

CYIL1SM4000AA

LUPA 4000: 4 MegaPixel CMOS Image Sensor

Features

- 2048 x 2048 active pixels
- 12 µm x 12 µm square pixels
- Optical format: 24.6 mm x 24.6 mm
- Monochrome or Color digital output
- 15 fps frame rate at full resolution
- 2 on-chip 10-bit ADCs
- Random programmable windowing and sub-sampling modes
- Full snapshot shutter
- Binning (voltage averaging in X-direction)
- Limited supplies: Nominal 2.5V (some supplies require 3.3V)
- Serial to Parallel Interface (SPI)
- 0°C to 60°C operational temperature range
- 127-pin PGA package
- Power dissipation: < 200 mW</p>

Applications

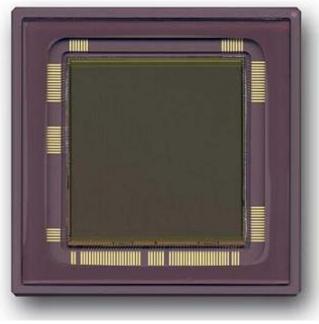
- Intelligent traffic system
- High speed machine vision

Overview

This document describes the interfacing and driving of the LUPA 4000 image sensor. This 4 mega-pixel CMOS active pixel sensor features synchronous shutter and a maximal frame rate of 15 fps in full resolution. The readout speed can be boosted by sub-sampling and windowed Region of Interest (ROI) readout.

Ordering Information

High dynamic range scenes can be captured using the double and multiple slope functionality.


The sensor is used with one or two outputs. Two on-chip 10-bit ADCs are used to convert the analog data to a 10-bit digital word stream. The sensor uses a 3-wire SPI. It is housed in a 127-pin ceramic PGA package.

This data sheet allows the user to develop a camera system based on the described timing and interfacing.

The LUPA 4000 is available in color and monochrome without the cover glass.

For engineering samples, contact imagesensors@cypress.com.

Figure 1. LUPA 4000 Photo

Marketing Part Number	Description	Package
CYIL1SM4000AA-GDC	Mono with Glass	
CYIL1SM4000AA-GDCN	Mono with Glass, Nitrogen filled	127 pin PGA
CYIL1SM4000AA-GWC	Mono without Glass	127 pill FGA
CYIL1SC4000AA-GDC	Color without Glass	
CYIL1SM4000-EVAL	Mono Demo Kit	Demo Kit

198 Champion Court

٠

San Jose, CA 95134-1709 • 408-943-2600 Revised September 18, 2009

Specifications

General Specifications

Table 1. General Specifications

Parameter	Specification
Active Pixels	2048 (H) x 2048 (V)
Pixel Size	12 μm x 12 μm
Pixel Type	6 Transistor Pixel
Pixel Rate	66 MHz using a 33 Mhz system clock and one or two parallel outputs
Shutter Type	Full Snapshot Shutter (integration during readout is possible)
Frame Rate	15 fps at 4.0 Mpixel (can be boosted by sub sampling and windowing)
Master Clock	33 MHz
Windowing (ROI)	Randomly programmable ROI read out
Read Out	Windowed, flipped, mirrored, and sub-sampled read out possible; voltage averaging in the x-direction
ADC Resolution	2 on-chip, 10 bit
Sensitivity	11.61 V/lux.s in the visible band only (180 lux=1 W/m ²)
Extended Dynamic Range	66 dB (2000:1) in single slope operation and up to 90 dB in multiple slope operation

Electro-Optical Specifications

Table 2. Electro-Optical Specifications

Parameter	Value
Conversion Gain	13.5 uV/e ⁻
Full Well Charge	27000e ⁻
Sensitivity	2090 V.m ² /W.s Average white light
Fill Factor	37.5%
Parasitic Light Sensitivity	<1/5000
Dark Noise	21e ⁻
QE x FF	37% at 680 nm
FPN	<1.25% rms of output signal amplitude of 1V
PRNU	<2.5% rms at 25% and 75% of output signal
Dark Signal	<140 mV/s at 21°C
Noise Electrons	< 40e ⁻
S/N Ratio	2000:1 at 66 dB (single slope operation)
MTF	64%
Power Dissipation	<200 mW (typical without ADCs)

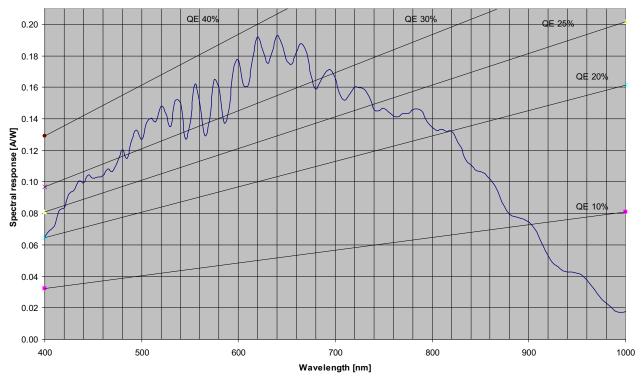


Figure 2. Spectral Response Curve for Mono

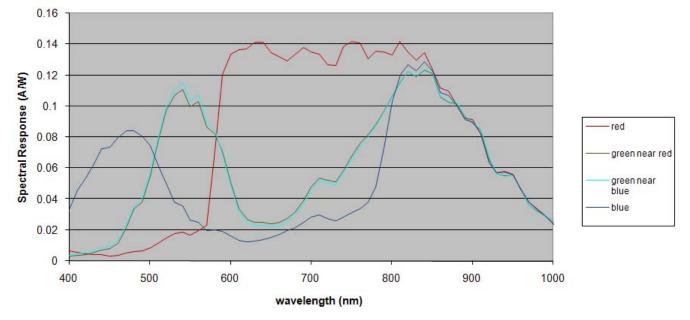


Figure 2 and Figure 3 show the spectral response characteristic. The curve is measured directly on the pixels. It includes effects of non sensitive areas in the pixel such as interconnection lines. The sensor is light sensitive between 400 nm and 1000 nm. The peak QE * FF is 37.5% approximately between 500 nm and 700 nm. In view of a fill-factor of 60%, the QE is thus larger than 60% between 500 nm and 700 nm.

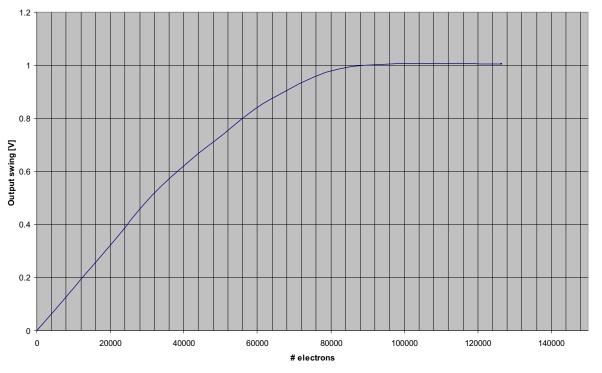


Figure 4. Photo-Voltaic Response Curve

Figure 4 shows the pixel response curve in linear response mode. This curve is the relation between the electrons detected in the pixel and the output signal. The resulting voltage-electron curve is independent of any parameters. The voltage to electrons conversion gain is $13.5 \ \mu\text{V/e}^2$.

Note that the upper part of the curve (near saturation) is actually a logarithmic response.

Electrical Specifications

Absolute Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device.

Table 3. Absolute Maximum Ratings^[1]

Symbol	Description	Min	Max	Units
Vdd	Core digital supply voltage	-0.5	2.9	V
Voo	Output stage power supply	-0.5	2.9	V
Vaa	Analog supply voltage	-0.5	2.9	V
Va3	Column readout module	-0.5	4.0	V
Vpix	Pixel supply voltage	-0.5	2.9	V
Vmem_I	Power supply memory element (low level)	-0.5	2.9	V
Vmem_h	Power supply memory element (high level)	-0.5	4.0	V
Vres	Power supply to the reset drivers	-0.5	4.0	V
Vres_ds	Power supply to the multiple slope reset drivers	-0.5	2.9	V
Vddd	Digital supply ADC circuitry	-0.5	2.9	V
Vdda	Analog supply ADC circuitry	-0.5	2.9	V
I _{IO}	DC supply current drain per pin, any single input or output	-50	50	mA
ΤL	Lead temperature (5 sec soldering)		350	°C
T _A	Ambient temperature range	0	60	°C
	ESD: Human Body Model and Charged Device Model		See Note [2]	•

Recommended Operating Conditions

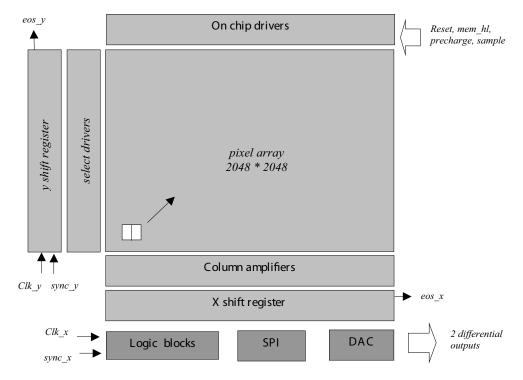
The following specifications apply for V_{DD} = +2.5V. Boldface limits apply for T_A = T_{MIN} to T_{MAX} , all other limits T_A =+25°C.

