

Hardware User Manual EXT-BF5xx-USB-ETH2 V2.x

...maximum performance at minimum space

Contact

Bluetechnix Mechatronische Systeme GmbH

Waidhausenstraße 3/19

A-1140 Vienna

AUSTRIA/EUROPE

office@bluetechnix.at

http://www.bluetechnix.com

Document No.: 100-2275-2.2

Date: 2011-11-30

Table of Contents

Blackfin [®] Core	Modules	6
Blackfin [®] Dev	elopment Boards	8
1 Introduc	tion	9
1.1 Ove	erview	9
1.1.1	KSZ8041NL Ethernet physical chip	9
1.1.2	LAN9218	9
1.1.3	NET2272 USB 2.0 device chip	10
2 Overviev	v	11
2.1 PCE	Placement of connectors	11
2.1.1	X5	11
2.1.2	X3	11
2.1.3	X4	11
2.1.4	X1, X2 Expansion Connectors	12
2.1.5	S1 DIP Switch	12
2.2 Sol	der Jumper on DEV-BF5xxDA-lite (EVAL-BF5xx)	12
2.3 Bas	e Addresses and GPIO Assignment	13
2.3.1	Memory Mapping	13
2.3.2	GPIO Assignment	13
2.4 Me	chanical Outline	14
3 Specifica	ations	15
3.1 Eleo	trical Specifications	15
3.1.1	Operating Conditions	15
3.1.2	Maximum Ratings	15
3.1.3	ESD Sensitivity	15
4 Support		16
4.1 Ger	neral Support	16
4.2 Boa	rd Support Packages	16
4.3 Bla	kfin® Software Support	16
4.3.1	BLACKSheep® OS	16
4.3.2	LabVIEW	16
4.3.3	uClinux	16
4.4 Bla	kfin° Design Services	16
4.4.1	Upcoming Products and Software Releases	16
5 Ordering	Information	17
5.1 Pre	defined mounting options for EXT-BF5xx-USB-ETH2	17
6 Depend	ability	18

	6.1		MTBF	18
7	Р	rod	luct History	19
	7.1		Version Information	19
	7.2		Anomalies	19
8	D)ocı	ument Revision History	20
9	L	ist o	of Abbreviations	21
A	L	ist o	of Figures and Tables	22

© Bluetechnix Mechatronische Systeme GmbH 2011 All Rights Reserved.

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights of technical change reserved.

We hereby disclaim any warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Bluetechnix makes and you receive no warranties or conditions, express, implied, statutory or in any communication with you. Bluetechnix specifically disclaims any implied warranty of merchantability or fitness for a particular purpose.

Bluetechnix takes no liability for any damages and errors causing of the usage of this board. The user of this board is responsible by himself for the functionality of his application. He is allowed to use the board only if he has the qualification. More information is found in the General Terms and Conditions (AGB).

Information

For further information on technology, delivery terms and conditions and prices please contact Bluetechnix (http://www.bluetechnix.com).

Warning

Due to technical requirements components may contain dangerous substances.

Blackfin[®] Core Modules

TCM-BF518-C-C-Q25S32F2 (TCM-BF518)

The Tiny Core Module TCM-BF518 is powered by Analog Devices' single core ADSP-BF518 processor; up to 400MHz, 32MB SDRAM, up to 8MB flash. The 2x60 pin expansion connectors are backwards compatible with other Core Modules.

ACM-BF525C-C-C-Q25S64F4N1024

The Core Module ACM-BF525C is optimized for audio applications and performance. It is based on the high performance ADSPBF525Cfrom Analog Devices. It addresses 64MByte SDRAM via its 16bit wide SDRAM bus, has an onboard NOR-flash of 4MByte and a NAND-flash with 1024MByte.

CM-BF527-C-C-Q50S32F8 (CM-BF527)

The Core Module CM-BF527 is powered by Analog Devices' single core ADSP-BF527 processor; key features are USB OTG 2.0 and Ethernet. The 2x60 pin expansion connectors are backwards compatible with other Core Modules.

CM-BF533-C-C-Q25S32F2 (CM-BF533)

The Core Module CM-BF533 is powered by Analog Devices' single core ADSP-BF533 processor; up to 600MHz, 32MB SDRAM, 2MB flash, 2x60 pin expansion connectors at a size of 36.5x31.5mm.

