
TB6612FNG Hookup Guide

Introduction
The TB6612FNG is an easy and affordable way to control motors. The
TB6612FNG is capable of driving two motors at up to 1.2A of constant
current. Inside the IC, you’ll find two standard H-bridges on a chip allowing
you to not only control the direction and speed of your motors but also stop
and brake. This guide will cover in detail how to use the TB6612FNG
breakout board. The library for this guide will also work on the RedBot
Mainboard as well since it uses the same motor driver chip.

Required Materials

To follow along with the motor driver example in this tutorial, here are the
basic components you will need:

SparkFun Motor Driver -
Dual TB6612FNG (1A)
 ROB-09457

SparkFun RedBot Mainboard
 ROB-12097

SparkFun Motor Driver -
Dual TB6612FNG (with
Headers)
 ROB-13845

Page 1 of 10

TB6612FNG SparkFun Wish List

(4) 1500 mAh Alkaline Battery - AA
PRT-09100

These are your standard 1.5V AA alkaline batteries from Duracell. Do…

Hook-Up Wire - Assortment (Solid Core, 22 AWG)
PRT-11367

An assortment of colored wires: you know it's a beautiful thing. Six diff…

Arduino Pro Mini 328 - 5V/16MHz
DEV-11113

It's blue! It's thin! It's the Arduino Pro Mini! SparkFun's minimal design…

(2) Female Headers
PRT-00115

Single row of 40-holes, female header. Can be cut to size with a pair…

Break Away Headers - Straight
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

SparkFun Snappable Protoboard
PRT-13268

Sometimes it's nice to have a protoboard that's super long and skinny…

Actobotics Kit - ActoBitty 2
ROB-13047

This is the ActoBitty 2 from [Actobotics](https://www.sparkfun.com/pa…

SparkFun Motor Driver - Dual TB6612FNG (1A)
ROB-09457

The TB6612FNG motor driver can control up to two DC motors at a c…

Suggested Reading

Before continuing with this guide, you may want to check out any topics
from the list below that sound unfamiliar.

Electric Power
An overview of electric power, the
rate of energy transfer. We'll talk
definition of power, watts, equations,
and power ratings. 1.21 gigawatts of
tutorial fun!

Polarity
An introduction to polarity in
electronic components. Discover
what polarity is, which parts have it,
and how to identify it.

Alternating Current (AC) vs.
Direct Current (DC)
The differences between AC and
DC.

Motors and Selecting the
Right One
Learn all about different kinds of
motors and how they operate.

Page 2 of 10

Selecting the Right Motor Driver
Before we get started, let’s talk about how to find a motor driver for your
needs.

The first step is to figure out what type of motors you are using and to
research their specifications. Picking a motor driver for a motor that is not
powerful enough isn’t helpful. Also, keep in mind there are different motor
types (stepper, DC, brushless), so make sure you are looking for the
correct type of motor driver.

You will need to spec your motor driver and make sure its current and
voltage range are compatible with your motor(s).

First, you need to make sure your motor driver can handle the rated voltage
of your motors. While you can usually run motors a bit above their ratings, it
tends to reduce the lifespan of the motor.

Current draw is the second factor. Your motor driver needs to be capable of
driving as much current as your motors will pull. As a general rule, go
straight to the stalled current number for a motor (the current draw present
when you are holding the motor still). A motor will pull the maximum current
when it is stalled. Even if you don’t plan on stalling your motor in your
project, this is a safe number to use. If your motor driver can’t handle that
much current, then it is time to find a new motor driver (or motor). You may
also notice motor drivers often have max continuous current and max peak
current listed. These specs are worth noting depending on your application
and how much stress your motor will endure.

This guide covers the TB6612FNG motor driver which has a supply range
of 2.5V to 13.5V and is capable of 1.2A continuous current and 3.2A
peak current (per channel), so it works pretty well with most of our DC
motors. If the TB6612FNG does not fit your project’s specifications, check
out our various other motor driver boards.

Selection of Motor Drivers

Big Easy Driver
 ROB-12859

SparkFun AutoDriver -
Stepper Motor Driver (v13)
 BOB-13752

SparkFun Servo Trigger
 WIG-13118

SparkFun Servo Trigger -
Continuous Rotation
 WIG-13872

Page 3 of 10

As with any board, there are other things to consider such as the logic
voltage, which is basically the voltage it uses to talk to your microcontroller,
and heat dissipation. While these things definitely need to be considered,
they are relatively easy to fix with things like level shifters and heat sinks.
However, if your motor is trying to pull more current than your driver can
handle, there isn’t much you can do to fix it.

Board Overview
Let’s discuss the pinout for the TB6612FNG breakout. We basically have
three types of pins: power, input, and output, and they are all labeled on the
back of the board.

Back of the board

Each pin and its function is covered in the table below.