Table 4. Recommended Operating Conditions

Symbol	Power Supply	Min Supply Tolerance	Recommended Supply Voltage for Optimal Performance (V)	Max Supply Tolerance
Vdd	Core digital supply voltage	-10%	2.5	+10%
Voo	Output stage power supply	-10%	2.5	+10%
Vaa	Analog supply voltage	-10%	2.5	+10%
Va3	Column readout module	-1%	3.3	+1%
Vpix	Pixel supply voltage	-5%	2.6	+5%
Vmem_I	Power supply memory element (low level)	-5%	2.6	+5%
Vmem_h	Power supply memory element (high level)	-5%	3.3	+5%
Vres	Power supply to the reset drivers	-5%	3.5	+5%
Vres_ds	Power supply to the multiple slope reset drivers	-5%	2.5	+5%
Vddd	Digital supply ADC circuitry	-10%	2.5	+10%
Vdda	Analog supply ADC circuitry	-5%	2.5	+5%
Vpre_I	Power supply for precharge off-state	- 0.4V	0	0V

Notes

Absolute ratings are those values beyond which damage to the device may occur.
 The LUPA 4000 complies with JESD22-A114 HBM Class 0 and JESD22-C101 Class I. It is recommended that extreme care be taken while handling these devices to avoid damages due to ESD event.



Sensor Architecture

A schematic drawing of the architecture is given in Figure 5. The image core consists of a pixel array, one X-addressing and two Y-addressing registers (only one drawn), pixel array drivers and column amplifiers. The image sensor of 2048 x 2048 pixels is read out in progressive scan. One or two output amplifiers read out the image sensor. The output amplifiers are working at 66 MHz pixel rate nominal speed or each at 33 MHz pixel rate in

case the two output amplifiers are used to read out the imager. The complete image sensor is designed for operation up to 66 MHz.

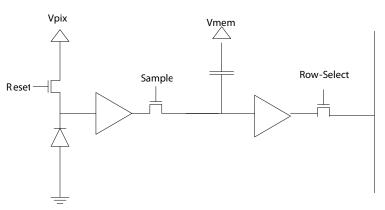

The structure allows having a programmable addressing in the x-direction in steps of two and in the y-direction in steps of two (only even start addresses in X-direction and Y-direction are possible). The starting point of the address is uploadable by means of the SPI

Figure 5. Block Diagram of Image Sensor

The 6T Pixel

To obtain the global shutter feature combined with a high sensitivity and good Parasitic Light Sensitivity (PLS), the pixel architecture given in Figure 6 is implemented.

Figure 6. 6T Pixel Architecture

This pixel architecture is designed in a 12 μ m x 12 μ m pixel pitch. The pixel is designed to meet the specifications described in Table 1 and Table 2.

Frame Rate and Windowing

Frame Rate

To acquire a frame rate of 15 frames/sec, the output amplifier should run at 66 MHz pixel rate or two output amplifiers should run at 33 MHz each, assuming a Row Overhead Time (ROT) of 200 ns.

The frame period of the LUPA 4000 sensor is calculated as follows:

Frame period = FOT + (Nr. Lines * (ROT + pixel period * Nr. Pixels) with: FOT: Frame Overhead Time = $5 \mu s$.

Nr. Lines: Number of Lines read out each frame (Y).

Nr. Pixels: Number of pixels read out each line (X).

ROT: ROT = 200 ns (nominal; can be further reduced).

Pixel period: 1/66 MHz = 15.15 ns.

Example read out of the full resolution at nominal speed (66 MHz pixel rate):

Frame period = 5 μ s + (2048 x (200 ns + 15.15 ns x 2048) = 64 ms \geq 15 fps.

ROI Readout (Windowing)

Windowing is achieved by a SPI in which the starting point of the x-address and y-address is uploaded. This downloaded starting point initiates the shift register in the x-direction and y-direction triggered by the Sync_x and Sync_y pulse. The minimum step size for the x-address and the y-address is 2 (only even start addresses can be chosen). The size of both address registers is 10-bits. For instance, when the addresses 000000001 and 000000001 are uploaded, the readout starts at line 2 and column 2.

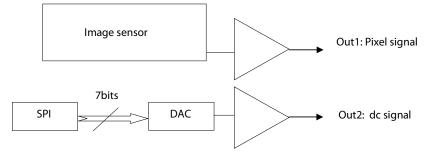

Table 5. Frame Rate as Function of ROI Read Out and Sub Sampling
--

Image Resolution (X*Y)	Frame Rate [frames f/S]	Frame Readout Time [mS]	Comment
2048 x 2048	15	67	Full resolution.
1024 x 2048	31	32	Subsample in X-direction.
1024 x 1024	62	16	ROI read out.
640 x 480	210	4.7	ROI read out.

Output Amplifier

The sensor has two output amplifiers. A single amplifier can be operated at 66 Mpixels/sec to bring the whole pixel array of 2048 by 2048 pixels at the required frame rate to the outside world. The second output amplifier can be enabled in parallel if the clock frequency is decreased to 33 Msamples/sec. Using only one output-stage, the output signal is the result of multiplexing between the two internal buses. When using two output-stages, both outputs are in phase. Each output-stage has two outputs. One output is the pixel signal; the second output is a DC signal which offset can be programmed using a 7-bit word. The DC signal is used for common mode rejection between the two signals. The disadvantage is an increase in power dissipation. However, this can be reduced by setting the highest DAC voltage by means of the SPI

Figure 7. Output Stage Architecture.

The output voltage of Out1 is between 1.3V (dark level) and 0.3V (white level) and depends on process variations and voltage

supply settings. The output voltage of Out2 is determined by the DAC.

Pixel Array Drivers

We have foreseen on this image sensor on-chip drivers for the pixel array signals. Not only the driving on system level is easy and flexible, also the maximum currents applied to the sensor are controlled on chip. This means that the charging on sensor level is fixed and that the sensor cannot be overdriven from externally. The operation of the on-chip drivers is explained in detail in Timing and Readout of Image Sensor on page 13.

Column Amplifiers

The column amplifiers are designed for minimum power dissipation and minimum loss of signal; for this reason, multiple biasing signals are required.

The column amplifiers also have the "voltage-averaging" feature integrated. In case of voltage averaging mode, the voltage average between two columns is taken and read out. In this mode only 2:1 pixels must be read out.

To achieve the voltage-averaging mode, an additional external digital signal called "voltage-averaging" is required in combination with a bit from the SPI.

Analog to Digital Converter

The LUPA 4000 has two 10-bit Flash analog to digital converters running nominally at 10 Msamples/s. The ADC block is electrically separated from the image sensor. The inputs of the ADC must be tied externally to the outputs of the output amplifiers. If the internal ADC is not used, then the power supply pins to the ADC and the I/Os must be grounded.

Even in this configuration, the internal ADCs are not able to sustain the 66 Mpixel/sec provided by the output amplifier when run at full speed.

One ADC samples the even columns and the other samples the odd columns. Although the input range of the ADC is between 1V and 2V and the output range of the analog signal is only between 0.3V and 1.3V, the analog output and digital input may be tied to each other directly. This is possible because there is an on-chip level-shifter located in front of the ADC to lift up the analog signal to the ADC range.

Table 6. ADC Specifications

Parameter	Specification
Input range	1V - 2V ^[3]
Quantization	10 Bits
Nominal data rate	10 Msamples/s
DNL (linear conversion mode)	Typ < 0.4 LSB RMS
INL (linear conversion mode)	Typ < 3.5 LSB
Input capacitance	< 2 pF
Power dissipation at 33 MHz	50 mW
Conversion law	Linear/Gamma-corrected

ADC Timing

The ADC converts the pixel data on the falling edge of the ADC_CLOCK but it takes 2 clock cycles before this pixel data is at the output of the ADC. This pipeline delay is shown in Figure 8.

