
Sample Rate Conversion Library 1.0.0

Sample Rate Conversion Library
The XMOS Sample Rate Conversion (SRC) library provides both synchronous and asynchronous audio
sample rate conversion functions for use on xCORE-200 multicore micro-controllers.

In systems where the rate change is exactly equal to the ratio of nominal rates, synchronous sample rate
conversion (SSRC) provides efficient and high performance rate conversion. Where the input and output
rates are not locked by a common clock or clocked by an exact rational frequency ratio, the Asynchronous
Sample Rate Converter (ASRC) provides a way of streaming high quality audio between the two different
clock domains, at the cost of higher processing resource usage. ASRC can ease interfacing in cases where
the are multiple digital audio inputs or allow cost saving by removing the need for physical clock recovery
using a PLL.

Features

• Conversion between 44.1, 48, 88.2, 96, 176.4 and 192KHz input and output sample rates
• 32 bit PCM input and output data in Q1.31 signed format
• Optional output dithering to 24 bit using Triangular Probability Density Function (TPDF)
• Optimized for xCORE-200 instruction set with dual-issue
• Block based processing - Minimum 4 samples input per call, must be power of 2
• Up to 10000 ppm sample rate ratio deviation from nominal rate (ASRC only)
• Very high quality - SNR greater than 135db (ASRC) or 140db (SSRC), with THD of less than 0.0001%

(reference 1KHz)
• Configurable number of audio channels per SRC instance
• Reentrant library permitting multiple instances with differing configurations and channel count
• No external components (PLL or memory) required

Components

• Synchronous Sample Rate Converter function
• Asynchronous Sample Rate Converter function

Software version and dependencies

This document pertains to version 1.0.0 of this library. It is known to work on version 14.2.0 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_logging (>=2.0.0) • lib_xassert (>=2.0.0)

Related application notes

The following application notes use this library:

• AN00230 - [Adding Synchronous Sample Rate Conversion to the USB Audio reference design]
• AN00231 - [SPDIF receive to I2S output using Asynchronous Sample Rate Conversion]

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

Typical Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores

SSRC 0 0 0 ~30.5K 1

The SSRC algorithm runs a series of cascaded FIR filters to perform the rate conversion. This includes
interpolation, decimation and bandwidth limiting filters with a final polyphase FIR filter. The last stage
supports the rational rate change of 147:160 or 160:147 allowing conversion between 44.1KHz family of
sample rates to the 48KHz family of sample rates.

The below table shows the worst case MHz consumption at a given sample rate using the minimum block
size of 4 input samples with dithering disabled. The MHz requirement can be reduced by around 8-
12%, depending on sample rate, by increasing the input block size to 16. It is not usefully reduced by
increasing block size beyond 16.

Output
sample
rate

Input sam-
ple rate

44.1KHz 48KHz 88.2KHz 96KHz 176.4KHz 192KHz

44.1KHz 1MHz 23MHz 16MHz 26MHz 26MHz 46MHz

48KHz 26MHz 1MHz 28MHz 17MHz 48MHz 29MHz

88.2KHz 18MHz 43MHz 1MHz 46MHz 32MHz 53MHz

96KHz 48MHz 20MHz 52MHz 2MHz 56MHz 35MHz

176.4KHz 33MHz 61MHz 37MHz 67MHz 3MHz 76MHz

192KHz 66MHz 36MHz 70MHz 40MHz 80MHz 4MHz

Table 1: SSRC Processor Usage per Channel (MHz)

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores

ASRC 0 0 0 ~28.5K 1

The ASRC algorithm also runs a series of cascaded FIR filters to perform the rate conversion. The final
filter is different because it uses adaptive coefficients to handle the varying rate change between the input
and the output. The adaptive coefficients must be computed for each output sample period, but can be
shared amongst all channels within the ASRC instance. Consequently, the MHz usage of the ASRC is
expressed as two tables; the first table enumerates the MHz required for the first channel with adaptive
coefficients calculation and the second table specifies the MHz required for filtering of each additional
channel processed by the ASRC instance.

