution. Clients think they have their own connection to the cloud even though they are all being sent over the

same connection.

OT network with no IT network with
internet connectivity internet connectivity
(eg. factory floor)

Azure loT Edge device

loT Hub

e "1
re ®
LC®e

Azure loT Edge runtime

ﬂ," ‘ 4:(

Edge hub can determine whether it's connected to loT Hub. If the connection is lost, Edge hub saves messages or
twin updates locally. Once a connection is reestablished, it syncs all the data. The location used for this temporary
cache is determined by a property of the Edge hub’s module twin. The size of the cache is not capped and will
grow as long as the device has storage capacity.

NOTE

Adding control over additional caching parameters will be added to the product before it enters general availability.

Module communication

Edge Hub facilitates module to module communication. Using Edge Hub as a message broker keeps modules
independent from each other. Modules only need to specify the inputs on which they accept messages and the
outputs to which they write messages. A solution developer then stitches these inputs and outputs together so
that the modules process data in the order specific to that solution.

Azure loT Edge device

Module Module Madule
Telemetry 5_ < >
Insight Action
telemetryOutput insightinput ull'.ﬂgthu[pul actionlnput

Edge Hub

* Azure loT Edge untime

To send data to the Edge hub, a module calls the SendEventAsync method. The first argument specifies on which
output to send the message. The following pseudocode sends a message on output1:

DeviceClient client = new DeviceClient.CreateFromConnectionString(moduleConnectionString, settings);
await client.OpenAsync();
await client.SendEventAsync(“outputl”, message);

To receive a message, register a callback that processes messages coming in on a specific input. The following
pseudocode registers the function messageProcessor to be used for processing all messages received on input1:

await client.SetEventHandlerAsync(“inputl”, messageProcessor, userContext);

The solution developer is responsible for specifying the rules that determine how Edge hub passes messages
between modules. Routing rules are defined in the cloud and pushed down to Edge hub in its device twin. The
same syntax for |oT Hub routes is used to define routes between modules in Azure |oT Edge.

Azure loT Edge device

Madule Module Madule

Telemetry @ < >

Insight Action

Ielemelr\rculpul insightinput insightOutput amonmpu!)
FROM /m T foutputs/tel yOutput FROM / I ight/outputs/insightOutput
TO BrokeredEndpoint({\"/modules/Insight/insightinput\”) T0 point{\"/ ction/actioninput\”)
Edge Hub FROM /modules/Insight/outputs/i ',‘““!utpa‘n TO Supstream

loT Edge agent

The loT Edge agent is the other module that makes up the Azure loT Edge runtime. It is responsible for
instantiating modules, ensuring that they continue to run, and reporting the status of the modules back to loT
Hub. Just like any other module, the Edge agent uses its module twin to store this configuration data.

To begin execution of the Edge agent, run the azure-iot-edge-runtime-ctl.py start command. The agent retrieves its
module twin from loT Hub and inspects the modules dictionary. The modules dictionary is the collection of
modules that need to be started.

Each item in the modules dictionary contains specific information about a module and is used by the Edge agent
for controlling the module’s lifecycle. Some of the more interesting properties are:

e settings.image — The container image that the Edge agent uses to start the module. The Edge agent must be
configured with credentials for the container registry if the image is protected by a password. To configure the
Edge agent, use the following command: azure-iot-edge-runtime-ctl.py -configure

e settings.createOptions — A string that is passed directly to the Docker daemon when starting a module’s
container. Adding Docker options in this property allows for advanced options like port forwarding or
mounting volumes into a module’s container.

e status — The state in which the Edge agent places the module. This value is usually set to running as most
people want the Edge agent to immediately start all modules on the device. However, you could specify the
initial state of a module to be stopped and wait for a future time to tell the Edge agent to start a module. The
Edge agent reports the status of each module back to the cloud in the reported properties. A difference
between the desired property and the reported property is an indicator or a misbehaving device. The

supported statuses are:
o Downloading
o Running
o Unhealthy
o Failed
o Stopped
e restartPolicy — How the Edge agent restarts a module. Possible values include:
o Never — The Edge agent never restarts the module.

o onFailure - If the module crashes, the Edge agent restarts it. If the module shuts down cleanly, the Edge
agent does not restart it.

o Unhealthy - If the module crashes or is deemed unhealthy, the Edge agent restarts it.
o Always - If the module crashes, is deemed unhealthy, or shuts down in any way, the Edge agent restarts
it.
loT Edge agent sends runtime response to 1oT Hub. Here is a list of possible responses:

e 200-0K

® 400 - The deployment configuration is malformed or invalid.