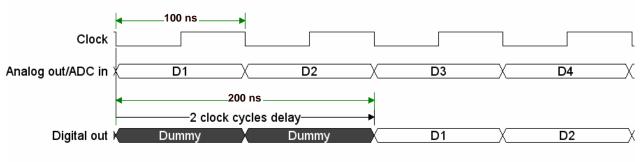
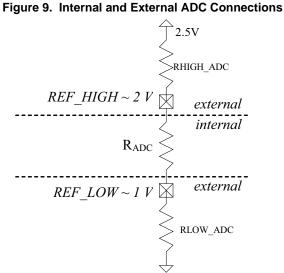


Figure 8. ADC Timing


First value at output

Note

3. The internal ADC range is typ. 50 mV lower then the external applied ADC_VHIGH and ADC_VLOW voltages due to voltage drops over parasitic internal resistors in the ADC.

Setting the ADC Reference Voltages

The internal resistor R_{ADC} has a value of approximately 300 Ω . This value of this resistor is not tested at sort or at final test. Tweaking may be required as the recommended resistors in Figure 9 are determined by trade-off between speed and power consumption.

Resistor	Typical Value (Ω)
R _{ADC_VHIGH}	75
R _{ADC}	300
R _{ADC_VLOW}	220

Synchronous Shutter

In a synchronous (snapshot) shutter, light integration takes place on all pixels in parallel although subsequent readout is sequential.

Figure 10. Synchronous Shutter Operation

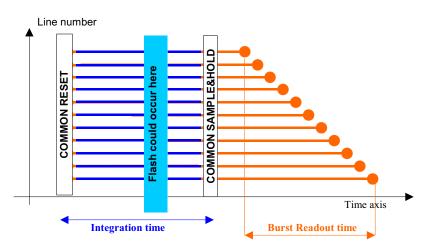
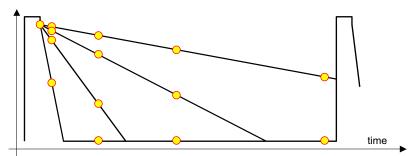


Figure 10 shows the integration and read out sequence for the synchronous shutter. All pixels are light sensitive at the same period of time. The whole pixel core is reset simultaneously and after the integration time all pixel values are sampled together on


the storage node inside each pixel. The pixel core is read out line by line after integration. Note that the integration and read out cycle can occur in parallel or in sequential mode (see Timing and Readout of Image Sensor on page 13).

Non Destructive Readout (NDR)

The sensor can also be read out in a non destructive way. After a pixel is initially reset, it can be read multiple times, without resetting. The initial reset level and all intermediate signals can be recorded. High light levels saturates the pixels quickly, but a useful signal is obtained from the early samples. For low light levels, use the latest samples.

Figure 11. Principle of NDR

Essentially an active pixel array is read multiple times and reset only once. The external system intelligence takes care of the interpretation of the data. Table 7 summarizes the advantages and disadvantages of non-destructive readout.

Table 7. Advantages and Disadvantages of NDR

Advantages	Disadvantages
Low noise, because it is true CDS.	System memory required to record the reset level and the intermediate samples.
High sensitivity, because the conversion capacitance is kept rather low.	Requires multiples readings of each pixel, thus higher data throughput.
High dynamic range, because the results includes signal for short and long integrations times.	Requires system level digital calculations.

Operation and Signalling

The different signals are classified into the following groups:

- Power supplies and grounds
- Biasing and analog signals
- Pixel array signals
- Digital signals
- Test signals

Power Supplies and Ground

Every module on chip including column amplifiers, output stages, digital modules, and drivers has its own power supply and ground. Off chip, the grounds can be combined, but not all power supplies may be combined. This results in several different power supplies, but this is required to reduce electrical cross-talk and to improve shielding, dynamic range, and output swing.

On chip, the ground lines of every module are kept separately to improve shielding and electrical cross talk between them.

An overview of the supplies is given in Table 8 and Table 9. Table 9 summarizes the supplies related to the pixel array signals and Table 8 summarizes the supplies related to all other modules

Name	DC Current	Max Current	Тур	Description
Vaa	7 mA	50 mA	2.5V	Power supply column readout module.
Va3	10 mA	50 mA	3.3V	Power supply column readout module. Should be tuneable to 3.3V max.
Vdd	1 mA	200 mA	2.5V	Power supply digital modules
Voo	20 mA	20 mA	2.5V	Power supply output stages
Vdda	1 mA	200 mA	2.5V	Analog supply of ADC circuitry
Vddd	1 mA	200 mA	2.5V	Digital supply of ADC circuitry

Table 8. Power Supplies

Name	DC Current	Max Current	Тур	Description
Vres	1 mA	200 mA	3.5V	Power supply reset drivers.
Vres_ds	1 mA	200 mA	2.5V	Power supply dual slope reset drivers.
Vmem_h	1 mA	200 mA	3.3V	Power supply memory elements in pixel for high voltage level
Vmem_I	1 mA	200 mA	2.6V	Power supply memory elements in pixel for low voltage level. Should be tuneable
Vdd	1 mA	200 mA	2.5V	Core digital supply voltage
Vpix	12 mA	500 mA	2.5V	Power supply pixel array
Vpre_I	1 mA	200 mA	0V	Power supply for Precharge in off-state. This pin may be connected to ground.

Table 9. Power Supplies Related to Pixel Signals

The maximum currents mentioned in Table 8 and Table 9 are peak currents which occur once per frame (except for Vres_ds in multiple slope mode). All power supplies should be able to deliver these currents except for Vmem_I and Vpre_I, which must be able to sink this current.

The maximum peak current for Vpix should not be higher than 500 mA. It is important to notice that no power supply filtering on chip is implemented and that noise on these power supplies can contribute immediately to the noise on the signal. The voltage supplies Vpix and Vaa must be noise free.

Startup Sequence

The LUPA 4000 goes in latch up (draw high current) as soon as all power supplies are turned on at the same time. The sensor comes out of latch up and starts working normally as soon as it is clocked. A power supply with a 400 mA limit is recommended to avoid damage to the sensor. It is recommended to avoid the time that the device is in the latch up state, so clocking of the sensor should start as soon as the system is turned on. To completely avoid latch up of the image sensor, the following sequence should be taken into account:

- 1. Apply Vdd
- 2. Apply clocks and digital pulses to the sensor to count 1024 clock_x and 2048 clock_y pulses to empty the shift registers
- 3. Apply other supplies

Biasing and Analog Signals

The analog output levels that may be expected are between 0.3V for a white, saturated, pixel and 1.3V for a black pixel.

Two output stages are foreseen, each consisting of two output amplifiers, resulting in four outputs. One output amplifier is used for the analog signal resulting from the pixels. The second amplifier is used for a DC reference signal. The DC level from the buffer is defined by a DAC, which is controlled by a 7-bit word downloaded in the SPI. Additionally, an extra bit in the SPI defines if one or two output stages are used.

Table 10 summarizes the biasing signals required to drive this image sensor. To optimize biasing of column amplifiers to power dissipation, several biasing resistors are required. This optimisation results in an increase of signal swing and dynamic range.

Signal	Comment	Related Module	DC Level
Out_load	Connect with 60 K $\!\Omega$ to Voo and capacitor of 100 nF to Gnd	Output stage	0.7 V
dec_x_load	Connect with 2 M Ω to Vdd and capacitor of 100 nF to Gnd	X-addressing	0.4 V
muxbus_load	Connect with 25 K Ω to Vaa and capacitor of 100 nF to Gnd	Multiplex bus	0.8 V
nsf_load	Connect with 5 K Ω to Vaa and capacitor of 100 nF to Gnd	Column amplifiers	1.2 V
uni_load_fast	Connect with 10 K $\!\Omega$ to Vaa and capacitor of 100 nF to Gnd	Column amplifiers	1.2 V
uni_load	Connect with 1 M Ω to Vaa and capacitor of 100 nF to Gnd	Column amplifiers	0.5 V
pre_load	Connect with 3 K Ω to Vaa and capacitor of 100 nF to Gnd	Column amplifiers	1.4 V
col_load	Connect with 1 M Ω to Vaa and capacitor of 100 nF to Gnd	Column amplifiers	0.5 V
dec_y_load	Connect with 2 M Ω to Vdd and capacitor of 100 nF to Gnd	Y-addressing	0.4 V
psf_load	Connect with 1 M Ω to Vaa and capacitor of 100 nF to Gnd	Column amplifiers	0.5 V
precharge_bias	Connect with $1k\Omega$ to Vdd and capacitor of at least 200 nF to Gnd	Pixel drivers	1.4V

Table 10. Overview of Bias Signals

Each biasing signal determines the operation of a corresponding module in the sense that it controls speed and dissipation. Some modules have two biasing resistors: one to achieve the high speed and another to minimize power dissipation.