TCM-BF537-C-I-Q25S32F8 (TCM-BF537)

The Tiny Core Module TCM-BF537 is powered by Analog Devices' single core ADSP-BF537 processor; up to 500MHz, 32MB SDRAM, 8MB flash, a size of 28x28mm, 2x60 pin expansion connectors, Ball Grid Array or Border Pads for reflow soldering, industrial temperature range -40°C to +85°C.

CM-BF537-C-C-Q25S32F4 (CM-BF537E)

The Core Module CM-BF537 is powered by Analog Devices' single core ADSP-BF537 processor; up to 600MHz, 32MB SDRAM, 4MB flash, integrated TP10/100 Ethernet physical transceiver, 2x60 pin expansion connectors at a size of 36.5x31.5mm.

CM-BF537-C-C-Q30S32F4-U (CM-BF537U)

The Core Module CM-BF537 is powered by Analog Devices' single core ADSP-BF537 processor; up to 600MHz, 32MB SDRAM, 4MB flash, integrated USB 2.0 Device, 2x60 pin expansion connectors at a size of 36.5x31.5mm.

CM-BF548-C-C-Q25S64F8 (CM-BF548)

The Core Module CM-BF548 is characterized by its numerous peripheral interfaces, its performance in combination with its high speed memory interface (DDR). Key features are 533MHz, 64MB DDR SD-RAM (266MHz), and 8MB flash.

CM-BF561-C-C-Q25S64F8 (CM-BF561)

The Core Module CM-BF561 is powered by Analog Devices' dual core ADSP-BF561 processor; up to 2x 600MHz, 64MB SDRAM, 8MB flash, 2x60 pin expansion connectors at a size of 36.5x31.5mm.

eCM-BF561-C-C-Q25S128F32 (eCM-BF561)

The Core Module CM-BF561 is powered by Analog Devices' dual core ADSP-BF561 processor; up to 2x 600MHz, 128MB SDRAM, 8MB flash, 2x100 pin expansion connectors and a size of 44x33mm.

Core Module naming information

The idea is to put more Core Module specific technical information into the product name. New Core Module names will have following technical information covered in their names.

- Product Family,
- CPU-Type,
- Connection-Type,
- Operating Temperature Range,
- Crystal Frequency [MHz],
- RAM [MB],
- Flash [MB],
- External Controllers
- Optional
 - o Special and/or
 - o Former name

That expands of course the name but allows the customer to get the most important Core Module specific information at the first sight. Have a look at the example below to get an idea of the new Core Module names.

Example CM-BF537-C-C-Q25S32F4 (CM-BF537E)

Blackfin[®] Development Boards

ADEV-BF52xC

Feature rich, low cost embedded audio development platform which supports Audio Core Modules (ACM). The form factor of the ADEV-BF52xC allows easy integration of the board into OEM products. Dedicated interfaces such as USB2.0, Line In/Out, headphone out and an onboard silicon microphone turn the ADEV-BF52xC into a full-featured development platform for most embedded audio applications in commercial areas.

DEV-BF5xxDA-Lite

Get ready to program and debug Bluetechnix Core Modules with this tiny development platform including an USB-Based Debug Agent. The DEV-BF5xxDA-Lite is a low cost starter development system including a VDSP++ Evaluation Software License.

DEV-BF548-Lite

Low-cost development board with a socket for Bluetechnix' CM-BF548 Core Module. Additional interfaces are available, e.g. an SD-Card, USB and Ethernet.

DEV-BF548DA-Lite

Get ready to program and debug Bluetechnix CM-BF548 Core Module with this tiny development platform including an USB-Based Debug Agent. The DEV-BF548DA-Lite is a low-cost starter development system including a VDSP++ Evaluation Software License.

eDEV-BF5xx

Feature rich, low cost rapid development platform which provides all interfaces on dedicated connectors and has all Core Module pins routed to solder pads which easily can be accessed by the developers. The eDEV-BF5xx supports the latest debugging interface from Analog Devices - ADI-SADA (Analog Devices Stand Alone Debug Agent).

EVAL-BF5xx

Tiny, low cost embedded platform which supports Bluetechnix powerful Blackfin[®] based Core Modules. The form factor (75x75mm) of the EVAL-BF5xx allows easy integration of the board into OEM products. Dedicated interfaces such as USB2.0, SD-card slot, CAN interface connectors and of course Ethernet, turn the EVAL-BF5xx into a full-featured evaluation platform for most embedded applications.