® 417 - The device does not have a deployment configuration set.

® 412 - The schema version in the deployment configuration is invalid.
e 406 - The edge device is offline or not sending status reports.

e 500 - An error occurred in the edge runtime.

Security

The loT Edge agent plays a critical role in the security of an loT Edge device. For example, it performs actions like
verifying a module's image before starting it. These features will be added at general availability of V2 features.

Next steps

e Understand Azure loT Edge modules

Understand loT Edge deployments for single devices

or at scale - preview

1/12/2018 « 7 min to read « Edit Online

Azure |oT Edge devices follow a device lifecycle that is similar to other types of loT devices:

1. loT Edge devices are provisioned, which involves imaging a device with an OS and installing the loT Edge
runtime.
2. The devices are configured to run loT Edge modules, and then monitored for health.

3. Finally, devices may be retired when they are replaced or become obsolete.

Azure |oT Edge provides two ways to configure the modules to run on loT Edge devices: one for development
and fast iterations on a single device (that you used in the Azure loT Edge tutorials), and one for managing large
fleets of loT Edge devices. Both of these approaches are available in the Azure Portal and programmatically.

This article focuses on the configuration and monitoring stages for fleets of devices, collectively referred to as loT
Edge deployments. The overall deployment steps are as follows:

1. An operator defines a deployment that describes a set of modules as well as the target devices. Each
deployment has a deployment manifest that reflects this information.

2. The loT Hub service communicates with all targeted devices to configure them with the desired modules.

3. The loT Hub service retrieves status from the loT Edge devices and surfaces those for the operator to monitor.
For example, an operator can see when an Edge device is not configured successfully or if a module fails
during runtime.

4. Atany time, new loT Edge devices that meet the targeting conditions are configured for the deployment. For
example, a deployment that targets all loT Edge devices in Washington State automatically configures a new
loT Edge device once it is provisioned and added to the Washington State device group.

This article walks through each component involved in configuring and monitoring a deployment. For a
walkthrough of creating and updating a deployment, see Deploy and monitor loT Edge modules at scale.

Deployment

A deployment assigns loT Edge module images to run as instances on a targeted set of loT Edge devices. It works
by configuring an l1oT Edge deployment manifest to include a list of modules with the corresponding initialization
parameters. A deployment can be assigned to a single device (usually based on Device Id) or to a group of devices
(based on tags). Once an loT Edge device receives a deployment manifest, it downloads and installs the module
container images from the respective container repositories, and configures them accordingly. Once a deployment
is created, an operator can monitor the deployment status to see whether targeted devices are correctly
configured.

Devices need to be provisioned as loT Edge devices to be configured with a deployment. The following are
prerequisites, and are not included in the deployment:

® The base operating system
e Docker

e Provisioning of the 10T Edge runtime

Deployment manifest

A deployment manifest is a JSON document that describes the modules to be configured on the targeted loT

Edge devices. It contains the configuration metadata for all the modules, including the required system modules
(specifically the 1oT Edge agent and loT Edge hub).

The configuration metadata for each module includes:

e Version

e Type

e Status (e.g. Running or Stopped)
e Re-start policy

e |mage and container repository

e Routes for data input and output

Target condition

The target condition is continuously evaluated to include any new devices that meet the requirements or remove
devices that no longer do through the life time of the deployment. The deployment will be reactivated if the
service detects any target condition change. For instance, you have a deployment A which has a target condition
tags.environment = 'prod'. When you kick off the deployment, there are 10 prod devices. The modules are
successfully installed in these 10 devices. The loT Edge Agent Status is shown as 10 total devices, 10 successfuly
responses, 0 failure responses, and 0 pending responses. Now you add 5 more devices with tags.environment =
'prod'. The service detects the change and the 10T Edge Agent Status becomes 15 total devices, 10 successfuly
responses, 0 failure responses, and 5 pending responses when it tries to deploy to the five new devices.