Pixel Array Signals

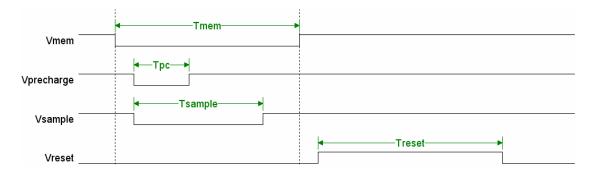
The pixel array of the image sensor requires digital control signals and several different power supplies. This section explains the relation between the control signals and the applied supplies and the internal generated pixel array signals.

Figure 12 illustrates that the internal generated pixel array signals are Reset, Sample, Precharge, Vmem, and Row_select. These are internal generated signals derived by on-chip drivers from external applied signals. Row_select is generated by the y addressing and is not be discussed in this section.

The function of each of the signals is:

Reset: Resets the pixel and initiates the integration time. If reset is high, then the photodiode is forced to a certain voltage. This depends on Vpix (pixel supply) and the high level of reset signal. The higher these signals or supplies, the higher the voltage-swing. The limitation on the high level of Reset and Vpix is 3.3V. Nevertheless, there is no use increasing Vpix without

increasing the reset level. The opposite is true. Additionally, it is this reset pulse that also controls the dual or multiple slope feature inside the pixel. By giving a reset pulse during integration, but not at full reset level, the photodiode is reset to a new value, only if this value is sufficient decreased due to light illumination.


The low level of reset is 0V, but the high level is 2.5V or higher (3.3V) for the normal reset and a lower (<2.5V) level for the multiple slope reset.

Precharge: Precharge serves as a load for the first source follower in the pixel and is activated to overwrite the current information on the storage node by the new information on the photodiode. Precharge is controlled by an external digital signal between 0 and 2.5V.

Sample: Samples the photodiode information onto the memory element. This signal is also a standard digital level between 0 and 2.5V.

Vmem: This signal increases the information on the memory element with a certain offset. This increases the output voltage variation. Vmem changes between Vmem_I (2.5V) and Vmem_h (3.3V).

Figure 12. Internal Timing of Pixel (Levels are defined by the pixel array voltage supplies; for correct polarities of the signals refer to Table 11)

The signals in Figure 12 are generated from the on-chip drivers. These on-chip drivers need two types of signals to generate the exact type of signal. It needs digital control signals between 0 and 3.3V (internally converted to 2.5V) with normal driving capability and power supplies. The control signals are required to indicate the moment they need to occur and the power supplies indicate the level.

Vmem is made of a control signal Mem_hl and 2 supplies Vmem_h and Vmem_I. If the signal Mem_hl is the logic '0' than the internal signal Vmem is low, if Mem_hl is logic '1' the internal signal Vmem is high.

Reset is made by means of two control signals: Reset and Reset_ds and two supplies: Vres and Vres_ds. Depending on the signal that becomes active, the corresponding supply level is applied to the pixel.

Table 11 summarizes the relation between the internal and external pixel array signals.

Table 11.	Overview o	f Internal and	External	Pixel Array	Signals
		i mitornar ano		I INCI AITU	Orginals

Internal Signal	Vlow	Vhigh	External Control Signal	Low DC Level	High DC Level
Precharge	0	0.45V	Precharge (AL)	Vpre_I	Controlled by bias-resistor
Sample	0	2.5V	Sample (AL)	Gnd	Vdd
Reset	0	2.5 to 3.3V	Reset (AH) and Reset_ds (AH)	Gnd	Vres and Vres_ds
Vmem	2.0 to 2.5V	2.5 to 3.3V	Mem_hl (AL)	Vmem_I	Vmem_h

In case the dual slope operation is desired, you need to give a second reset pulse to a lower reset level during integration. This is done by the control signal Reset_ds and by the power supply Vres_ds that defines the level to which the pixel has to be reset.

Note that Reset is dominant over Reset_ds, which means that the high voltage level is applied for reset, if both pulses occur at the same time.

Note that multiple slopes are possible having multiple Reset_ds pulses with a lower Vres_ds level for each pulse given within the same integration time

The rise and fall times of the internal generated signals are not very fast (200 ns). In fact they are made rather slow to limit the maximum current through the power supply lines (Vmem_h, Vmem_I, Vres, Vres_ds, Vdd). Current limitation of those power supplies is not required. Nevertheless, it is advisable to limit the currents not higher than 400 mA.

The power supply Vmem_I must be able to sink this current because it must be able to discharge the internal capacitance from the level Vmem_h to the level Vmem_I. The external control signals should be capable of driving input capacitance of about 10 pF.

Digital Signals

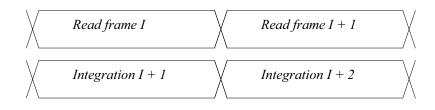
The digital signals control the readout of the image sensor. These signals are:

- Sync_y (AH^[4]): Starts the readout of the frame. This pulse synchronises the y-address register: active high. This signal is at the same time the end of the frame or window and determines the window width.
- Clock_y (AH^[4]): Clock of the y-register. On the rising edge of this clock, the next line is selected.
- Sync_x (AH^[4]): Starts the readout of the selected line at the address defined by the x-address register. This pulse synchronises the x-address register: active high. This signal is at the same time the end of the line and determines the window length.
- Clock_x (AH^[4]): Determines the pixel rate. A clock of 33 MHz is required to achieve a pixel rate of 66MHz.
- Spi_data ($AH^{[4]}$): the data for the SPI.
- Spi_clock (AH^[4]): clock of the SPI. This clock downloads the data into the SPI register.

- Spi_load (AH^[4]): when the SPI register is uploaded, then the data is internally available on the rising edge of SPI_load.
- Sh_kol (AL^[5]): control signal of the column readout. Is used in sample and hold mode and in binning mode.
- Norowsel (AH^[4]): Control signal of the column readout. (see Timing and Readout of Image Sensor).
- Pre_col (AL^[5]): Control signal of the column readout to reduce row blanking time.
- Voltage averaging (AH^[4]): Signal required obtaining voltage averaging of 2 pixels.

Test Signals

The test structures implemented in this image sensor are:


- Array of pixels (6*12) which outputs are tied together: used for spectral response measurement.
- Temperature diode (2): Apply a forward current of 10 μ A to 100 μ A and measure the voltage V_T of the diode. V_T varies linear with the temperature (V_T decreases with approximately 1.6 mV/°C).
- End of scan pulses (do not use to trigger other signals):
 - Eos_x: end of scan signal: is an output signal, indicating when the end of the line is reached. Is not generated when doing windowing.
 - Eos_y: end of scan signal: is an output signal, indicating when the end of the frame is reached. Is not generated when doing windowing.
 - □ Eos_spi: output signal of the SPI to check if the data is transferred correctly through the SPI.

Timing and Readout of Image Sensor

The timing of the LUPA 4000 sensor consists of two parts. The first part is related to the control of the pixels, the integration time, and the signal level. The second part is related to the readout of the image sensor. As full synchronous shutter is possible with this image sensor, integration time and readout can be in parallel or sequential.

In the parallel mode the integration time of the frame I is ongoing during readout of frame I-1. Figure 13 shows this parallel timing structure

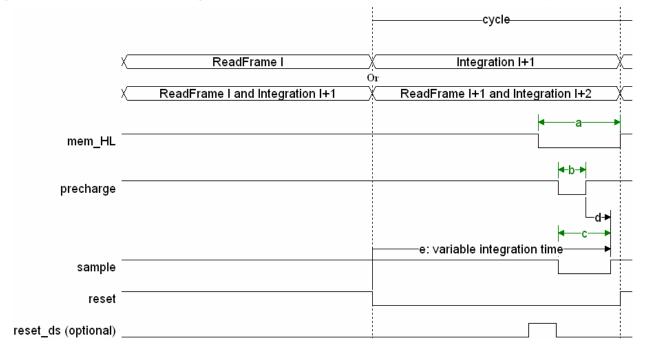
Figure 13. Integration and Readout in Parallel

Notes 4. AH: Active High 5. AL: Active Low

The control of the frame's readout and integration time are independent of each other with the only exception that the end of the integration time from frame I+1 is the beginning of the readout of frame I+1.