Extender boards

Extender boards (EXT-BF5xx) are expanding the development and evaluation boards by several interfaces and functionalities. Targeted application areas are: audio/video processing, security and surveillance, Ethernet access, positioning, automation and control, experimental development and measuring.

Note! Bluetechnix is offering tailored board developments as well.

1 Introduction

The EXT-BF5xx-USB-ETH2 is an extender board suitable for the DEV-BF5xxDA-Lite or the EVAL-BF5xx development boards. This stackable board features a USB2.0 device IC (NET2272), a 10/100Mbit Ethernet physical transceiver particularly for the TCM-BF537 and an Ethernet controller IC.

The EXT-BF5xx-USB-ETH2 is ideally suited to introduce network connectivity and USB2.0 functionality into your future embedded applications.

1.1 Overview

The following figure gives an overview of the main used components and the board interconnection.

Figure 1-1: Overview of the EXT-BF5xx-USB-ETH2 board

The EXT-BF5xx-USB-ETH2 Board features the following components:

1.1.1 KSZ8041NL Ethernet physical chip

- 100BASE-TX/10BASE-T
- Fully compliant to IEEE 802.3u standard
- Auto negotiation as well as manual selection
- Half and Full Duplex mode
- Supports HP MDI/MDI-X auto crossover
- Only supported by TCM-BF537

For detail description refer to the manufacturer's homepage: http://micrel.com/

1.1.2 LAN9218

- Single chip Ethernet controller
- Optimized for highest performance
- Efficient architecture for low CPU overhead
- Easy external 32- or 16-bit bus interface

- Integrated 10/100 Ethernet PHY with HP Auto-MDIX
- Supports high definition (HD) MPEG2 streams

For detail description refer to the manufacturer's homepage: http://www.smsc.com/

1.1.3 NET2272 USB 2.0 device chip

- USB Specification r2.0
- USB full (12MBps) and high (480Mbps)
- Three Configurable Physical Endpoints, in addition to Endpoint 0
- 30 Configurable Virtual endpoints
- Configurable endpoints can be Isochronous, Bulk, or Interrupt, as well as IN or OUT
- High Bandwidth Isochronous Mode
- Maximum Packet Size up to 1 KB, double buffers
- Internal 3 KB Memory provides Transmit and Receive buffers
- 8- or 16-bit CPU or DMA bus transfers
- Automatic Retry of failed packets

For detail description refer to the manufacturer's homepage: http://plxtech.com/products/net2000/

2 Overview

2.1 PCB Placement of connectors

Figure 2-1: PCB Placement of connectors

2.1.1 X5

RJ45 Ethernet socket for the LAN9218

2.1.2 X3

RJ45 Ethernet socket for the KSZ8041NL

2.1.3 X4

USB 2.0 device plug for the Net2272 chip

2.1.4 X1, X2 Expansion Connectors

The Expansion Connectors have the same pin out as on the base board. They are directly routed through. Please refer to the appropriate base board for a pin description.

The connectors on the EXT-BF5xx-USB-ETH2 board for a Stacked Height of 16mm are of the following type:

Part	Manufacturer	Manufacturer Part Nr.
X1, X2	AMP (Stacked Height = 16mm)	5-5179010-2
Matching connector	AMP	5179031-2

Table 2-1: EXT-BF5xx- USB-ETH2 board connector types

These connectors can be ordered from Bluetechnix.

2.1.5 S1 DIP Switch

This switch allows to select each device and to disconnect the Blackfin GPIOs from the control signals, if the device won't be used.

Switch	BF Signal	Device Signal	Device	Description
1	AMS2	AMS	NET2272 / LAN9218	use AMS2 for enabling devices
2	AMS3	AMS	NET2272 / LAN9218	use AMS3 for enabling devices
3	GPIO ¹⁾	IRQ	NET2272	set off if USB won't be used
4	GPIO ¹⁾	RESET	NET2272	set off if USB won't be used
5	GPIO ¹⁾	IRQ	LAN9218	set off if LAN9218 won't be used
6	3.3V	RESET	KSZ8041	set off if KSZ8041won't be used

Table 2-2: DIP-Switch functionality

¹⁾ The Table 2-5 shows the GPIO assignment for all supported Core Modules.