The below tables show the worst case MHz consumption per sample, using the minimum block size of 4
input samples. The MHz requirement can be reduced by around 8-12% by increasing the input block size
to 16.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

Typically you will need to allow for performance headroom for buffering (especially if the system is sample
orientated rather than block orientated) and inter-task communication. Please refer to the application
notes for practical examples of usage.

Output
sample
rate

Input sam-
ple rate

44.1KHz 48KHz 88.2KHz 96KHz 176.4KHz 192KHz

44.1KHz 29MHz 30MHz 40MHz 42MHz 62MHz 66MHz

48KHz 33MHz 32MHz 42MHz 43MHz 63MHz 66MHz

88.2KHz 47MHz 50MHz 58MHz 61MHz 80MHz 85MHz

96KHz 55MHz 51MHz 67MHz 64MHz 84MHz 87MHz

176.4KHz 60MHz 66MHz 76MHz 81MHz 105MHz 106MHz

192KHz 69MHz 66MHz 82MHz 82MHz 109MHz 115MHz

Table 2: ASRC Processor Usage (MHz) for the First Channel in the ASRC Instance

Configurations requiring more than 100MHz cannot currently be run in real time on a single core. The
performance limit for a single core on a 500MHz xCORE-200 device is 100MHz (500/5). Further optimiza-
tion of the library, including assembler optimization and pipelining of the adaptive filter generation and
FIR filter stages, is feasible to achieve higher sample rate operation within the constraints of a 100MHz
logical core.

Output
sample
rate

Input sam-
ple rate

44.1KHz 48KHz 88.2KHz 96KHz 176.4KHz 192KHz

44.1KHz 28MHz 28MHz 32MHz 30MHz 40MHz 40MHz

48KHz 39MHz 31MHz 33MHz 36MHz 40MHz 45MHz

88.2KHz 51MHz 49MHz 57MHz 55MHz 65MHz 60MHz

96KHz 51MHz 56MHz 57MHz 62MHz 66MHz 71MHz

176.4KHz 60MHz 66MHz 76MHz 79MHz 92MHz 91MHz

192KHz 69MHz 66MHz 76MHz 82MHz 90MHz 100MHz

Table 3: ASRC Processor Usage (MHz) for Subsequent Channels in the ASRC Instance

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

1 Usage

Both SSRC and ASRC functions are accessed via a standard function calls, making them accessible from C
or XC. Both SSRC and ASRC functions are passed an external state structure which provides re-entrancy.
The functions may be called in-line with your processing or placed on a logical core within it’s own task to
provide guaranteed performance. By placing the calls to SRC functions on sepearte logical cores, multiple
instances can be processed concurrently.

The API is designed to be as simple and intuitive with just two public functions per sample rate converter
type.

1.1 Initialization

There is an initialization call which sets up the variables within the structures associated with the SRC
instance and clears the inter-stage buffers. Initialization must be called to ensure the correct selection
and ordering and configuration of the filtering stages, be they decimators, interpolators or pass through
blocks. This initialization call contains arguments defining selected input and output nominal sample
rates as well as settings for the sample rate converter:

void ssrc_init(const fs_code_t sr_in, const fs_code_t sr_out, ssrc_ctrl_t *ssrc_ctrl, const unsigned
↪→ n_channels_per_instance, const unsigned n_in_samples, const dither_flag_t dither_on_off);

The initialization call is the same for ASRC:

unsigned asrc_init(const fs_code_t sr_in, const fs_code_t sr_out, asrc_ctrl_t asrc_ctrl[], const unsigned
↪→ n_channels_per_instance, const unsigned n_in_samples, const dither_flag_t dither_on_off);

The settings include:

• Nominal input sample rate as an enumerated type
• Nominal output sample rate as an enumerated type
• The number of channels to be handled by this instance of SRC
• The number of input samples to expect. Minimum 4 samples input per call, must be power of 2
• The dither setting. Dithers the output from 32bit to 24bit

The input block size must be a power of 2 and is set by the n_in_samples argument. In the case where
more than one channel is to be processed per SRC instance, the total number of input samples expected
for each processing call is n_in_samples * n_channels_per_instance.