Use any Boolean condition on device twins tags or deviceld to select the target devices. If you want to use
condition with tags, you need to add "tags":{} section in the device twin under the same level as properties. Learn

more about tags in device twin
Target condition examples:

e deviceld ='"linuxprod1

e tags.environment ='prod’

e tags.environment = 'prod' AND tags.location = 'westus'
e tags.environment = 'prod' OR tags.location = 'westus'

e tags.operator = 'John' AND tags.environment = 'prod' NOT deviceld = 'linuxprod1"
Here are some constrains when you construct a target condition:

e |n device twin, you can only build a target condition using tags or deviceld.
e Double quotes aren't allowed in any portion of the target condition. Please use single quotes.

e Single quotes represent the values of the target condition. Therefore, you must escape the single quote with
another single quote if it's part of the device name. For example, the target condition for: operator'sDevice
would need to be written as deviceld="operator“sDevice'.

e Numbers, letters and the following characters are allowed in target condition values:-.+%_#*?1(),=@;$

Priority

A priority defines whether a deployment should be applied to a targeted device relative to other deployments. A
deployment priority is a positive integer, with larger numbers denoting higher priority. If an loT Edge device is
targeted by more than one deployment, the deployment with the highest priority applies. Deployments with lower
priorities are not applied, nor are they merged. If a device is targeted with two or more deployments with equal
priority, the most recently created deployment (determined by the creation timestamp) applies.

Labels

Labels are string key/value pairs that you can use to filter and group of deployments. A deployment may have
multiple labels. Labels are optional and do no impact the actual configuration of loT Edge devices.

Deployment status

A deployment can be monitored to determine whether it applied successfully for any targeted loT Edge device. A
targeted Edge device will appear in one or more of the following status categories:

e Target shows the loT Edge devices that match the Deployment targeting condition.
e Actual shows the targeted loT Edge devices that are not targeted by another deployment of higher priority.

e Healthy shows the loT Edge devices that have reported back to the service that the modules have been
deployed successfully.

e Unhealthy shows the |oT Edge devices have reported back to the service that one or modules have not been
deployed successfully. To further investigate the error, connect remotely to that devices and view the log files.

e Unknown shows the |oT Edge devices that did not report any status pertaining this deployment. To further
investigate, view service info and log files.

Phased rollout

A phased rollout is an overall process whereby an operator deploys changes to a broadening set of loT Edge
devices. The goal is to make changes gradually to reduce the risk of making wide scale breaking changes.

A phased rollout is executed in the following phases and steps:

1. Establish a test environment of loT Edge devices by provisioning them and setting a device twin tag like
tag.environment="test' . The test environment should mirror the production environment that the deployment

will eventually target.

2. Create a deployment including the desired modules and configurations. The targeting condition should target
the test 1oT Edge device environment.

3. Validate the new module configuration in the test environment.

4. Update the deployment to include a subset of production loT Edge devices by adding a new tag to the
targeting condition. Also, ensure that the priority for the deployment is higher than other deployments
currently targeted to those devices

5. Verify that the deployment succeeded on the targeted loT Devices by viewing the deployment status.

6. Update the deployment to target all remaining production loT Edge devices.

Rollback

Deployments can be rolled back in case of errors or misconfigurations. Because a deployment defines the
absolute module configuration for an loT Edge device, an additional deployment must also be targeted to the
same device at a lower priority even if the goal is to remove all modules.

Perform rollbacks in the following sequence:

1. Confirm that a second deployment is also targeted at the same device set. If the goal of the rollback is to
remove all modules, the second deployment should not include any modules.

2. Modify or remove the target condition expression of the deployment you wish to roll back so that the devices
no longer meet the targeting condition.