2.2 Solder Jumper on DEV-BF5xxDA-lite (EVAL-BF5xx)

To use the KSZ8041NL (Ethernet Phy) on the EXT-BF5xx-USB-ETH2 with a DEV-BF5xxDA-lite or EVAL-BF5xx you have to short JP4 and JP5.

See DEV-BF5xxDA-lite (EVAL-BF5xx) manual for more details.

2.3 Base Addresses and GPIO Assignment

2.3.1 Memory Mapping

The following table shows the base address of the NET2272 and the LAN9218 depending on the position of the switches 1 and 2 on S1.

Positions that are not shown in the table (both ON, or both OFF) are not allowed!

Switch Setting		NET2272	LAN9218
On 0ff 1 2 3 4 5 6 7 8	AMS2	0x2020′0000	0x2020′8000 ^{*)}
On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AMS3	0x2030′0000	0x2030'8000 ^{*)}

Table 2-3: Base addresses for all Core Modules except CM-BF561

Switch Setting			NET2272	LAN9218
	On Off	AMS2	0x2800′0000	0x2800′8000 ^{*)}
1 2 3 4 5 6 7 8	On Off	AMS1	0x2400′0000	0x2400′8000 ^{*)}

Table 2-4: Base Addresses for the CM-BF561

^{*)} Memory mapping for V1.0.1 0x2**8'0000

2.3.2 GPIO Assignment

The table below shows which GPIO is connected to the NET2272 (USB) and the LAN9218 (ETH2) depending on the core module inserted on the base board.

Switch N°	Signal Description	(T)CM- BF527	(T)CM-BF537	CM-BF533	CM-BF548	CM-BF561
3	USB-IRQ	PF13	PG 13	PF 6	PD13	PF 45
4	USB-RESET ¹⁾	PF14	PG 14	PF 5	n.a.	PF 46
5	ETH2-IRQ	PF11	PG 11	PF 8	PD11	PF 43

Table 2-5: GPIO assignment for the supported Core Modules

¹⁾ Note that the NET2272 USB Controller shares the reset line with the S6 push-button located on the Dev-Boards. Don't use this button together with the USB device controller!

2.4 Mechanical Outline

Figure 2-2: Mechanical outline – expansion connector placement

3 Specifications

3.1 Electrical Specifications

3.1.1 Operating Conditions

Symbol	Parameter	Min	Typical	Max	Unit
V _{IN}	Input supply voltage		3.3	3.6	V
V _{он}	High level output voltage	0.7*V _{IN}			V
Vol	Low level output voltage			0.3*V _{IN}	V
I _{USB}	V _{USB} current		500		mA

Table 3-1: Electrical characteristics

3.1.2 Maximum Ratings

Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only. Operation of the device at these or any other conditions greater than those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Min	Мах	Unit
V _{IO}	Input or output voltage	-0.5	3.6	V
I _{OH} /I _{OL}	Current per pin	0	10	mA
Тамв	Ambient temperature	0	70	°C
Т _{sto}	Storage temperature	-55	150	°C
T _{SLD}	Solder temperature for 10 seconds	260	°C	
Фамв	Relative ambient humidity	90	%	

Table 3-2: Absolute maximum ratings

3.1.3 ESD Sensitivity

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

4 Support

4.1 General Support

General support for products can be found at Bluetechnix' support site https://support.bluetechnix.at/wiki

4.2 Board Support Packages

Board support packages and software downloads are for registered customers only <u>https://support.bluetechnix.at/software/</u>

4.3 Blackfin[®] Software Support

4.3.1 BLACKSheep® OS

BLACKSheep[®] OS stands for a powerfully and multithreaded real-time operating system (RTOS) originally designed for digital signal processing application development on Analog Devices Blackfin[®] embedded processors. This high-performance OS is based on the reliable and stable real-time VDK kernel from Analog Devices that comes with VDSP++ IDE. Of course BLACKSheep[®] OS is fully supported by all Bluetechnix Core-Modules and development hardware.

4.3.2 LabVIEW

You can get LabVIEW embedded support for Bluetechnix Core Modules by Schmid-Engineering AG <u>http://www.schmid-engineering.ch</u>.