There are a number of arrays of structures that must be declared from the application which contain the
state, buffers between the FIR stages, state and adapted coefficients (ASRC only). There must be one
element of each structure declared for each channel handled by the SRC instance. The structures are then
all linked into a single control structure, allowing a single reference to be passed each time a call to the
SRC is made.

For the case of SSRC, the following state structures are required:

//State of SSRC module
ssrc_state_t ssrc_state[SSRC_CHANNELS_PER_INSTANCE];
//Buffers between processing stages
int ssrc_stack[SSRC_CHANNELS_PER_INSTANCE][SSRC_STACK_LENGTH_MULT * SSRC_N_IN_SAMPLES];
//SSRC Control structure
ssrc_ctrl_t ssrc_ctrl[SSRC_CHANNELS_PER_INSTANCE];

For the ASRC, the state structures must be declared. Note that only one instance of the filter coefficients
need be declared because these are shared amongst channels within the instance:

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

//ASRC state
asrc_state_t asrc_state[ASRC_CHANNELS_PER_INSTANCE];
int asrc_stack[ASRC_CHANNELS_PER_INSTANCE][ASRC_STACK_LENGTH_MULT * ASRC_N_IN_SAMPLES];
//Control structure
asrc_ctrl_t asrc_ctrl[ASRC_CHANNELS_PER_INSTANCE];
//Adaptive filter coefficients
asrc_adfir_coefs_t asrc_adfir_coefs;

1.2 Processing

Following initialization, the processing API is called for each block of input samples. The logic is designed
so that the final filtering stage always receives a sample to process. The sample rate converters have been
designed to handle a maximum decimation of factor four from the first two stages. This architecture
requires a minimum input block size of 4 to operate.

Input

Fsin

Output

Fsout

Sample Rate
Converter

Figure 1: SRC Operation

The processing function call is passed the input and output buffers and a reference to the control struc-
ture:

unsigned ssrc_process(int in_buff[], int out_buff[], ssrc_ctrl_t *ssrc_ctrl)

In the case of ASRC, additionally a fractional frequency ratio is supplied:

unsigned asrc_process(int *in_buff, int *out_buff, unsigned fs_ratio, asrc_ctrl_t asrc_ctrl[])

The SRC processing call always returns a whole number of output samples produced by
the sample rate conversion. Depending on the sample ratios selected, this number may be
between zero and (n_in_samples * n_channels_per_instance * SRC_N_OUT_IN_RATIO_MAX).
SRC_N_OUT_IN_RATIO_MAX is the maximum number of output samples for a single input sample. For
example, if the input frequency is 44.1KHz and the output rate is 192KHz then a sample rate conversion
of one sample input may produce up to 5 output samples.

The fractional number of samples produced to be carried to the next operation is stored internally inside
the control structure, and additional whole samples are added during subsequent calls to the sample rate
converter as necessary.

For example, a sample rate conversion from 44.1KHz to 48KHz with a input block size of 4 will produce
a 4 sample result with a 5 sample result approximately every third call.

Each SRC processing call returns the integer number of samples produced during the sample rate conver-
sion.

The SSRC is synchronous in nature and assumes that the ratio is equal to the nominal sample rate ratio.
For example, to convert from 44.1KHz to 48KHz, it is assumed that the word clocks of the input and
output stream are derived from the same master clock and have an exact ratio of 147:160.

If the word clocks are derived from separate oscillators, or are not synchronous (for example are derived
from each other using a fractional PLL), the the ASRC must be used.

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

1.3 Buffer Formats

The format of the sample buffers sent and received from each SRC instance is time domain interleaved.
How this looks in practice depends on the number of channels and SRC instances. Three examples are
shown below, each showing n_in_samples = 4. The ordering of sample indicies is 0 representing the
oldest sample and n - 1, where n is the buffer size, representing the newest sample.