The LUPA 4000 sensor is also used in sequential mode (triggered snapshot mode) where readout and integration is sequential. Figure 14 shows this sequential timing.

Figure 14. Integration and Readout in Sequence


Timing of Pixel Array

The first part of the timing is related to the timing of the pixel array. This implies control of integration time, synchronous shutter operation, and sampling of the pixel information onto the memory element inside each pixel. The signals required for this control are described in Pixel Array Signals and in Figure 12.

Figure 15 shows the external applied signals required to control the pixel array. At the end of the integration time from frame I+1, the signals Mem_hl, Precharge, and Sample must be given. The reset signal controls the integration time, which is defined as the time between the falling edge of reset and the rising edge of sample.

Figure 15. Pixel Array Timing

(The integration time is determined by the falling edge of the reset pulse. The longer the pulse is high, the shorter the integration time. At the end of the integration time, the information has to be stored onto the memory element for readout.)

Timing Specifications for each signal are shown in Table 12.

- Falling edge of Precharge is equal or later than falling edge of Vmem.
- Sample is overlapping with precharge.
- Rising edge of Vmem is more than 200 ns after rising edge of Sample.
- Rising edge of reset is equal or later than rising edge of Vmem.

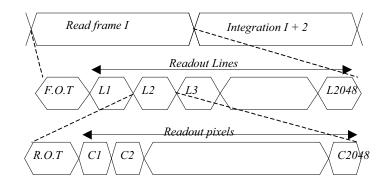
Table 12. Timing specifications

Symbol	Name	Value
а	Mem_HL	5 - 8.2 μs
b	Precharge	3 - 6 μs
С	Sample	5 - 8 μs
d	Precharge-Sample	> 2 µs
е	Integration time	> 1 µs

Document Number: 38-05712 Rev. *D

The timing of the pixel array is straightforward. Before the frame is read, the information on the photodiode must be stored onto the memory element inside the pixels. This is done with the signals Mem_hl, Precharge, and Sample. When Precharge is activated, it serves as a load for the first source follower in the pixel. Sample stores the photodiode information onto the memory element. Mem_hl pumps up this value to reduce the loss of signal in the pixel and this signal must be the envelop of Precharge and Sample. After Mem_hl is high again, the readout of the pixel array starts. The frame blanking time or frame overhead time is thus the time that Mem_hl is low, which is about 5 µs. After the readout starts, the photodiodes can all be initialised by reset for the next integration time. The minimal integration time is the minimal time between the falling edge of reset and the rising edge of sample. Keeping the slow fall times of the corresponding internal generated signals in mind, the minimal integration time is about 2 µs.

An additional reset pulse of minimum 2 μ s can be given during integration by asserting Reset_ds to implement the double slope integration mode.


Readout of Image Sensor

As soon as the information of the pixels is stored in to the memory element of each pixel, it can be readout sequentially. Integration and readout can also be done in parallel.

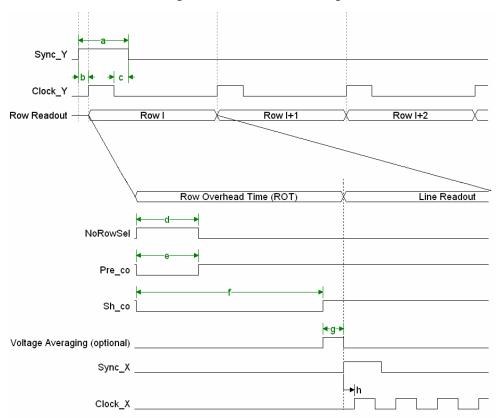
The readout timing is straightforward and is basically controlled by sync and clock pulses.

Figure 16 shows the top level concept of this timing. The readout of a frame consists of the frame overhead time, the selection of the lines sequentially, and the readout of the pixels of the selected line.

Figure 16. Readout of Image Sensor (F.O.T: Frame Overhead Time. R.O.T: Row Overhead Time. L: Selection of Line, C: Selection of Column)

The readout of an image consists of the FOT (Frame overhead time) and the sequential selection of all pixels. The FOT is the overhead time between two frames to transfer the information on the photodiode to the memory elements. Figure 15 shows that at this time Mem_hl is low (typically 5 μ s). After the FOT, the information is stored into the memory elements and a sequential selection of rows and columns makes sure the frame is read.

X and Y Addressing


To readout a frame the lines are selected sequentially. Figure 17 gives the timing to select the lines sequentially. This is done with

a Clock_y and Sync_y signal. The Sync_y signals synchronises the y-addressing and initialises the y-address selection registers. The start address is the address downloaded in the SPI multiplied by two.

On the rising edge of Clock_y the next line is selected. The Sync_y signal is dominant and from the moment it occurs the y-address registers are initialised. If a Sync_y pulse is given before the end of the frame is reached, only a part of the frame is read. To obtain a correct initialisation, Sync_y must contain at least one rising edge of Clock_y when it is active.

Symbol	Name	Value
а	Sync_Y	>20 ns
b	Sync_Y-Clock_Y	>0 ns
С	Clock_Y-Sync_Y	>0 ns
d	NoRowSel	>50 ns
e	Pre_col	>50 ns
f	Sh_col	200 ns
g	Voltage averaging	>20 ns
h	Sync_X-Clock_X	>0 ns

As soon as a new line is selected, it must be read out by the output amplifiers. Before the pixels of the selected line can be multiplexed onto the output amplifiers, wait for a certain time, indicated as the ROT or Row overhead time shown in Figure 17. This is the time to get the data stable from the pixels to the output bus before the output stages. This ROT is in fact lost time and rather critical in a high speed sensor. Different timings to reduce this ROT are explained later in this section.

During the selection of one line, 2048 pixels are selected. These 2048 pixels must be read out by one (or two) output amplifier.

Note that the pixel rate is the double frequency of the Clock_x frequency. To obtain a pixel rate of 66 MHz, apply a pixel clock Clock_x of 33MHz. When only one analog output is used, two pixels are output every Clock_x period. When Clock_x is high, the first pixel is selected; when Clock_x is low, the next pixel is selected. Consequently, during one complete period of Clock_x two pixels are read out by the output amplifier.

If two analog outputs are used each Clock-X period one pixel is presented at each output.

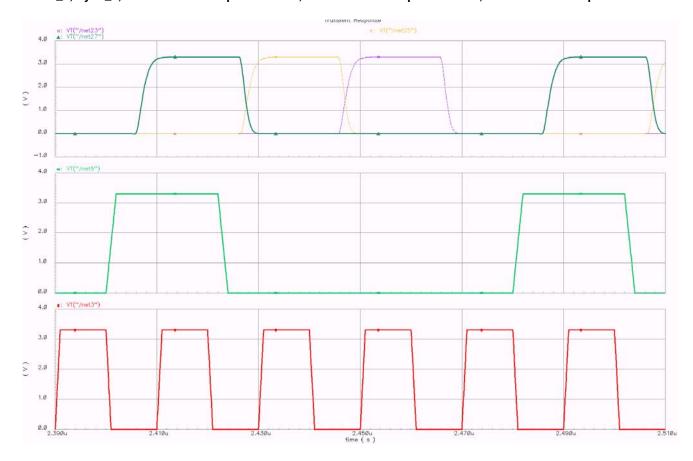


Figure 18. X-Addressing Clock_x, Sync_x, internal selection pixel 1 and 2, internal selection pixel 3 and 4, internal selection pixel 5 and 6

The first pixel selected is the x-address downloaded in the SPI. The starting address is the number downloaded into the SPI, multiplied with 2.

Windowing is achieved by a starting address downloaded in the SPI and the size of the window. In the x-direction, the size is determined by the moment a new Clock_y is given. In the y-direction, the sync_y pulse determines the size. The best way

to obtain a certain window is by using an internal counter in the controller.