3. Verify that the rollback succeeded by viewing the deployment status.
e The rolled-back deployment should no longer show status for the devices that were rolled back.

e The second deployment should now include deployment status for the devices that were rolled back.

Next steps

e Walk through the steps to create, update, or delete a deployment in Deploy and monitor loT Edge modules at
scale.

e Learn more about other 10T Edge concepts like the IoT Edge runtime and loT Edge modules.

How an loT Edge device can be used as a gateway -

preview

2/15/2018 « 4 min to read « Edit Online

The purpose of gateways in |oT solutions is specific to the solution and combine device connectivity with edge
analytics. Azure loT Edge can be used to satisfy all needs for an loT gateway regardless of whether they are related
to connectivity, identity, or edge analytics. Gateway patterns in this article only refer to characteristics of
downstream device connectivity and device identity, not how device data is processed on the gateway.

Patterns

There are three patterns for using an loT Edge device as a gateway: transparent, protocol translation, and identity
translation:

e Transparent — Devices that theoretically could connect to IoT Hub can connect to a gateway device instead.
This implies that the downstream devices have their own loT Hub identities and are using any of the MQTT,
AMQP, or HTTP protocols. The gateway simply passes communications between the devices and loT Hub. The
devices are unaware that they are communicating with the cloud via a gateway and a user interacting with the
devices in loT Hub is unaware of the intermediate gateway device. Thus, the gateway is transparent. Refer to the
Create a transparent gateway how-to for specifics on using an loT Edge device as a transparent gateway.

e Protocol translation — Devices that do not support MQTT, AMQP, or HTTP use a gateway device to send data
to loT Hub. The gateway is smart enough to understand that protocol used by the downstream devices;
however it is the only device that has identity in 10T Hub. All information looks like it is coming from one device,
the gateway. This implies that downstream devices must embed additional identifying information in their
messages if cloud applications want to reason about the data on a per device basis. Additionally, loT Hub
primitives like twin and methods are only available for the gateway device, not downstream devices.

o Identity translation - Devices that cannot connect to loT Hub connect to a gateway device which provides loT
Hub identity and protocol translation on behalf of the downstream devices. The gateway is smart enough to
understand the protocol used by the downstream devices, provide them identity, and translate loT Hub
primitives. Downstream devices appear in loT Hub as first-class devices with twins and methods. A user can
interact with the devices in 10T Hub and is unaware of the intermediate gateway device.

Transparent

gatewayl

F MQTT, AMQP, HTTP

loT Hub

. e O
MQTT, AMOQP

Azure loT Edge runtime

device3

=

Legical device connections are

All devices and the gateway
have loT Hub identities.

mult ed over one physical
Azure loT Edge runtime passes connection.
vices hold their own loT Hub communications betwee
C e identity and speak a and loT Hub
protocol understood by loT Hub.
Protocol translation gaewsy
..... Module
| BLE, BACnet, .
""" L Modbus, OPC-UA loT Hub
devices/
------ . Proprietary ' device specific protocols. . I - gateway
""" | MQTT, AMQP
Devices do not hold thei i
IaT Hub Azure loT Edge runtime
speak a variety of protocals.
There is anly one connection for y device
the gateway. s implies
it is the only device which has a
twin.
Identity translation e
Modules do the work of
ng the native
----- BLE, BAChet, Module by the device a:
—* ng loT Huk
l Modbus, OPC-UA . es, storing laT Hub
----- seiie Proprietary - ating
q L Sl S—
q : P — 3T Hub ¢
protocol specific functionality.
I — Y MQTT, AMQP
. ——————
Azure loT Edge runtime —
B —
device connections are All devices and the gateway
exed over one physical have loT Hub identities.
connection.

Use cases

All gateway patterns provide the following benefits:

e Edge analytics — Use Al services locally to process data coming from downstream devices without sending full

fidelity telemetry to the cloud. Find and react to insights locally and only send a subset of data to loT Hub.

e Downstream device isolation — The gateway device can shield all downstream devices from exposure to the

internet. It can sit in between an OT network which does not have connectivity and an IT network which

provides access to the web.

e Connection multiplexing - All devices connecting to loT Hub through an loT Edge device will use the same

underlying connection.

e Traffic smoothing - The |oT Edge device will automatically implement exponential backoff in case of loT Hub

throttling, while persisting the messages locally. This will make your solution resilient to spikes in traffic.

o Limited offline support - The gateway device will store locally messages and twin updates that cannot be

delivered to loT Hub.