In the case where two channels are handled by a single SRC instance, you can see that the samples are
interleaved into a single buffer of size 8.

Left[1]

Right[1]

Left[2]

Left[3]

Right[2]

Right[3]

Left[0]

Right[0]

2

3

4

6

5

7

0

1

Figure 2: Buffer Format for Single Stereo SRC instance

Where a single audio channel is mapped to a single instance, the buffers are simply an array of samples
starting with the oldest sample and ending with the newest sample.

Left[2]

Left[3]

Right[0]

Right[2]

Right[1]

Right[3]

Left[0]

Left[1]

2

3

0

2

1

3

0

1

Figure 3: Buffer Format for Dual Mono SRC instances

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

In the case where four channels are processed by two instances, channels 0 & 1 are processed by SRC
instance 0 and channels 2 & 3 are processed by SRC instance 1. For each instance, four pairs of samples
are passed into the SRC processing function and n pairs of samples are returned, where n depends on the
input and output sample rate ratio.

Ch_0[1]

Ch_1[1]

Ch_0[2]

Ch_0[3]

Ch_1[2]

Ch_1[3]

Ch_0[0]

Ch_1[0]

2

3

4

6

5

7

0

1

Ch_2[1]	

Ch_3[1]	

Ch_2[2]	

Ch_2[3]	

Ch_3[2]	

Ch_3[3]	

Ch_2[0]	

Ch_3[0]	

2

3

4

6

5

7

0

1

Figure 4: Buffer Format for Dual Stereo SRC instances (4 channels total)

In addition to the above arguments the asrc_process() call also requires an unsigned Q4.28 fixed point
ratio value specifying the actual input to output ratio for the next calculated block of samples. This allows
the input and output rates to be fully asynchronous by allowing rate changes on each call to the ASRC.
The converter dynamically computes coefficients using a spline interpolation within the last filter stage.
It is up to the callee to maintain the input and output sample rate ratio difference. An example of this
calculation, based on measuring the input and output rates, is provided in AN00231.

Further detail about these function arguments are contained within the API section of this guide.

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

2 SSRC Performance

The performance of the SSRC library is as follows:

• THD+N (1kHz, 0dBFs): better than -130dB, depending on the accuracy of the ratio estimation
• SNR: 140dB (or better). Note that when dither is not used, SNR is infinite as output from a zero input

signal is zero.

The performance was analyzed by converting output test files to 32 bits integer wav
files. These files were then run through an audio analysis tool (WinAudio MLS:
http://www.dr-jordan-design.de/Winaudiomls.htm).

Below are a series FFT plots showing the most demanding rate conversion case. These clearly show that
the above targets are comfortably exceeded. All outputs have been generated using 8192 samples at
input sampling rate. A Kaiser-Bessel window with alpha=7 has been used.

D a t a f r o m f i l e : s 1 k _ 0 d B _ 4 4 _ 1 9 2 . d a t

F r e q u e n c y i n k H z (L i n e S p a c i n g = 5 . 3 8 3 E - 3)

C
om

pl
ex

 P
ow

er
 in

 d
B

c

1.0E-3 1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Figure 5: FFT of 1kHz sine, 0dB, 44.1kHz to 192kHz

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM010383

http://www.dr-jordan-design.de/Winaudiomls.htm

Sample Rate Conversion Library 1.0.0

D a t a f r o m f i l e : s 1 k _ 0 d B _ 4 4 _ 1 9 2 . d a t

F r e q u e n c y i n k H z (L i n e S p a c i n g = 5 . 3 8 3 E - 3)

C
om

pl
ex

 P
ow

er
 in

 d
B

c

1.0E-3 1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Figure 6: FFT of 1kHz sine, 0dB, 176.4kHz to 48kHz

D a t a f r o m f i l e : i m 1 0 k 1 1 k _ m 6 d B _ 9 6 _ 8 8 . d a t

F r e q u e n c y i n k H z (L i n e S p a c i n g = 1 1 . 7 1 8 E - 3)

C
om

pl
ex

 P
ow

er
 in

 d
B

m

1.0E-3 1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Figure 7: FFT of 10kHz+11kHz sines, -6dB, 96kHz to 88.2kHz

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

3 ASRC Performance

The performance of the SSRC library is as follows:

• THD+N: (1kHz, 0dBFs): better than -130dB
• SNR: 135dB (or better). Note that when dither is not used, SNR is infinite as output from a zero input

signal is zero.