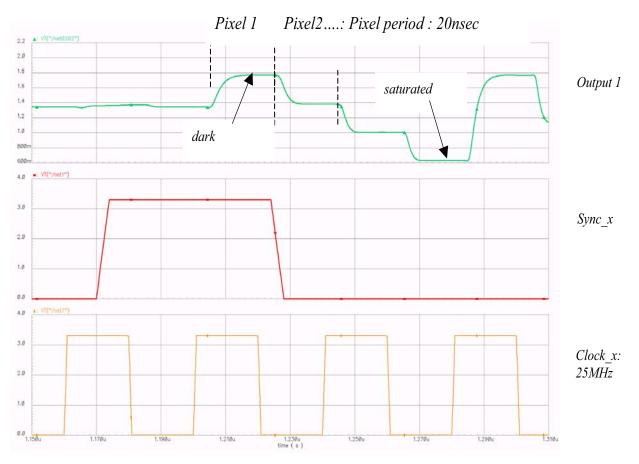
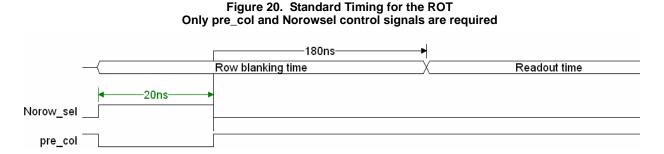

Figure 18 is the simulation result after extraction of the layout module from a different sensor to show the principle. In this figure the pixel clock has a frequency of 50 MHz, which results in a pixel rate of 100 Msamples/sec.

Figure 19 shows the relation between the applied Clock_x and the output signal.

Figure 19. Output Signal Related to Clock_x Signal From bottom to top: Clock_x, Sync_x and output. Output level before the first pixel is the level of the last pixel on previous line

As soon as Sync_x is high and one rising edge of Clock_x occurs, the pixels are brought to the analog outputs. This is again the simulation result of a comparable sensor to show the principle.


Note the time difference between the clock edge and the moment the data is seen at the output. As this time difference is very difficult to predict in advance, it is advisable to have the ADC sampling clock flexible to set an optimal Add sampling point. The time differences can easily vary between 5 ns and 15 ns and must be tested on the real devices.

Reduced ROT Timing

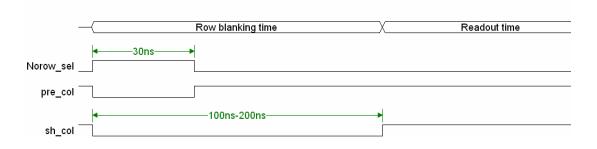
The row overhead time is the time between the selection of lines that you must wait to get the data stable at the column amplifiers. It is a loss in time, which should be reduced as much as possible.

Standard Timing (200 ns)

In this case, the control signals Norowsel and pre_col are made active for about 20 ns from the moment the next line is selected. The time these pulses must be active is related to the biasing resistance Pre_load. The lower this resistance, the shorter the pulse duration of Norowsel and pre_col may be. After these pulses are given, wait for at least 180 ns before the first pixel is sampled. For this mode Sh_col must be made active (low) all the time.

Backup Timing (ROT =100-200 ns)

A straightforward way of reducing the ROT is by using a sample and hold function.


By means of Sh_col the analog data is tracked during the first 100 ns during the selection of a new set of lines. After 100 ns,

the analog data is stored. The ROT is in this case reduced to 100 ns, but as the internal data is not stable yet, dynamic range is lost because not the complete analog levels are reached yet after 100 ns.

Figure 21 shows this principle. Sh_col is now a pulse of 100 ns-200 ns starting at the same moment as pre_col and Norowsel. The duration of Sh_col is equal to the ROT. The shorter this time the shorter the ROT; however, this also lowers the dynamic range.

In case "voltage averaging" is required, the sensor must work in this mode with Sh_col signal and a "voltage averaging" signal must be generated after Sh_col drops and before the readout starts (see Figure 17)

Precharging the Buses

This timing mode is exactly the same as the mode without sample and hold, except that the prebus1 and prebus2 signals are activated. Note that precharging of the buses can be combined with all of the timing modes discussed earlier. The idea is to have a short pulse of about 5 ns to precharge the output buses to a well known level. This mode makes the ghosting of bad columns impossible.

In this mode, Nsf_load must be made much larger (at least 1 $M\Omega).$

Figure 22. X and Y Addressing with Precharging of the Buses

Table 14. Read	lout Timing Specifica	ations with Precharch	ing of the Buses
----------------	-----------------------	-----------------------	------------------

Symbol	Name	Value
а	Sync_Y	>20 ns
b	Sync_Y-Clock_Y	>0 ns
С	Clock_Y-Sync_Y	>0 ns
d	NoRowSel	>50 ns
e	Pre_col	>50 ns
f	Sh_col	200 ns (or cst low, depending on timing mode)
g	Voltage averaging	>20 ns
h	Sync_X-Clock_X	>0 ns
i	Prebus pulse	As short as possible

Serial-Parallel-Interface (SPI)

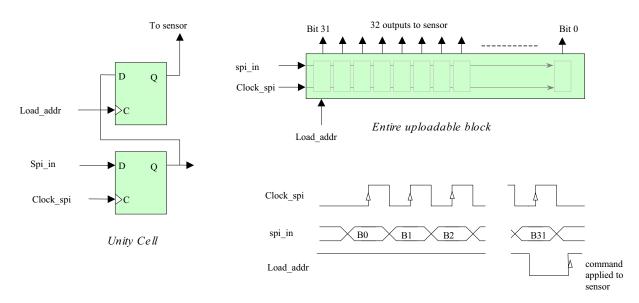

The SPI is required to upload the different modes. Table 15 shows the parameters and their bit position

Table 15. SPI parameters

Parameter	Bit #	Remarks
Y-direction	0	1: From bottom to top
Y-address	1-10	Bit 1 is LSB
X-voltage averaging enable	11	1: Enabled
X-subsampling	12	1: Subsampling
X-direction	13	0: From left to right
X-address	14-23	Bit 14 is LSB
Nr output amplifiers	24	0: 1 Output
DAC	25-31	Bit 25 is LSB

When all zeros are loaded into the SPI, the sensor starts at pixel 0,0. The scanning is from left to right and from top to bottom. There is no sub sampling or voltage averaging and only one output is used. The DAC has the lowest level at its output.

When using sub sampling, only even X-addresses may be applied.

Figure 23. SPI Block Diagram and Timing

Pin List

Table 16 is a list of all the pins and their functionalities.

Table 16. Pin List^[6, 7, 8]

Pad	Pin	Pin Name	Pin Type	Description
1	E1	sync_x	Input	Digital input. Synchronises the X-address register.
2	F1	eos_x	Testpin	Indicates when the end of the line is reached.
3	D2	vdd	Supply	Power supply digital modules.
4	G2	clock_x	Input	Digital input. Determines the pixel rate.
5	G1	eos_spi	Testpin	Checks if the data is transferred correctly through the SPI.
6	F2	spi_data	Input	Digital input. Data for the SPI.
7	H1	spi_load	Input	Digital input. Loads data into the SPI.
8	H2	spi_clock	Input	Digital input. Clock for the SPI.
9	J2	gndo	Ground	Ground output stages
10	J1	out2	Output	Analog output 2.
11	K1	out2DC	Output	Reference output 2.
12	M2	V00	Supply	Power supply output stages
13	L1	out1DC	Output	Reference output 1.
14	M1	out1	Output	Analog output 1.
15	N2	gndo	Ground	Ground output stages.
16	P1	vaa	Supply	Power supply analog modules.
17	P2	gnda	Ground	Ground analog modules.
18	N1	va3	Supply	Power supply column modules.
19	P3	vpix	Supply	Power supply pixel array.
20	Q1	psf_load	Input	Analog reference input. Biasing for column modules. Connect with R=1 $M\Omega$ to Vaa and decouple with C=100 nF to gnda.
21	Q2	nsf_load	Input	Analog reference input. Biasing for column modules. Connect with R=5 k Ω to Vaa and decouple with C=100 nF to gnda.
22	R1	muxbus_load	Input	Analog reference input. Biasing for multiplex bus. Connect with R=25 k Ω to Vaa and decouple with C=100 nF to gnda.
23	R2	uni_load_fast	Input	Analog reference input. Biasing for column modules. Connect with R=10 $k\Omega$ to Vaa and decouple with C=100 nF to gnda.
24	Q3	pre_load	Input	Analog reference input. Biasing for column modules. Connect with R=3 $k\Omega$ to Vaa and decouple with C=100 nF to gnda.
25	Q4	out_load	Input	Analog reference input. Biasing for output stage. Connect with R=60 k Ω to Vaa and decouple with C=100 nF to gnda.
26	N3	dec_x_load	Input	Analog reference input. Biasing for X-addressing. Connect with R=2 $M\Omega$ to Vdd and decouple with C=100 nF to gndd.
27	Q5	uni_load	Input	Analog reference input. Biasing for column modules. Connect with R=1 $M\Omega$ to Vaa and decouple with C=100 nF to gnda.
28	Q6	col_load	Input	Analog reference input. Biasing for column modules. Connect with R=1 $M\Omega$ to Vaa and decouple with C=100 nF to gnda.
29	Q7	dec_y_load	Input	Analog reference input. Biasing for Y-addressing. Connect with R=2 $M\Omega$ to Vdd and decouple with C=100 nF to gndd.
30	R3	vdd	Supply	Power supply digital modules.
31	M3	gndd	Ground	Ground digital modules.
32	L2	prebus1	Input	Digital input. Control signal to reduce readout time.