Pin Label Function Power/Input/Output Notes

VM Motor
Voltage

Power This is where you
provide power for
the motors (2.2V
to 13.5V)

VCC Logic
Voltage

Power This is the voltage
to power the chip
and talk to the
microcontroller
(2.7V to 5.5V)

GND Ground Power Common Ground
for both motor
voltage and logic
voltage (all GND
pins are
connected)

STBY Standby Input Allows the
H-bridges to work
when high (has a
pulldown resistor
so it must actively
pulled high)

Page 4 of 10

AIN1/BIN1 Input 1 for
channels
A/B

Input One of the two
inputs that
determines the
direction.

AIN2/BIN2 Input 2 for
channels
A/B

Input One of the two
inputs that
determines the
direction.

PWMA/PWMB PWM
input for
channels
A/B

Input PWM input that
controls the speed

A01/B01 Output 1
for
channels
A/B

Output One of the two
outputs to connect
the motor

A02/B02 Output 2
for
channels
A/B

Output One of the two
outputs to connect
the motor

Now, for a quick overview of how to control each of the channels. If you are
using an Arduino, don’t worry about this too much as the library takes care
of all of this for you. If you are using a different control platform, pay
attention. When the outputs are set to High/Low your motor will run. When
they are set to Low/High the motor will run in the opposite direction. In both
cases, the speed is controlled by the PWM input.

In1 In2 PWM Out1 Out2 Mode

H H H/L L L Short brake

L H H L H CCW

L H L L L Short brake

H L H H L CW

H L L L L Short brake

L L H OFF OFF Stop

Don’t forget STBY must be high for the motors to drive.

Hardware Setup
For this demo, we’ll use a small chassis with the included motors and
wheels as well as an Arduino Pro Mini.

The first step is to find a power supply. While it is best to find one that will
work with the motors and logic, that is not always possible. Sometimes your
motors want 24V, but your microcontroller only wants 5V. In that case, it is
probably easiest to use 2 power supplies. For this demo, we’ll be using the
4xAA battery holder that comes with the Actobitty chasis. The battery

Page 5 of 10

holder should output 6V since each alkaline AA battery is 1.5V (NiMH AAs
are only 1.2V). The Arduino Pro Mini can handle up to about 12V on the
RAW power line, which it will regulate down to 5V.

The next step is to connect everything using your preferred project platform.
We’re using a piece of the snappable protoboard with female headers, so
we can just plug in the motor driver and Arduino Pro Mini. If you are using
different pins, or a different microcontroller, remember that the PWM pins of
the motor driver need to be PWM pins on your microcontroller.

Here is a Fritzing diagram showing how all the connections were made.

Here is the final project assembled on the Actobitty chassis.

Library and Example Code
Final step is uploading the code. First we must download and install the
library. If you are unfamiliar with installing an Arduino library, check out our
tutorial.

Download the library using the link below, or grab the latest version from
our GitHub repository.

TB6612FNG ARDUINO LIBRARY

Once the library is installed, you can find the example code under
File->Examples->TB6612, and upload the code to your Arduino. We’ll get
into the code in a minute. In the mean time, you can see it goes through a
few basic commands to get you familiar with the library. Keep in mind, in
the example code, each command has another command immediately after
it that does the opposite and should bring it back to home should your robot
should run too far away (I was able to run mine on a notebook without it
falling off).

Library Functions

Here we have a basic library. There are two main parts. First, you can send
commands like forward, and it will propel your bot forward. This means the
right wheel is going clockwise and the left wheel is going counterclockwise.
Which way is clockwise and which is counterclockwise depends on which
wire of your motor is connected to which of the inputs. This means the
forward function might not actually propel the robot forward the first time.
You can swap the motor wires if you want, but that is often not possible.

Page 6 of 10

The easier solution is to fix this in the software. Near the top of the example
code, you will see two constants labeled offset. You can change this from 1
to -1 to swap the configuration of that motor.

// these constants are used to allow you to make your motor co
nfiguration
// line up with function names like forward. Value can be 1 o
r 1
const int offsetA = 1;
const int offsetB = 1;

The second part of the library is individual motor control. If you are not
driving a robot, controls such as forward are not useful, and you probably
don’t want the two motors tied together like that. The library will let you
make as many instances of motors as you want (or have memory for). This
means if you have three TB6612FNGs, you can control six motors
individually.

// Pins for all inputs, keep in mind the PWM defines must be o
n PWM pins
#define AIN1 2
#define BIN1 7
#define AIN2 4
#define BIN2 8
#define PWMA 5
#define PWMB 6
#define STBY 9

Looking at the example code you will see we start with a lot of defines. This
is basically a spot to let you tell the code to which pins you hooked things
up. As mentioned earlier you can also play with the constants to switch
directions of the motors. Afterwards we initialize the motors, by sending
those constants to the function Motor() . This initialization also takes care
of all the pinModes. This actually leaves us with nothing to do in the setup
function. We could give it a few commands we want to only do once, but we
chose to put all the commands in the loop function.