The performance was analyzed by converting output test files to 32 bits integer wav
files. These files were then run through an audio analysis tool (WinAudio MLS:
http://www.dr-jordan-design.de/Winaudiomls.htm).

Below are a series FFT plots showing the most demanding rate conversion case. These clearly show that
the above targets are comfortably exceeded. All outputs have been generated using 8192 samples at
input sampling rate. A Kaiser-Bessel window with alpha=7 has been used.

D a t a f r o m f i l e : s 1 k _ 0 d B _ 4 4 _ 1 9 2 . d a t

F r e q u e n c y i n k H z (L i n e S p a c i n g = 6 9 . 9 8 3 E - 3 , S u m M o d e)

C
om

pl
ex

 P
ow

er
 in

 d
B

c

0 10 20 30 40 50 60 70 80 90 100
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

Figure 8: FFT of 1kHz sine, 0dB, 44.1kHz to 192kHz

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM010383

http://www.dr-jordan-design.de/Winaudiomls.htm

Sample Rate Conversion Library 1.0.0

D a t a f r o m f i l e : s 1 k _ 0 d B _ 1 7 6 _ 4 8 . d a t

F r e q u e n c y i n k H z (L i n e S p a c i n g = 2 2 . 7 2 7 E - 3)

C
om

pl
ex

 P
ow

er
 in

 d
B

c

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

Figure 9: FFT of 1kHz sine, 0dB, 176.4kHz to 48kHz

D a t a f r o m f i l e : i m 1 0 k 1 1 k _ m 6 d B _ 9 6 _ 8 8 . d a t

F r e q u e n c y i n M H z (L i n e S p a c i n g = 4 6 . 8 7 1 , S u m M o d e)

C
om

pl
ex

 P
ow

er
 in

 d
B

c

0 5 10 15 20 25 30 35 40 45
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Figure 10: FFT of 10kHz+11kHz sines, -6dB, 96kHz to 88.2kHz

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

4 SRC Implementation

The SSRC and ASRC implementations are closely related to each other and share the majority of the
system building blocks. The key difference between them is that SSRC uses fixed polyphase 160:147 and
147:160 final rate change filters whereas the ASRC uses an adaptive polyphase filter. The ASRC adaptive
polyphase coefficients are computed for every sample using second order spline based interpolation.

4.1 SRC Nominal Rate Changes

The nominal rate change ratios between 44.1KHz and 192KHz are shown in the below table.

Output
sample
rate

Input sam-
ple rate

44.1KHz 48KHz 88.2KHz 96KHz 176.4KHz 192KHz

44.1KHz 1 160/147 2 2x160/147 4 4x160/147

48KHz 147/160 1 2x147/160 2 4x147/160 4

88.2KHz 1/2 1/2x160/147 1 160/147 2 2x160/147

96KHz 1/2x147/160 1/2 147/160 1 2x147/160 2

176.4KHz 1/4 1/4x160/147 1/2 1/2x160/147 1 160/147

192KHz 1/4x147/160 1/4 1/2x147/160 1/2 147/160 1

Table 4: Rate Changes for Sample Rate Conversion

The table shows the case for SSRC where the ratios are equal to the nominal sample rate ratio. In the case
of ASRC, where the ratios cannot be expressed rationally, these are the nominal ratios from which there
will usually be a rate deviaton.

