

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

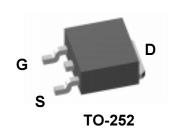
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

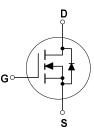
March 2015

MTD3055V*

N-Channel Enhancement Mode Field Effect Transistor

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.


These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{\rm DS(ON)}$ specifications.

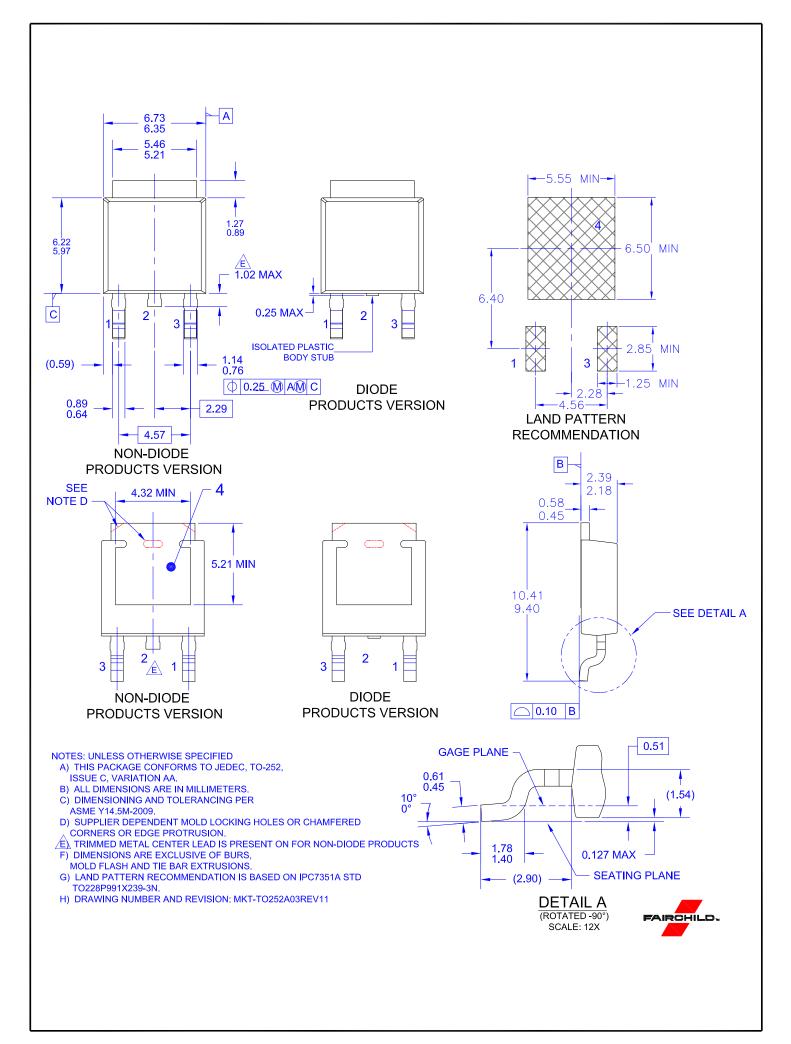
The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 12 A, 60 V. $\rm R_{\rm DS(ON)}$ = 0.15 Ω @ $\rm V_{\rm GS}$ = 10 V
- · Low gate charge.
- Fast switching speed.
- High performance technology for low R_{DS(ON)}.