A gateway does protocol translation can also perform edge analytics, device isolation, traffic smoothing, and offline

support to existing devices and new devices that are resource constrained. Many existing devices are producing

data that can power business insights; however they were not designed with cloud connectivity in mind. Opaque

gateways allow this data to be unlocked and utilized in an end to end 0T solution.

A gateway that does identity translation provide the benefits of protocol translation and additionally allow for full

manageability of downstream devices from the cloud. All devices in your |oT solution show up in loT Hub

regardless of the protocol with they speak.

Cheat sheet

Here is a quick cheat sheet that compares loT Hub primitives when using transparent, opaque, and proxy

gateways.
TRANSPARENT GATEWAY PROTOCOL TRANSLATION IDENTITY TRANSLATION
Identities stored in the loT Identities of all connected Only the identity of the Identities of all connected
Hub identity registry devices gateway device devices
Device twin Each connected device has Only the gateway has a Each connected device has
its own device twin device and module twins its own device twin
Direct methods and cloud- The cloud can address each The cloud can only address The cloud can address each
to-device messages connected device individually the gateway device connected device individually
loT Hub throttles and Apply to each device Apply to the gateway device Apply to each device
quotas

When using an opaque gateway (protocol translation) pattern, all devices connecting through that gateway share
the same cloud-to-device queue, which can contain at most 50 messages. It follows that the opaque gateway
pattern should be used only when very few devices are connecting through each field gateway, and their cloud-to-
device traffic is low.

Next steps

Use an |loT Edge device as a transparent gateway

Securing Azure loT Edge - preview

11/15/2017 + 6 min to read ¢ Edit Online

Securing the intelligent edge is necessary to confer confidence in the operation of an end to end IoT solution.
Azure |oT Edge is designed for security that is extensible to different risk profiles, deployment scenarios, and offers
the same protection that you expect from all Azure services.

Azure loT Edge runs on different hardware, supports both Linux and Windows, and is applicable to diverse
deployment scenarios. Assessed risk depends on many considerations including solution ownership, deployment
geography, data sensitivity, privacy, application vertical, and regulatory requirements. Rather than offering concrete
solutions to specific scenarios, it makes sense to design an extensible security framework based on well-grounded
principles designed for scale.

This article provides an overview of the security framework. For more information, see Securing the intelligent

edge.

NOTE
The security framework described below is being add to the product now and will be available at the general availability
release of Azure |oT Edge. The product is currently in public preview, a release intended to allow development and

prototyping of edge solutions, not full production deployments that need the full security framework.

Standards

Standards promote ease of scrutiny and ease of implementation, which are the hallmark of security. A well
architected security solution should lend itself to scrutiny under evaluation to build trust and should not be a hurdle
to deployment. The design of the framework to secure Azure |oT Edge emanates from time-tested and industry
proven security protocols to leverage familiarity and reuse.

Authentication

Knowing without a doubt what actors, devices, and components are participating in the delivery of value through
an end to end loT solution is paramount in building trust. Such knowledge offers secure accountability of
participants to enabling basis for admission. Azure 10T Edge attains this knowledge through authentication. The
primary mechanism for authentication for the Azure loT Edge platform is certificate-based authentication. This
mechanism derives from a set of standards governing Public Key Infrastructure (PKiX) by the Internet Engineering
Task Force (IETF).

The Azure loT Edge security framework calls for unique certificate identities for all devices, modules (containers
that encapsulate logic within the device), and actors interacting with the Azure loT Edge device be it physically or
through a network connection. Not every scenario or component may lend itself to certificate-based authentication
for which the extensibility of the security framework offers secure avenues for accommodation.