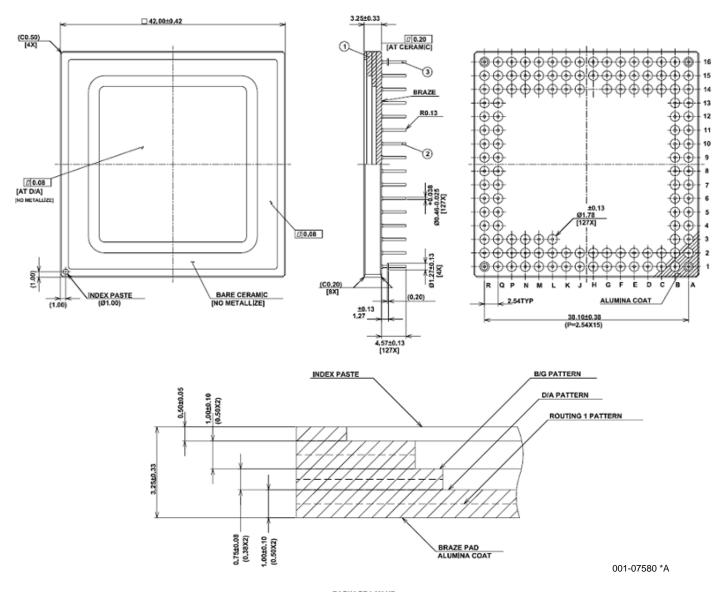
 Table 16. Pin List^[6, 7, 8] (continued)

Pad	Pin	Pin Name	Pin Type	Description
33	L3	prebus2	Input	Digital input. Control signal to reduce readout time.
34	Q8	sh_col	Input	Digital input. Control signal of the column readout.
35	R4	pre_col	Input	Digital input. Control signal of the column readout to reduce row-blanking time.
36	R5	norowsel	Input	Digital input. Control signal of the column readout.
37	R6	clock_y	Input	Digital input. Clock of the Y-addressing.
38	R7	sync_y	Input	Digital input. Synchronises the Y-address register.
39	K2	eos_y_r	Testpin	Indicates when the end of frame is reached when scanning in the 'right' direction.
40	Q9	temp_diode_p	Testpin	Anode of temperature diode.
41	Q10	temp_diode_n	Testpin	Cathode of temperature diode.
42	R8	vpix	Supply	Power supply pixel array.
43	R9	vmem_l	Supply	Power supply Vmem drivers.
44	R10	vmem_h	Supply	Power supply Vmem drivers.
45	R11	vres	Supply	Power supply reset drivers.
46	Q11	vres_ds	Supply	Power supply reset drivers.
47	R12	adc1_ref_low	Input	Analog reference input. Low reference voltage of ADC (see Figure 9 for exact resistor value).
48	Q12	adc1_linear_conv	Input	Digital input. 0= linear conversion; 1= gamma correction.
49	P15	adc1_bit_9	Output	Digital output 1 <9> (MSB).
50	Q14	adc1_bit_8	Output	Digital output 1 <8>.
51	Q15	adc1_bit_7	Output	Digital output 1 <7>.
52	R13	adc1_bit_6	Output	Digital output 1 <6>.
53	R14	adc1_bit_5	Output	Digital output 1 <5>.
54	R15	adc1_bit_4	Output	Digital output 1 <4>.
55	P14	adc1_bit_3	Output	Digital output 1 <3>.
56	Q13	adc1_bit_2	Output	Digital output 1 <2>.
57	R16	adc1_bit_1	Output	Digital output 1 <1>.
58	Q16	adc1_bit_0	Output	Digital output 1 <0> (LSB).
59	P16	adc1_clock	Input	ADC clock input.
60	N14	adc1_gndd	Supply	Digital GND of ADC circuitry.
61	N15	adc1_vddd	Supply	Digital supply of ADC circuitry (nominal 2.5V).
62	L16	adc1_gnda	Supply	Analog GND of ADC circuitry.
63	L15	adc1_vdda	Supply	Analog supply of ADC circuitry (nominal 2.5V).
64	N16	adc1_bit_inv	Input	Digital input. 0=no inversion of output bits; 1 = inversion of output bits.
65	M16	adc1_CMD_SS	Input	Analog reference input. Biasing of second stage of ADC. Connect to V_{DDA} with R=50 k Ω and decouple with C=100 nF to GNDa.
66	L14	adc1_nalog_in	Input	Analog input of first ADC.
67	M15	adc1_CMD_FS	Input	Analog reference input. Biasing of first stage of ADC. Connect to V_{DDA} with R=50 k Ω and decouple with C=100 nF to GNDa.
68	M14	adc1_ref_high	Input	Analog reference input. High reference voltage of ADC. (see Figure 9 for exact resistor value)
69	K14	vres_ds	Supply	Power supply reset drivers.
70	J14	vres	Supply	Power supply reset drivers.

 Table 16. Pin List^[6, 7, 8] (continued)

Pad	Pin	Pin Name	Pin Type	Description
71	J15	vpre_l	Supply	Power supply precharge drivers. Must be able to sink current. Can also be connected to ground.
72	J16	vdd	Supply	Power supply digital modules.
73	K15	vmem_h	Supply	Power supply Vmem drivers.
74	K16	vmem_l	Supply	Power supply Vmem drivers.
75	H15	adc2_ref_low	Input	Analog reference input. Low reference voltage of ADC. (see Figure 9 for exact resistor value)
76	H16	adc2_linear_conv	Input	Digital input. 0= linear conversion; 1= gamma correction.
77	G16	adc2_bit_9	Output	Digital output 2 <9> (MSB).
78	F16	adc2_bit_8	Output	Digital output 2 <8>.
79	E16	adc2_bit_7	Output	Digital output 2 <7>.
80	G15	adc2_bit_6	Output	Digital output 2 <6>.
81	G14	adc2_bit_5	Output	Digital output 2 <5>.
82	F14	adc2_bit_4	Output	Digital output 2 <4>.
83	E14	adc2_bit_3	Output	Digital output 2 <3>.
84	D16	adc2_bit_2	Output	Digital output 2 <2>.
85	E15	adc2_bit_1	Output	Digital output 2 <1>.
86	F15	adc2_bit_0	Output	Digital output 2 <0> (LSB).
87	D15	adc2_clock	Input	ADC clock input.
88	C15	adc2_gndd	Supply	Digital GND of ADC circuitry.
89	D14	adc2_vddd	Supply	Digital supply of ADC circuitry (nominal 2.5V).
90	B16	adc2_gnda	Supply	Analog GND of ADC circuitry.
91	B14	adc2_vdda	Supply	Analog supply of ADC circuitry (nominal 2.5V).
92	C16	adc2_bit_inv	Input	Digital input. 0=no inversion of output bits; 1 = inversion of output bits.
93	A16	adc2_CMD_SS	Input	Biasing of second stage of ADC. Connect to V_{DDA} with R=50 k Ω and decouple with C=100 nF to GNDa.
94	B15	adc2_analog_in	Input	Analog input 2 nd ADC.
95	A15	adc2_adc2_CMD_FS	Input	Analog reference input. Biasing of first stage of ADC. Connect to V_{DDA} with R=50 k Ω and decouple with C=100 nF to GNDa.
96	A14	adc2_ref_high	Input	Analog reference input. High reference voltage of ADC. (see Figure 9 for exact resistor value)
97	C14	vres_ds	Supply	Power supply reset drivers.
98	B13	vres	Supply	Power supply reset drivers.
99	A13	vmem_h	Supply	Power supply Vmem drivers.
100	A9	vmem_l	Supply	Power supply Vmem drivers.
101	A10	vpix	Supply	Power supply pixel array.
102	A11	reset	Input	Digital input. Control of reset signal in the pixel.
103	A12	reset_ds	Input	Digital input. Control of double slope reset in the pixel.
104	B7	mem_hl	Input	Digital input. Control of Vmem signal in pixel.
105	B8	precharge	Input	Digital input. Control of Vprecharge signal in pixel.
106	B9	sample	Input	Digital input. Control of Vsample signal in pixel.
107	B10	temp_diode_n	Testpin	Cathode of temperature diode.
108	B11	temp_diode_p	Testpin	Anode of temperature diode.