4.2 SSRC Structure

The SSRC algorithm is based on three cascaded FIR filter stages (F1, F2 and F3). These stages are config-
ured differently depending on rate change and only part of them is used in certain cases. The following
diagram shows an overall view of the SSRC algorithm:

The SSRC algorithm is implemented as a two stage structure:

• The Bandwidth control stage which includes filters F1 and F2 is responsible for limiting the band-
width of the input signal and for providing integer rate Sample Rate Conversion. It is also used for
signal conditioning in the case of rational, non-integer, Sample Rate Conversion.

• The Polyphase filter stage which effectively converts between the 44.1kHz and the 48kHz families
of sample rates.

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

F1
Over-spl by 2,
Down-spl by 2 or
band-limiting

F2
Over-spl by 2,
Down-spl by 2 or
band-limiting

F3
147/160 or 160/147
Polyphase filter

Fsin Fsout

Computed for every
output sample only

Fsin = Fsout Fsin = 2 x Fsout or
Fsin = 1/2 x Fsout

Fsin = 4 x Fsout or
Fsin = 1/4 x Fsout

Bandwidth control and
integer over/down-sampling

Polyphase filter (rational rate
change, used only changes
between 44.1 and 48 bases)

Figure 11: SSRC Algorithm Structure

4.3 ASRC Structure

Similar to the SSRC, the ASRC algorithm is based three cascaded FIR filters (F1, F2 and F3). These are
configured differently depending on rate change and F2 is not used in certain rate changes. The following
diagram shows an overall view of the ASRC algorithm:

Figure 12: ASRC Algorithm Structure

The ASRC algorithm is implemented as a two stage structure:

• The Bandwidth control stage includes filters F1 and F2 which are responsible for limiting the band-
width of the input signal (to min(Fsin/2,Fsout/2) and for providing integer rate sample rate conver-
sion to condition the input signal for the adaptive polyphase stage (F3).

• The polyphase filter stage consists of the adaptive polyphase filter F3, which effectively provides the
asynchronous connection between the input and output clock domains.

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

4.4 SRC Filter list

A complete list of the filters supported by the SRC library, both SSRC and ASRC, is shown in the below
table. The filters are implemented in C within the FilterDefs.c function and the coefficients can be
found in the /FilterData folder. The particular combination of filters cascaded together for a given
sample rate change is specified in ssrc.c and asrc.c.

Filter Fs (norm) Passband Stopband Ripple Attenuation Taps Notes

BL 2 0.454 0.546 0.01 dB 155 dB 144 Down-sampler
by two, steep

BL9644 2 0.417 0.501 0.01 dB 155 dB 160 Low-pass filter,
steep for 96 to
44.1

BL8848 2 0.494 0.594 0.01 dB 155 dB 144 Low-pass, steep
for 88.2 to 48

BLF 2 0.41 0.546 0.01 dB 155 dB 96 Low-pass at half
band

BL19288 2 0.365 0.501 0.01 dB 155 dB 96 Low pass, steep
for 192 to 88.2

BL17696 2 0.455 0.594 0.01 dB 155 dB 96 Low-pass, steep
for 176.4 to 96

UP 2 0.454 0.546 0.01 dB 155 dB 144 Over sample by
2, steep

UP4844 2 0.417 0.501 0.01 dB 155 dB 160 Over sample by
2, steep for 48
to 44.1

UPF 2 0.41 0.546 0.01 dB 155 dB 96 Over sample by
2, steep for
176.4 to 192

UP192176 2 0.365 0.501 0.01 dB 155 dB 96 Over sample by
2, steep for 192
to 176.4

DS 4 0.57 1.39 0.01 dB 160 dB 32 Down sample by
2, relaxed

OS 2 0.57 1.39 0.01 dB 160 dB 32 Over sample by
2, relaxed

HS294 284 0.55 1.39 0.01 dB 155 dB 2352 Polyphase
147/160 rate
change

HS320 320 0.55 1.40 0.01 dB 151 dB 2560 Polyphase
160/147 rate
change

ADFIR 256 0.45 1.45 0.012 dB 170 dB 1920 Adaptive
polyphase
prototype filter

Table 5: SSRC Processor Usage per channel (MHz)

Copyright 2016 XMOS Ltd. 14 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

5 SRC File Structure and Overview

• ssrc_wrapper.c / ssrc_wrapper.h
These wrapper files provide a simplified public API to the SSRC initialization and processing func-
tions.