Page 7 of 10

void loop()
{

//Use of the drive function which takes as arguements the s
peed

//and optional duration. A negative speed will cause it t
o go

//backwards. Speed can be from 255 to 255. Also use of t
he

//brake function which takes no arguements.
 motor1.drive(255,1000);
 motor1.drive(255,1000);
 motor1.brake();

delay(1000);

//Use of the drive function which takes as arguements the s
peed

//and optional duration. A negative speed will cause it t
o go

//backwards. Speed can be from 255 to 255. Also use of t
he

//brake function which takes no arguements.
 motor2.drive(255,1000);
 motor2.drive(255,1000);
 motor2.brake();

delay(1000);

//Use of the forward function, which takes as arguements tw
o motors

//and optionally a speed. If a negative number is used fo
r speed

//it will go backwards
forward(motor1, motor2, 150);
delay(1000);

//Use of the back function, which takes as arguments two mo
tors

//and optionally a speed. Either a positive number or a ne
gative

//number for speed will cause it to go backwards
back(motor1, motor2, 150);
delay(1000);

//Use of the brake function which takes as arguments two mo
tors.

//Note that functions do not stop motors on their own.
brake(motor1, motor2);
delay(1000);

//Use of the left and right functions which take as argueme
nts two

//motors and a speed. This function turns both motors to m
ove in

//the appropriate direction. For turning a single motor us
e drive.

left(motor1, motor2, 100);
delay(1000);
right(motor1, motor2, 100);
delay(1000);

//Use of brake again.
brake(motor1, motor2);
delay(1000);

}

Page 8 of 10

Finally we hit our good friend loop() . Here is where we are testing out the
different functions. As you can see some functions take our two motors as
arguments like forward(motor1, motor2) and back(motor1, motor2), while
other functions are part of the Motor class and are called using commands
like motor1.drive(speed).

// Constructor. Mainly sets up pins.
Motor(int In1pin, int In2pin, int PWMpin, int offset, int STBY
pin);

// Drive in direction given by sign, at speed given by magnitu
de of the
//parameter.
void drive(int speed);

// drive(), but with a delay(duration)
void drive(int speed, int duration);

//currently not implemented
//void stop(); // Stop motors, but allow them to coa
st to a halt.
//void coast(); // Stop motors, but allow them to coa
st to a halt.

//Stops motor by setting both input pins high
void brake();

//set the chip to standby mode. The drive function takes it o
ut of standby
//(forward, back, left, and right all call drive)
void standby();

//Takes 2 motors and goes forward, if it does not go forward a
djust offset
//values until it does. These will also take a negative numbe
r and go backwards
//There is also an optional speed input, if speed is not use
d, the function will
//use the DEFAULTSPEED constant.
void forward(Motor motor1, Motor motor2, int speed);
void forward(Motor motor1, Motor motor2);

//Similar to forward, will take 2 motors and go backwards. Th
is will take either
//a positive or negative number and will go backwards either w
ay. Once again the
//speed input is optional and will use DEFAULTSPEED if it is n
ot defined.
void back(Motor motor1, Motor motor2, int speed);
void back(Motor motor1, Motor motor2);

//Left and right take 2 motors, and it is important the order
they are sent.
//The left motor should be on the left side of the bot. Thes
e functions
//also take a speed value
void left(Motor left, Motor right, int speed);
void right(Motor left, Motor right, int speed);

//This function takes 2 motors and and brakes them
void brake(Motor motor1, Motor motor2);

Resources and Going Further

Page 9 of 10

With that, you should have the basic knowledge to get started with your
next motor-moving project. For more information on the TB6612FNG motor
Driver, check out the links below.

• Schematic
• Eagle Files
• TB6612FNG Datasheet
• GitHub

For more great motor action, check out these other SparkFun tutorials.

Hacker in Residence: The
Harmonic Skew Zoetrope
Check out Hacker in Residence,
Jesse's awesome Harmonic Skew
Zoetrope in this project tutorial.

Continuous Rotation Servo
Trigger Hookup Guide
How to use the SparkFun
Continuous Rotation Servo Trigger
with continuous rotation servos,
without any programming!

Getting Started with the
AutoDriver - v13
SparkFun's AutoDriver is a powerful
tool for controlling stepper motors.
Here's how to use it.

TB6612FNG Hookup Guide
Basic hookup guide for the
TB6612FNG H-bridge motor driver.

Page 10 of 10

10/11/2016https://learn.sparkfun.com/tutorials/tb6612fng-hookup-guide?_ga=1.107416002.1180977...