Table 16. Pin List^[6, 7, 8] (continued)


Pad	Pin	Pin Name	Pin Type	Description
109	B6	precharge_bias	Input	Analog reference input. Biasing for pixel array. (see Table 10 for exact resistor and capacitor value).
110	A8	photodiode	Testpin	Output photodiode.
111	A7	gndd	Ground	Ground digital modules.
112	B12	vdd	Supply	Power supply digital modules.
113	A6	eos_y_l	Testpin	Indicates when the end of frame is reached when scanning in the 'left' direction.
114	A1	sync_y	Input	Digital input. Synchronises the Y-address register.
115	A5	clock_y	Input	Digital input. Clock of the Y-addressing.
116	A2	norowsel	Input	Digital input. Control signal of the column readout.
117	A3	volt. averaging	Input	Digital input. Control signal of the voltage averaging in the column readout.
118	B5	pre_col	Input	Digital input. Control signal of the column readout to reduce row-blanking time.
119	A4	sh_col	Input	Digital input. Control signal of the column readout.
120	B1	prebus2	Input	Digital input. Control signal to reduce readout time.
121	B2	prebus1	Input	Digital input. Control signal to reduce readout time.
122	C1	dec_y_load	Input	Analog reference input. Biasing for Y-addressing.
123	D1	vpix	Supply	Power supply pixel array.
124	B4	va3	Supply	Power supply column modules.
125	B3	gnda	Ground	Ground analog modules.
126	C2	vaa	Supply	Power supply analog modules.
127	E2	gndd	Ground	Ground digital modules.

- Notes
 6. All pins with the same name can be connected together.
 7. All digital input are active high (unless mentioned otherwise).
 8. All unused inputs should be tied to a non active level (For example, V_{DD} or GND).

Package Drawing

Figure 24. LUPA 4000: 127 Pin PGA Package Drawing

Bonding Diagram

The die is bonded to the bonding pads of the package as shown in Figure 25.

Additional Package Information

- Die size: 25610 um X 27200 um
- Cavity pad: 27000 um X 29007 um
- Pixel 0,0 is located at 478 um from the left hand side of the die and 1366 um from the bottom side of the die.

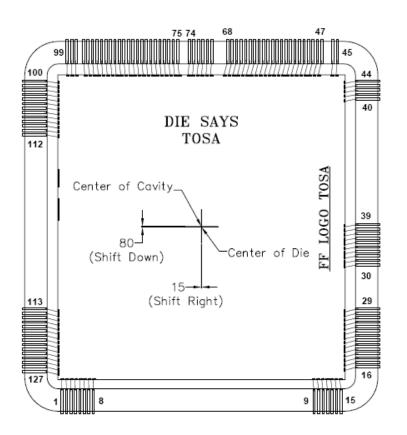
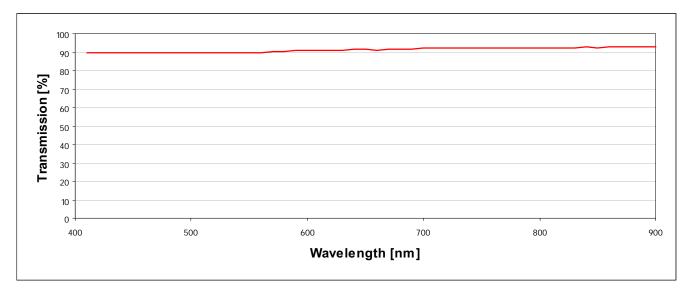
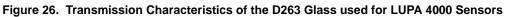


Figure 25. Bonding Pads Diagram of the LUPA 4000 Package

TOLERANCES:

- 1. Placement accurary: ± 50um
- 2. Tilt = ±1 degree
- 3. Rotation = ±1 degree
- 4. Center of die is exactly at 50% between the 2 outsides of two outer seal rings.
- 5. Center of cavity is exactly at 50% between the inside edges of the finger pads.
- 6. All dimensions are in um unless otherwise noted.


001-48359 **


Page 27 of 31

Glass Transmittance

A D263 glass is used as protection glass lid on top of the LUPA 4000 monochrome sensors. Figure 26 shows the transmission characteristics of the D263 glass.

Handling Precautions and Recommended Storage Conditions

For proper handling and storage conditions, refer to Cypress application note AN52561 on www.cypress.com.

Limited Warranty

Cypress Image Sensor Business Unit warrants that the image sensor products mentioned here, if properly used and serviced, conform to the seller's published specifications. They are free from defects in material and workmanship for one (1) year following the date of shipment. If a defect is identified within the one (1) year period, Cypress will either replace the product or give credit for the product.

Appendix A: LUPA 4000 Evaluation System

An LUPA 4000 evaluation kit is available for evaluation purposes. This kit consists of a multifunctional digital board (memory, sequencer, and Ethernet) and an analog image sensor board. Bench Tools software (under Win 2000 or XP) allows the grabbing and display of images and movies from the sensor. All acquired images and movies can be stored in different file formats (8 or 16 bit). All setting can be adjusted on the fly to evaluate the sensors specifications. Default register values can be loaded to start the software in a desired state.

Figure 27. Contents of LUPA 4000 Evaluation Kit

For more information on Image Sensors, contact imagesensors@cypress.com.

Appendix B: Frequently Asked Questions

Q: How does the dual (multiple) slope extended dynamic range mode works?

A: The green lines in Figure 28 are the analog signal on the photodiode, which decrease as a result of exposure. The slope is determined by the amount of light at each pixel (the more light the steeper the slope). When the pixels reach the saturation level the analog signal does not change despite further exposure. Without any double slope, pulse pixels p3 and p4 reaches saturation before the sample moment of the analog values, no signal is acquired without double slope. When double slope is enabled a second reset pulse is given (blue line) at a certain time before the end of the integration time. This double slope reset pulse resets the analog signal of the pixels BELOW this level to the reset level. After the reset the analog signal starts to decrease with the same slope as before the double slope reset pulse. If the double slope reset pulse is placed at the end of the integration time (90% for instance) the analog signal that reaches the saturation levels are not saturated anymore (this increases the optical dynamic range) at read out. Note that pixel signals above the double slope reset level are not influenced by this double slope reset pulse (p1 and p2).

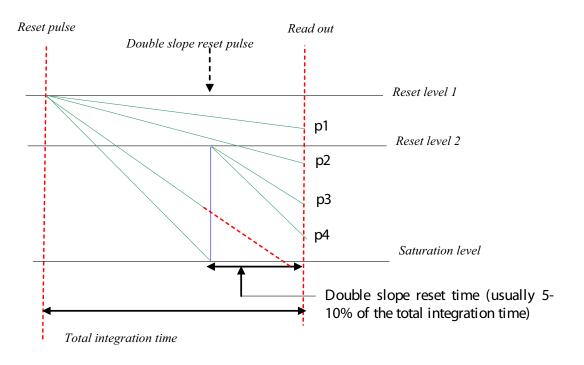


Figure 28. Dual Slope Diagram

Document History Page

Document Title: CYIL1SM4000AA LUPA 4000: 4 MegaPixel CMOS Image Sensor Document Number: 38-05712							
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change			
**	310396	FPW	See ECN	Initial Cypress Release			
*A	497132	QGS	See ECN	Converted to Frame file			
*В	649219	FPW	See ECN	Ordering information update+ title update + package spec label			
*C	2738057	NVEA/PYRS	07/16/09	Updated template, extensive content edits			
*D	2765859	NVEA	09/18/09	Updated Ordering Information table			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress offers standard and customized CMOS image sensors for consumer as well as industrial and professional applications. Consumer applications include solutions for fast growing high speed machine vision, motion monitoring, medical imaging, intelligent traffic systems, security, and barcode applications. Cypress's customized CMOS image sensors are characterized by very high pixel counts, large area, very high frame rates, large dynamic range, and high sensitivity.

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. For more information on Image sensors, please contact imagesensors@cypress.com.

© Cypress Semiconductor Corporation, 2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-05712 Rev. *D

Revised September 18, 2009

Page 31 of 31

All products and company names mentioned in this document may be the trademarks of their respective holders