• asrc_wrapper.c / asrc_wrapper.h
These wrapper files provide a simplified public API to the ASRC initialization and processing func-
tions.

• SSRC.c / SSRC.h
These files contain the core of the SSRC algorithm. It sets up the correct filtering chains depending
on rate change and applies them in the processing calls. The table sFiltersIDs declared in SSRC.c
contains definitions of the filter chains for all supported rated changes. The files also integrate the
code for the optional dithering function.

• ASRC.c / ASRC.h
These files contain the core of the ASRC algorithm. They setup the correct filtering chains depending
on rate change and apply them for the corresponding processing calls. Note that filters F1, F2
and dithering are implemented using a block based approach (code similar to SSRC). The adaptive
polyphase filter (ADFIR) is implemented on a sample by sample basis. These files also contain
functions to compute the adaptive poly-phase filter coefficients.

• FIR.c / FIR.h
These files provide Finite Impulse Response (FIR) filtering setup, with calls to the assembler-
optimized inner loops. It provides functions for handling down-sampling by 2, synchronous or
over-sampling by 2 FIRs. It also provides functions for handling polyphase filters used for rational
ratio rate change in the SSRC and adaptive FIR filters used in the asynchronous section of the ASRC.

• FilterDefs.c / FilterDefs.h
These files define the size and coefficient sources for all the filters used by the SRC algorithms.

• /FilterData directory (various files)
This directory contains the pre-computed coefficients for all of the fixed FIR filters. The numbers are
stored as signed Q1.31 format and are directly included into the source from FilterDefs.c. Both the
.dat files used by the C compiler and the .sfp ScopeFIR (http://iowegian.com/scopefir/) design
source files, used to originally create the filters, are included.

• fir_inner_loop_asm.S / fir_inner_loop_asm.h
Inner loop for the standard FIR function optimized for double-word load and store, 32bit * 32bit ->
64bit MACC and saturation instructions. Even and odd sample long word alignment versions are
provided.

• fir_os_inner_loop_asm.S / fir_os_inner_loop_asm.h
Inner loop for the oversampling FIR function optimized for double-word load and store, 32bit * 32bit
-> 64bit MACC and saturation instructions. Both (long word) even and odd sample input versions
are provided.

• spline_coeff_gen_inner_loop_asm.S / spline_coeff_gen_inner_loop_asm.h
Inner loop for generating the spline interpolated coefficients. This assembler function is optimized
for double-word load and store, 32bit * 32bit -> 64bit MACC and saturation instructions.

• adfir_inner_loop_asm.S / adfir_inner_loop_asm.h
Inner loop for the adaptive FIR function using the previously computed spline interpolated coeffi-
cients. It is optimized for double-word load and store, 32bit * 32bit -> 64bit MACC and saturation
instructions. Both (long word) even and odd sample input versions are provided.

• IntArithmetic.c / IntArithmetic.h
These files contain simulation implementations of following XMOS assembler instructions. These
are only used for dithering functions, and may be eliminated during future optimizations.

Copyright 2016 XMOS Ltd. 15 www.xmos.com
XM010383

http://iowegian.com/scopefir/

Sample Rate Conversion Library 1.0.0

6 SSRC API

All public SSRC functions are prototyped within the src.h header:

#include "src.h"

Please ensure that you have reviewed the settings within src_config.h and they are correct for your
application. The default settings allow for any input/output ratio between 44.1KHz and 192KHz.

You will also have to add lib_src to the USED_MODULES field of your application Makefile.

6.1 Initialization

Function ssrc_init

Description Initialises synchronous sample rate conversion instance.

Type void ssrc_init(const fs_code_t sr_in,
const fs_code_t sr_out,
ssrc_ctrl_t ssrc_ctrl[],
const unsigned n_channels_per_instance,
const unsigned n_in_samples,
const dither_flag_t dither_on_off)

Parameters sr_in Nominal sample rate code of input stream

sr_out Nominal sample rate code of output stream

ssrc_ctrl Reference to array of SSRC control stuctures

n_channels_per_instance
Number of channels handled by this instance of SSRC

n_in_samples
Number of input samples per SSRC call

dither_on_off
Dither to 24b on/off

6.2 SSRC Processing

Function ssrc_process

Description Perform synchronous sample rate conversion processing on block of input samples
using previously initialized settings.

Type unsigned ssrc_process(int in_buff[],
int out_buff[],
ssrc_ctrl_t ssrc_ctrl[])

Continued on next page

Copyright 2016 XMOS Ltd. 16 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

Parameters in_buff Reference to input sample buffer array

out_buff Reference to output sample buffer array

ssrc_ctrl Reference to array of SSRC control stuctures

Returns The number of output samples produced by the SRC operation

Copyright 2016 XMOS Ltd. 17 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

7 ASRC API

7.1 Initialization

Function asrc_init

Description Initialises asynchronous sample rate conversion instance.

Type unsigned asrc_init(const fs_code_t sr_in,
const fs_code_t sr_out,
asrc_ctrl_t asrc_ctrl[],
const unsigned n_channels_per_instance,
const unsigned n_in_samples,
const dither_flag_t dither_on_off)

Parameters sr_in Nominal sample rate code of input stream

sr_out Nominal sample rate code of output stream

asrc_ctrl Reference to array of ASRC control structures

n_channels_per_instance
Number of channels handled by this instance of SSRC

n_in_samples
Number of input samples per SSRC call

dither_on_off
Dither to 24b on/off

Returns The nominal sample rate ratio of in to out in Q4.28 format

7.2 ASRC Processing

Function asrc_process

Description Perform asynchronous sample rate conversion processing on block of input samples
using previously initialized settings.

Type unsigned asrc_process(int in_buff[],
int out_buff[],
unsigned fs_ratio,
asrc_ctrl_t asrc_ctrl[])

Continued on next page

Copyright 2016 XMOS Ltd. 18 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

Parameters in_buff Reference to input sample buffer array

out_buff Reference to output sample buffer array

fs_ratio Fixed point ratio of in/out sample rates in Q4.28 format

asrc_ctrl Reference to array of ASRC control structures

Returns The number of output samples produced by the SRC operation.

Copyright 2016 XMOS Ltd. 19 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

APPENDIX A - Known Issues

Certain ASRC configurations, mainly conversions between 176.4/192KHz to 176.4/192KHz, require greater
than 100MHz for a single audio channel and so cannot currently be run in real time on a single core. The
performance limit for a single core on a 500MHz xCORE-200 device is 100MHz (500/5), due to a 5 stage
pipeline. A number of potential optimizations have been identified to permit these rates:

• Further inner loop optimization using assembler
• Increase in scope of assembler sections removing additional function calls
• Pipelining of the FIR filter stages into separate tasks
• Calculation of adaptive filter coefficients in a separate task

These optimizations may be the target for future revisions of this library.

Copyright 2016 XMOS Ltd. 20 www.xmos.com
XM010383

Sample Rate Conversion Library 1.0.0

APPENDIX B - lib_src change log

B.1 1.0.0

• Initial version
• Changes to dependencies:

– lib_logging: Added dependency 2.0.1
– lib_xassert: Added dependency 2.0.1

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 21 www.xmos.com
XM010383

	Sample Rate Conversion Library
	Usage
	Initialization
	Processing
	Buffer Formats

	SSRC Performance
	ASRC Performance
	SRC Implementation
	SRC Nominal Rate Changes
	SSRC Structure
	ASRC Structure
	SRC Filter list

	SRC File Structure and Overview
	SSRC API
	Initialization
	SSRC Processing

	ASRC API
	Initialization
	ASRC Processing

	Known Issues
	lib_src change log
	1.0.0