4.3.3 uClinux

You can get uClinux support (boot loader and uClinux) for Bluetechnix Core Modules at http://blackfin.uClinux.org.

4.4 Blackfin[®] Design Services

Based on more than seven years of experience with Blackfin, Bluetechnix offers development assistance as well as custom design services and software development.

4.4.1 Upcoming Products and Software Releases

Keep up to date with all product changes, releases and software updates of Bluetechnix at <u>http://www.bluetechnix.com</u>.

5 Ordering Information

5.1 Predefined mounting options for EXT-BF5xx-USB-ETH2

Article Number	Name	Description
100-2275-2	EXT-BF5xx-USB-ETH2	USB-ETH2 extender board

Table 5-1: Ordering information

NOTE: Custom hard and software developments are available on request! Please contact Bluetechnix (office@bluetechnix.com) if you are interested in custom hard- and software developments.

6 Dependability

6.1 MTBF

Please keep in mind that a part stress analysis would be the only way to obtain significant failure rate results, because MTBF numbers just represent a statistical approximation of how long a set of devices should last before failure. Nevertheless, we can calculate an MTBF of the development board using the bill of material. We take all the components into account. The PCB and solder connections are excluded from this estimation. For test conditions we assume an ambient temperature of 30°C of all development board components. We use the MTBF Calculator from ALD (http://www.aldservice.com/) and use the reliability prediction MIL-217F2 Part Stress standard. Please get in touch with Bluetechnix (office@bluetechnix.com) if you are interested in the MTBF result.

7 Product History

7.1 Version Information

Version	Date	Changes
2.0	2009 12 03	First release V2.0 of the Hardware.
		Table 7-1: Overview product changes

7.2 Anomalies

Version	Date	Description
1.0	2009 12 03	No anomalies reported yet.
		Table 7-2: Overview product anomalies

8 Document Revision History

Version	Date	Document Revision
1	2009 12 03	First release V1.0 of the Document
2	2011 11 29	Updated Table 2-2

Table 8-1: Revision history

9 List of Abbreviations

Abbreviation	Description		
ADI	Analog Devices Inc.		
AI	Analog Input		
AMS	Asynchronous Memory Select		
AO	Analog Output		
СМ	Core Module		
DC	Direct Current		
DSP	Digital Signal Processor		
eCM	Enhanced Core Module		
EBI	External Bus Interface		
ESD	Electrostatic Discharge		
GPIO	General Purpose Input Output		
1	Input		
l ² C	Inter-Integrated Circuit		
I/O	Input/Output		
ISM	Image Sensor Module		
LDO	Low Drop-Out regulator		
MTBF	Mean Time Between Failure		
NC	Not Connected		
NFC	NAND Flash Controller		
0	Output		
OS	Operating System		
PPI	Parallel Peripheral Interface		
PWR	Power		
RTOS	Real-Time Operating System		
SADA	Stand Alone Debug Agent		
SD	Secure Digital		
SoC	System on Chip		
SPI	Serial Peripheral Interface		
SPM	Speech Processing Module		
SPORT	Serial Port		
TFT	Thin-Film Transistor		
TISM	Tiny Image Sensor Module		
TSC	Touch Screen Controller		
UART	Universal Asynchronous Receiver Transmitter		
USB	Universal Serial Bus		
USBOTG	USB On The Go		
ZIF	Zero Insertion Force		

Table 9-1: List of abbreviations

A List of Figures and Tables

Figures

Figure 1-1: Overview of the EXT-BF5xx-USB-ETH2 board	9
Figure 2-1: PCB Placement of connectors	11
Figure 2-2: Mechanical outline – expansion connector placement	14

Tables

Table 2-1: EXT-BF5xx- USB-ETH2 board connector types	12
Table 2-2: DIP-Switch functionality	12
Table 2-3: Base addresses for all Core Modules except CM-BF561	13
Table 2-4: Base Addresses for the CM-BF561	13
Table 2-5: GPIO assignment for the supported Core Modules	13
Table 3-1: Electrical characteristics	15
Table 3-2: Absolute maximum ratings	15
Table 5-1: Ordering information	17
Table 7-1: Overview product changes	
Table 7-2: Overview product anomalies	19
Table 8-1: Revision history	20
Table 9-1: List of abbreviations	21