Authorization

The ability to delegate authority and control access is crucial towards achieving a fundamental security principle —
the principle of least privilege. Devices, modules, and actors may gain access only to resources and data within their
permission scope and only when it is architecturally allowable. This means some permissions are configurable with
sufficient privileges and others architecturally enforced. For example, while a module may be authorized through
privileged configuration to initiate a connection to Azure 10T Hub, there is no reason why a module in one Azure

loT Edge device should access the twin of a module in another Azure |oT Edge device. For this reason, the latter
would be architecturally precluded.

Other authorization schemes include certificate signing rights, and role-based access control (RBAC). The
extensibility of the security framework permits adoption of other mature authorization schemes.

Attestation

Attestation ensures the integrity of software bits. It is important for the detection and prevention of malware. The
Azure loT Edge security framework classifies attestation under three main categories:

e Static attestation
e Runtime attestation

e Software attestation

Static attestation

Static attestation is the verification of the integrity of all software bits including the operating systems, all runtimes,
and configuration information at device power-up. It is often referred to as secure boot. The security framework for
Azure |oT Edge devices extends to silicon vendors and incorporates secure hardware ingrained capabilities to
assure static attestation processes. These processes include secure boot and secure firmware upgrade processes.
Working in close collaboration with silicon vendors eliminates superfluous firmware layers thereby minimizing the
threat surface.

Runtime attestation

Once a system has completed a validated boot process and is up and running, well designed secure systems would
detect attempts to inject malware through the systems ports and interfaces and take proper countermeasures. For
intelligent edge devices in physical custody of malicious actors, it is possible to inject malcontent through means
other than device interfaces like tampering and side-channel attacks. Such malcontent, which can be in the form of
malware or unauthorized configuration changes, would normally not be detected by the secure boot process
because they happen after the boot process. Countermeasures offered or enforced by the device's hardware greatly
contributes towards warding off such threats. The security framework for Azure loT Edge explicitly calls out for
extensions for combatting runtime threats.

Software attestation

All healthy systems including intelligent edge systems must be amenable to patches and upgrades. Security is
important for the update processes otherwise they can be potential threat vectors. The security framework for
Azure loT Edge calls for updates through measured and signed packages to assure the integrity and authenticate
the source of the packages. This is applicable to all operating systems and application software bits.

Hardware root of trust

For many deployments of intelligent edge devices, especially those deployed in places where potential malicious
actors have physical access to the device, security offered by the device hardware is the last defense for protection.
For this reason, anchoring trust in tamper resistant hardware is most crucial for such deployments. The security
framework for Azure loT Edge entails collaboration of secure silicon hardware vendors to offer different flavors of
hardware root of trust to accommodate various risk profiles and deployment scenarios. These include use of secure
silicon adhering to common security protocol standards like Trusted Platform Module (ISO/IEC 11889) and
Trusted Computing Group's Device Identifier Composition Engine (DICE). These also include secure enclave
technologies like TrustZones and Software Guard Extensions (SGX).

Certification

To help customers make informed decisions when procuring Azure loT Edge devices for their deployment, the
Azure loT Edge framework includes certification requirements. Foundational to these requirements are

certifications pertaining to security claims and certifications pertaining to validation of the security implementation.
For example, a security claim certification would inform that the loT Edge device uses secure hardware known to
resist boot attacks. A validation certification would inform that the secure hardware was properly implemented to
offer this value in the device. In keeping with the principle of simplicity, the framework offers the vision of keeping
the burden of certification minimal.

Extensibility

Extensibility is a first-class citizen in the Azure loT Edge security framework. With 10T technology driving different
types of business transformations, it stands to reason that security should seamlessly evolve in lockstep to address
emerging scenarios. The Azure loT Edge security framework starts with a solid foundation on which it builds in
extensibility into different dimensions to include:

e First party security services like the Device Provisioning Service for Azure loT Hub.

e Third-party services like managed security services for different application verticals (like industrial or
healthcare) or technology focus (like security monitoring in mesh networks or silicon hardware attestation
services) through a rich network of partners.

e Legacy systems to include retrofitting with alternate security strategies, like using secure technology other than
certificates for authentication and identity management.

e Secure hardware for seamless adoption of emerging secure hardware technologies and silicon partner
contributions.

These are just a few examples of dimensions for extensibility and Azure loT Edge security framework is designed to
be secure from the ground up to support this extensibility.

In the end, the highest success in securing the intelligent edge results from collaborative contributions from an
open community driven by the common interest in securing 1oT. These contributions might be in the form of
secure technologies or services. The Azure loT Edge security framework offers a solid foundation for security that
is extensible for the maximum coverage to offer the same level of trust and integrity in the intelligent edge as with
Azure cloud.

Next steps

Read more about how Azure 10T Edge is Securing the intelligent edge.

Glossary of loT Edge terms

2/15/2018 « 3 min to read « Edit Online

This article lists some of the common terms used in the loT Edge articles.

Automatic Device Management

Automatic Device Management in Azure loT Hub automates many of the repetitive and complex tasks of
managing large device fleets over the entirety of their lifecycles. With Automatic Device Management, you can
target a set of devices based on their properties, define a desired configuration, and let loT Hub update devices
whenever they come into scope. Consists of automatic device configurations and loT Edge automatic deployments.

loT Edge

Azure loT Edge enables cloud-driven deployment of Azure services and solution-specific code to on-premises
devices. loT Edge devices can aggregate data from other devices to perform computing and analytics before the
data is sent to the cloud. For more information please see Azure |oT Edge.

loT Edge agent

The part of the loT Edge runtime responsible for deploying and monitoring modules.

loT Edge device

loT Edge devices have the 10T Edge runtime installed and are flagged as “loT Edge device” in the device details.
Learn how to deploy Azure loT Edge on a simulated device in Linux - preview.

loT Edge automatic deployment

An loT Edge automatic deployment configures a target set of 10T Edge devices to run a set of loT Edge modules.
Each deployment continuously ensures that all devices that match its target condition are running the specified set
of modules, even when new devices are created or are modified to match the target condition. Each loT Edge
device only receives the highest priority deployment whose target condition it meets. Learn more about |oT Edge
automatic deployment.

loT Edge deployment manifest

A Json document containing the information to be copied in one or more loT Edge devices' module twin(s) to
deploy a set of modules, routes and associated module desired properties.

loT Edge gateway device

An loT Edge device with downstream device. The downstream device can be either IoT Edge or not 10T Edge
device.

loT Edge hub

The part of the loT Edge runtime responsible for module to module communications, upstream (toward loT Hub)
and downstream (away from loT Hub) communications.

loT Edge leaf device

An |oT Edge device with no downstream device.

loT Edge module

An loT Edge module is a Docker container that you can deploy to 10T Edge devices. It performs a specific task, such
as ingesting a message from a device, transforming a message, or sending a message to an loT hub. It
communicates with other modules and sends data to the loT Edge runtime. Understand the requirements and tools
for developing loT Edge modules.

loT Edge module identity

A record in the loT Hub module identity registry detailing the existence and security credentials to be used by a
module to authenticate with an edge hub or [oT Hub.

loT Edge module image

The docker image that is used by the 1oT Edge runtime to instantiate module instances.

loT Edge module twin

A Json document persisted in the loT Hub that stores the state information for a module instance.

loT Edge priority

When two loT Edge deployments target the same device, the deployment with higher priority gets applied. If two
deployments have the same priority, the deployment with the later creation date gets applied. Learn more about
priority.

loT Edge runtime

loT Edge runtime includes everything that Microsoft distributes to be installed on an loT Edge device. It included
Edge agent, Edge hub and Edge CTL tool.

loT Edge set modules to a single device

An operation that copies the content of an loT Edge manifest on one device' module twin. The underlying APl is a
generic 'apply configuration', which simply takes an loT Edge manifest as an input.

loT Edge target condition

In an loT Edge deployment, Target condition is any Boolean condition on device twins' tags to select the target
devices of the deployment, e.g. "tag.environment = prod". The target condition is continuously evaluated to include
any new devices that meet the requirements or remove devices that no longer do. Learn more about target
condition

Next steps

e SeeloT Hub glossary
e Learn loT Edge module development

e Learn loT Edge deployment