Absolute Maximum Ratings Tc=25°C unless otherwise noted

Symbol	Parameter		Ratings	Unit
V _{DSS}	Drain-Source Voltage		60	V
V _{GSS}	Gate-Source Voltage		<u>+</u> 20	V
D	Maximum Drain Current -Continuous	(Note 1)	12	A
	T _c = 100°C	(Note 1)	7.3	
	Maximum Drain Current -Pulsed		37	
P _D	Maximum Power Dissipation @ $T_c = 25^{\circ}C$	(Note 1)	48	W
	T _A = 25°C	(Note 1a)	3.9	
	T _A = 25°C	(Note 1b)	1.5	
Г _Ј , Т _{STG}	Operating and Storage Junction Temperature	Range	-55 to +175	∘C
T _J , T _{STG}	Operating and Storage Junction Temperature Characteristics	Range	-55 to +175	
R _{AJC}	Thermal Resistance, Junction-to- Case	(Note 1)	3.13	∘C/
λ ^{ese}	Thermal Resistance, Junction-to- Ambient	(Note 1a)	38	∘C/V


Package Marking and Ordering Information									
Device Marking	Device	Reel Size	Tape width	Quantity					
MTD3055V	MTD3055V	13"	16mm	2500					
* D' 1 C 1 '									

* Die and manufacturing source subject to change without prior notification.

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units	
DRAIN-S	OURCE AVALANCHE RAT	NGS (Note 2)				Į	
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	V _{DD} = 25 V, I _D = 12 A			72	mJ	
AR	Maximum Drain-Source Avalanche	Current			12	А	
Off Chara	acteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $ _{D} = 250 \mu A$	60			V	
<u>A</u> BVdss ATj	Breakdown Voltage Temperature Coefficient	I_{D} = 250 μ A, Referenced to 25°C		42		mV/∘C	
DSS	Zero Gate Voltage Drain Current	V _{DS} = 60 V, V _{GS} = 0 V		10	μA		
		V _{DS} = 60 V, V _{GS} = 0 V, T _J = 150∘C			100	·	
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA	
GSSR	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA	
<u> On Chara</u>	cteristics (Note 2)		-		-	-	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ _D = 250 µA	2	2.8	4	V	
$\Delta VGS(th) \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to 25°C		-2.3		mV/∘C	
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, _D = 6 A,			0.15	Ω	
V _{DS(on)}	Drain-Source On-Voltage On-Resistance	V _{GS} = 10 V,I _D = 12 A V _{GS} = 10 V,I _D = 6 A, T _J = 150∘C			2.2 1.9	V	
g fs	Forward Transconductance	$V_{DS} = 7 V_{, _{D}} = 6 A$	4.0			S	
<u> Dynamic</u>	<u>Characteristics</u>	1		n	1		
C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$			500	pF	
C _{oss}	Output Capacitance	f = 1.0 MHz			180	pF	
C _{rss}	Reverse Transfer Capacitance				50	pF	
Switchin	g Characteristics (Note 2)	1	-				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30 V, _{D} = 12 A,$			10	ns	
t _r	Turn-On Rise Time	$V_{GS} = 10 V, R_{GEN} = 9.1 \Omega$			60	ns	
d(off)	Turn-Off Delay Time				30	ns	
f	Turn-Off Fall Time				50	ns	
Qg	Total Gate Charge	V _{DS} = 48 V, I _D = 12 A, V _{GS} = 10 V		12.7	17	nC	
Q _{gs}	Gate-Source Charge			3.2		nC	
Q _{gd}	Gate-Drain Charge			7		nC	
)rain-So	urce Diode Characteristics	and Maximum Ratings					
ls	Maximum Continuous Drain-Sourc	e Diode Forward Current (Note 2)			12	А	
SM	Maximum Pulsed Drain-Source Di	ode Forward Current (Note 2)			37	А	
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, _{S} = 12 A$ (Note 2)			1.6	V	
t _{rr}	Drain-Source Reverse Recovery Time	$ _{F}$ = 12 A, di/dt = 100A/µs		46		nS	
	n of the junction-to-case and case-to-ambient then teed by design while R _{BCA} is determined by the us	mal resistance where the case thermal reference is d er's board design. nmounted on a руде b) R _{а ја}	lefined as the	e drain tab.			

Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width \leq 300 μ s. Duty Cycle \leq 2.0%

MTD3055V

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC