
Experiment Guide for the SparkFun Tinker Kit




Introduction to the SparkFun Tinker Kit
This SparkFun Tinker Kit Experiment Guide is your map for navigating the
waters of beginning embedded electronics, robotics and citizen science
using the SparkFun RedBoard while sticking to a strict budget. This guide
contains all the information you will need to explore the 11 circuits of the
SparkFun Tinker Kit. At the center of this guide is one core philosophy –
that anyone can (and should) play around with cutting-edge electronics in a
fun and playful way while not breaking the bank.

When you’re done with this guide, you’ll have the know-how to start
creating your own projects and experiments. From building robots and
game controllers to data logging, the world will be your oyster. Now enough
talking – let’s start tinkering!

Included Materials

Here are all of the parts in the SparkFun Tinker Kit:

• SparkFun RedBoard – Our tried and true version of the Arduino
UNO.

• Breadboard – Excellent for making circuits and connections off the
Arduino.

• SparkFun Mini Screwdriver – To help you screw your RedBoard
onto the holder.

• Hobby Gearmotor Set – A set of hobby level motors with gearboxes
set to 120 RPM.

• Small Servo – Here is a simple, low-cost, high-quality servo for all
your mechatronic needs.

Page 1 of 63

• TMP36 Temp Sensor – A sensor for detecting temperature changes.
• USB A to B Cable – This 6-foot cable provides you with a USB-A

connector at the host end and standard B connector at the device
end.

• Male-to-Male Jumper Wires – These are high-quality wires that
allow you to connect the female headers on the Arduino to the
components and breadboard.

• Photocell – A sensor to detect ambient light. Perfect for detecting
when a drawer is opened or when nighttime approaches.

• Tri-Color LED – Because everyone loves a blinky.
• Red, Blue, Yellow and Green LEDs – Light-Emitting Diodes make

great general indicators.
• Red, Blue, Yellow and Green Tactile Buttons – Go crazy with

different colored buttons.
• 10K Trimpot – Also known as a variable resistor, this is a device

commonly used to control volume and contrast, and makes a great
general user control input.

• 330 Ohm Resistors – Great current-limiting resistors for LEDs, and
strong pull-up resistors.

• 10K Ohm Resistors – These make excellent pull-ups, pull-downs
and current limiters.

• SN754410 H-Bridge IC – This nifty little Integrated Circuit (IC) is
perfect for controlling the speed and direction of up to two separate
motors.

• 4xAA Battery Holder – Used to power the RedBoard without being
connected to your computer. Sorry! Batteries not included.

Experiment List
The following is a list of the experiements you will complete using this
Tinker Kit Experiment Guide. Alternatively, you can navigate around using
the buttons on the right.

• Experiment 1: Blinking an LED
• Experiment 2: Reading a Potentiometer
• Experiment 3: Driving an RGB LED
• Experiment 4: Driving Multiple LEDs
• Experiment 5: Reading a Button Press
• Experiment 6: Reading a Photoresistor
• Experiment 7: Reading a Temperature Sensor
• Experiment 8: Using a Servo Motor
• Experiment 9: Driving a Motor with an H-Bridge
• Experiment 10: Controlling a Motor with Inputs
• Experiment 11: Reading Serial Data

Suggested Reading
Before continuing with this guide, we recommend you be somewhat familiar
with the concepts in the following tutorials:

• Voltage, Current, Resistance, and Ohm’s Law - The most basic
concepts in electronics and electrical engineering. Get very familiar
with these concepts as they will be used throughout your electronics
adventure.

• What is a Circuit? - In this guide, we will be building a variety of
circuits. Understanding what that means is vital to understanding the
Inventor’s Kit.

• How to Use a Breadboard – First time working with a breadboard?
Please check out this tutorial! It will help you understand why the
breadboard is great for prototyping and how to use one.

Open Source!

Page 2 of 63

At SparkFun, our engineers and educators have been improving this kit and
coming up with new experiments for a long time. We would like to give
attribution to Oomlout, since we originally started working off the Arduino Kit
material many years ago. Both the Oomlout and SparkFun versions are
licensed under the Creative Commons Attribution Share-Alike 3.0 Unported
License.

To view a copy of this license visit this link, or write: Creative Commons,
171 Second Street, Suite 300, San Francisco, CA 94105, USA.

What is the RedBoard?

At SparkFun we use many Arduinos, and we’re always looking for the
simplest, most stable one. Each board is a bit different, and no one board
has everything we want, so we decided to make our own version that
combines all our favorite features. The SparkFun RedBoard combines the
simplicity of the UNO’s Optiboot bootloader (which is used in the Pro
series), the stability of the FTDI (which we all missed after the Duemilanove
was discontinued) and the R3 shield compatibility of the latest Arduino UNO
R3.

The RedBoard can be programmed over a USB Mini-B cable using the
Arduino IDE: Just plug in the board, select “Arduino UNO” from the board
menu, and you’re ready to upload code. RedBoard has all of the hardware
peripherals you know and love: 14 Digital I/O pins with 6 PWM pins, 6
Analog Inputs, UART, SPI and external interrupts. We’ve also broken out
the SDA, SCL and IOREF pins that showed up on the UNO R3, so the
RedBoard will be compatible with future shields. This version adds an SMD
ISP header for use with shields.

You can power the RedBoard over USB or through the barrel jack. The on-
board power regulator can handle anything from 7 to 15VDC. Check out the
related items below for a compatible wall-wart power supply.

Download and Set Up the Arduino Software
Before you plug the RedBoard into your computer, you’ll need to install
Arduino.

Installing Arduino
To begin, head over to Arduino’s download page and grab the most recent,
stable release of Arduino. Make sure you grab the version that matches
your operating system.

DOWNLOAD ARDUINO!

Page 3 of 63

The installation procedure is fairly straightforward, but it varies by OS. Here
are some tips to help you along. We’ve also written a separate Installing
Arduino tutorial if you get really stuck.

Windows Install Tips

The Windows version of Arduino is offered in two options: an installer or a
zip file. The installer is the easier of the two options; just download that,
and run the executable file to begin installation. If you’re prompted to install
a driver during installation, select “Don’t Install” (the RedBoard doesn’t use
the same drivers). Don’t forget which directory it installs to (defaults to
“Program Files/Arduino”).

Windows install steps. Click the image for a closer look.

If, instead, you choose to download the zip file version of Arduino, you’ll
need to extract the files yourself. Don’t forget which folder you extract the
files into! We’ll need to reference that directory when we install drivers.

Mac Install Tips

The Mac download of Arduino is only offered in a zip file version. After the
download is finished, simply double-click the .zip file to unzip it.

Following that, you’ll need to copy the Arduino application into your
applications folder to complete installation.

Linux Install Tips

As Linux users are no doubt aware, there are many flavors of Linux out
there, each with unique installation routines. Check out the Linux section of
the Installing Arduino tutorial for some helpful links for an assortment of
Linux distributions.

For Ubuntu and Debian users, installing Arduino should be as easy as
running a little “apt-get” magic, with a command like:

sudo apt-get update && sudo apt-get install arduino arduino-co
re

And other Linux distros aren’t too dissimilar from that.

With Arduino downloaded and installed, the next step is to plug the
RedBoard in and install some drivers! Pretty soon you’ll be blinking LEDs,
reading buttons, and doing some physical computing!

Install FTDI Drivers
Once you have downloaded and installed Arduino, it’s time to connect the
RedBoard to your computer! Before you can use the board, though, you’ll
need to install drivers.

Page 4 of 63

Windows Driver Installation
After initially plugging your RedBoard in, your computer will try to search for
a compatible driver. It may actually succeed! The FTDI drivers are pretty
common, so Windows Update may know a little something about them. If
the drivers do automatically install, you should see a little bubble notification
saying so:

If your computer failed to find drivers, we’ll have to install them manually.
Check out our Windows FTDI Driver install guide for driver installation
instructions.

Mac Driver Installation
If you’re lucky, the FTDI drivers should automatically install on Mac OS X;
otherwise you’ll have to manually install the drivers. Check out the Mac
FTDI Driver install guide for help installing the drivers.

In short, the process involves heading over to the FTDI driver website, and
downloading the most up-to-date VCP drivers. Then you’ll simply run the
“FTDIUSBSerialDriver_v2_2_18.dmg” file you downloaded, and follow the
installation prompts.

Linux Driver Installation
Linux is actually pretty good about automatically installing the drivers. If you
have any trouble, check out our Linux FTDI Driver install guide.

Now it’s time to breathe easy! You’ll only have to run through this driver
installation process once, the first time you connect the board to your
computer. Now it’s time to upload a sketch!

Experiment 1: Blink an LED

Introduction
LEDs are small, powerful lights that are used in many different applications.
To start off, we will work on blinking an LED, the “Hello, World!” of
microcontrollers. That’s right – it’s as simple as turning a light on and off. It
might not seem like much, but establishing this important baseline will give
you a solid foundation as we work toward more complex experiments.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 1x LED

Page 5 of 63

• 1x 330Ω Resistor
• 3x Jumper Wires

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorial:

• Light-Emitting Diodes – Learn more about LEDs!

Introducing the LED

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

LED - Basic Red 5mm
 COM-09590

Resistor 330 Ohm 1/6 Watt
PTH - 20 pack
 COM-11507

Page 6 of 63

A Light-Emitting Diode (LED) will only let current through it in one direction.
Think of an LED as a one-way street. When current flows through the LED,
it lights up! When you are looking at the LED, you will notice that its legs
are different lengths. The long leg, the “anode,” is where current enters the
LED. This pin should always be connected to the current source. The
shorter leg, the “cathode,” is the current’s exit. The short leg should always
be connected to a pathway to ground.

LEDs are finicky when it comes to how much current you apply to them.
Too much current can lead to a burnt-out LED. To restrict the amount of
current that passes through the LED, we use a resistor in line with the
power source and the LED’s long leg; this is called a current-limiting
resistor. With the RedBoard, you should use a 330 Ohm resistor. We have
included a baggy of them in the kit just for this reason!

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Please note: Pay close attention to the LED. The negative side of the
LED is the short leg, marked with a flat edge.



Page 7 of 63

Components like resistors need to have their legs bent into 90° angles in
order to correctly fit the breadboard sockets. You can also cut the legs
shorter to make them easier to work with on the breadboard.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open Your First Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 1 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > Tinker Kit Guide Code >
Circuit_01

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 8 of 63

/*
SparkFun Tinker Kit
Example sketch 01

BLINKING AN LED

Turn an LED on for one second, off for one second,
and repeat forever.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about Arduino.
*/

//The setup function runs once upon your Arduino being powere
d or once upload is //complete.

void setup()
{
//set pin 13 to OUTPUT
pinMode(13, OUTPUT);

}

//The loop function runs from the top down and repeats itself
until you upload new //code or power down your Arduino
void loop()
{
//Turn pin 13 HIGH (ON).
digitalWrite(13, HIGH);

//wait 1000 milliseconds (1 second)
delay(1000);

//Turn pin 13, LOW (OFF)
digitalWrite(13, LOW);

//wait 1000 milliseconds
delay(1000);

}

Code to Note
pinMode(13, OUTPUT);

Before you can use one of the RedBoards' pins, you need to tell the board
whether it is an INPUT or OUTPUT. We use a built-in “function” called
pinMode() to do this.

digitalWrite(13, HIGH);

When you’re using a pin as an OUTPUT, you can command it to be HIGH
(output 5 volts), or LOW (output 0 volts).

What You Should See
You should see your LED blink on and off. If it doesn’t, make sure you have
assembled the circuit correctly and verified and uploaded the code to your
board, or see the Troubleshooting section.

Page 9 of 63

Troubleshooting
Program Not Uploading

This happens sometimes; the most likely cause is a confused serial port.
You can change this in Tools > Serial Port >

Also, if you get a Timeout error or the IDE could not find your 101 board, try
pressing the Master Reset button on the 101, wait around 10 seconds and
try re-uploading your sketch.

Still No Success

A broken circuit is no fun. Send us an email, and we will get back to you as
soon as we can: techsupport@sparkfun.com

Experiment 2: Reading a Potentiometer

Introduction
In this circuit you will work with a potentiometer. You will learn how to use a
potentiometer to control the timing of a blinking LED by reading a sensor
and storing it as a variable, then using it as your delay timing.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 1x LED
• 1x 330Ω Resistor
• 7x Jumper Wires
• 1x Potentiometer

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

Page 10 of 63

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorial:

• Analog to Digital Conversion

Introducing the Potentiometer

A potentiometer is a resistance-based analog sensor that changes its
internal resistance based on the rotation of its knob. The potentiometer has
an internal voltage divider enabling you to read the change in voltage on
the center pin with a microcontroller (the RedBoard). To hook up the
potentiometer, attach the two outside pins to a supply voltage (5V in this
circuit) and ground. It doesn’t matter which is connected where, as long as

Trimpot 10K with Knob
 COM-09806

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

LED - Basic Red 5mm
 COM-09590

Resistor 330 Ohm 1/6 Watt
PTH - 20 pack
 COM-11507

Page 11 of 63

one is connected to power, and the other to ground. The center pin is then
connected to an analog input pin so the RedBoard can measure the change
in voltage. When you twist the knob, the sensor reading will change!

Note: The potentiometer included in the kit has three marks on it that
will help you figure out which breadboard rows the pins are plugged
into.

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 2 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > Tinker Kit Guide Code >
Circuit_02

Copy and paste the following code into the Arduino IDE. Hit upload, and
see what happens!



Page 12 of 63

/* SparkFun Tinker Kit
Example sketch 02

POTENTIOMETER

 Measure the position of a potentiometer and use it to
 control the blink rate of an LED. Turn the knob to make
 it blink faster or slower!

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about Arduino.
*/

//Create global variables (variables that can be used anywher
e in our sketch)

// Here we're creating a variable called "sensorPin" of type
"int"
// and initializing it to have the value "0," which is the ana
log input pin the pot is //conected to.
int sensorPin = 0;

// Variable for storing the pin number that the LED is connect
ed to
int ledPin = 13;

// this function runs once when the sketch starts up
void setup()
{
//set ledPin (13) as an OUTPUT
pinMode(ledPin, OUTPUT);

}

// this function runs repeatedly after setup() finishes
void loop()
{

//create a local variable (variable that can only be used in
side of loop() to store //a sensor value called sensorVa
lue
int sensorValue;

//use the analogRead() function to read sensorPin and store
the value in sensorValue
 sensorValue = analogRead(sensorPin);

// Turn the LED on
digitalWrite(ledPin, HIGH);

delay(sensorValue);

// Turn the LED off
digitalWrite(ledPin, LOW);

//delay for the value of sensorValue
delay(sensorValue);

Page 13 of 63

//loop back to the top
}

Code to Note
int sensorValue;

A “variable” is a placeholder for values that may change in your code. You
must introduce, or “declare,” variables before you use them; here you are
declaring a variable called sensorValue, of type “int” (integer). Don’t forget
that variable names are case sensitive!

sensorValue = analogRead(sensorPin);

Use the analogRead() function to read the value on an analog pin.
analogRead() takes one parameter, the analog pin you want to use

(“sensorPin”), and returns a number (“sensorValue”) between 0 (0 volts)
and 1023 (3.3 volts).

delay(sensorValue);

Microcontrollers are very fast, capable of running thousands of lines of code
each second. To slow it down so that we can see what it’s doing, we’ll often
insert delays into the code. delay() counts in milliseconds; there are 1,000
ms in one second.

What You Should See
You should see the LED blink faster or slower in accordance with your
potentiometer. If it isn’t working, make sure you have assembled the circuit
correctly and verified and uploaded the code to your board, or see the
Troubleshooting section.

Troubleshooting
Sporadically Working

This is most likely due to a slightly dodgy connection with the
potentiometer’s pins. This can usually be conquered by holding the
potentiometer down or moving the potentiometer circuit somewhere else on
your breadboard.

Not Working

Make sure you haven’t accidentally connected the wiper (center pin), the
resistive element in the potentiometer, to digital pin 0 rather than analog pin
0 (the row of pins beneath the power pins).

LED Not Lighting Up

LEDs will only work in one direction. Double check your connections.

Experiment 3: Driving an RGB LED

Introduction

Page 14 of 63

You know what’s even more fun than a blinking LED? Changing colors with
one LED. In this circuit, you’ll learn how to use an RGB LED to create
unique color combinations. Depending on how bright each diode is, nearly
any color is possible!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 1x Common Cathode RGB LED
• 3x 330Ω Resistors
• 6x Jumper Wires

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

LED - RGB Clear Common
Cathode
 COM-00105

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Resistor 330 Ohm 1/6 Watt
PTH - 20 pack
 COM-11507

Page 15 of 63

Introducing the Red Green Blue (RGB) LED

The Red Green Blue (RGB) LED is 3 LEDs in one. The RGB has four pins
with each of the three shorter pins controlling an individual color: red, green
or blue. The longer pin of the RGB is the common ground pin. You can
create a custom colored LED by turning different colors on and off to
combine them. For example, if you turn on the red pin and green pin, the
RGB will light up as yellow.

But which pin is which color? Pick up the RGB so that the longest pin
(common ground) is aligned to the left as shown in the graphic below. The
pins are Red, Ground, Green and Blue – starting from the far left.

Note: When wiring the RGB, each colored pin still needs a current-
limiting resistor in line with the RedBoard pin that you plan to use to
control it, as with any standard LED.

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard. Polarized
components can only be connected to a circuit in one
direction. Polarized components are highlighted with a
yellow warning triangle in the table below.



Page 16 of 63

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 3 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples >Tinker Kit Guide Code >
Circuit_03

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 17 of 63

/*
SparkFun Tinker Kit
Example sketch 03

RGB LED

Make an RGB LED display a rainbow of colors!

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about Arduino.
*/

//create variables for pin numbers. We are making them constan
ts here, because they //never change.
const int RED_PIN = 5;
const int GREEN_PIN = 6;
const int BLUE_PIN = 9;

// How fast we plan to cycle through colors in milliseconds
int DISPLAY_TIME = 10;

void setup()
{
//set the three pin variables as outputs
pinMode(RED_PIN, OUTPUT);
pinMode(GREEN_PIN, OUTPUT);
pinMode(BLUE_PIN, OUTPUT);
}

void loop()
{
// We've written a custom function called mainColors() that st
eps
// through all eight of these colors. We're only "calling" the
// function here (telling it to run). The actual function code
// is further down in the sketch.
mainColors();

}

// Here's the mainColors() custom function we've written.
void mainColors()
{
// Off (all LEDs off):
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);

//wait 1 second
delay(1000);

// Red (turn just the red LED on):
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);

Page 18 of 63

//wait 1 seconds
delay(1000);

// Green (turn just the green LED on):
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);

//wait 1 second
delay(1000);

// Blue (turn just the blue LED on):
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);

//wait 1 second
delay(1000);

// Yellow (turn red and green on):
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);

//wait 1 second
delay(1000);

// Cyan (turn green and blue on):
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);

//wait 1 second
delay(1000);

// Purple (turn red and blue on):
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);

//wait 1 second
delay(1000);

// White (turn all the LEDs on):
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);

//wait 1 second
delay(1000);
}

Code to Note

for (x = 0; x < 768; x++)
{}

A for() loop is used to repeat an action a set number of times across a
range, and repeatedly runs code within the brackets {}. Here the variable “x”
starts at 0, ends at 767, and increases by one each time (“x++”).

Page 19 of 63

if (x <= 255)
{}
else
{}

“If/else” statements are used to make choices in your programs. The
statement within the parentheses () is evaluated; if it’s true, the code within
the first brackets { } will run. If it’s not true, the code within the second
brackets { } will run.

What You Should See
You should see your LED turn on, but this time in new, crazy colors! If it
doesn’t, make sure you have assembled the circuit correctly and verified
and uploaded the code to your board, or see the Troubleshooting section.

Troubleshooting
LED Remains Dark or Shows Incorrect Color

With the four pins of the LED so close together, it’s sometimes easy to
misplace one. Double check that each pin is where it should be.

Seeing Red

The red diode within the RGB LED may be a bit brighter than the other two.
To make your colors more balanced, use a higher ohm resistor.

Experiment 4: Driving Multiple LEDs

Introduction
Now that you’ve gotten your LED to blink on and off, it’s time to up the
stakes a little bit – by connecting six LEDs at once. We’ll also give your
RedBoard a little test by creating various lighting sequences. This
experiment is a great setup to start practicing writing your own programs
and getting a feel for the way your RedBoard works.

Along with controlling the LEDs, you’ll learn a few programming tricks that
keep your code neat and tidy!

You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 6x LEDs
• 6x 330Ω Resistors
• 7x Jumper Wires

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

Page 20 of 63

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

LED - Basic Red 5mm
 COM-09590

Resistor 330 Ohm 1/6 Watt
PTH - 20 pack
 COM-11507



Page 21 of 63

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 4 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > Tinker Kit Guide Code >
Circuit_04

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 22 of 63

/*
SparkFun Tinker Kit
Example sketch 04

MULTIPLE LEDs

 Make six LEDs dance. Dance LEDs, dance!

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

// To keep track of all the LED pins, we'll use an "array."
// An array lets you store a group of variables, and refer to
them
// by their position, or "index." Here we're creating an arra
y of
// six integers, and initializing them to a set of values:
int ledPins[] = {4,5,6,7,8,9};

void setup()
{
//create a local variable to store the index of which pin w

e want to control
int index;

// For the for() loop below, these are the three statements:

// 1. index = 0; Before starting, make index = 0.
// 2. index <= 5; If index is less or equal to 5, run th

e following code
// 3. index++ Putting "++" after a variable means "add o

ne to it".

// When the test in statement 2 is finally false, the sketch
// will continue.

// This for() loop will make index = 0, then run the pinMode
()
// statement within the brackets. It will then do the same t

hing
// for index = 2, index = 3, etc. all the way to index = 5.

for(index = 0; index <= 5; index++)
 {

pinMode(ledPins[index],OUTPUT);
 }
}

void loop()
{
// This loop() calls functions that we've written further be

low.
// We've disabled some of these by commenting them out (putt

ing

Page 23 of 63

// "//" in front of them). To try different LED displays, re
move
// the "//" in front of the ones you'd like to run, and add

"//"
// in front of those you don't to comment out (and disable)

those
// lines.

// Light up all the LEDs in turn
oneAfterAnotherNoLoop();

// Same as oneAfterAnotherNoLoop, but less typing
//oneAfterAnotherLoop();

// Turn on one LED at a time, scrolling down the line
//oneOnAtATime();

// Light the LEDs middle to the edge
s
//pingPong();

// Chase lights like you see on signs
//marquee();

// Blink LEDs randomly
//randomLED();

}

/*
oneAfterAnotherNoLoop()
This function will light one LED, delay for delayTime, then li
ght
the next LED, and repeat until all the LEDs are on. It will th
en
turn them off in the reverse order.
*/

void oneAfterAnotherNoLoop()
{
// time (milliseconds) to pause between LEDs

int delayTime = 100;

// turn all the LEDs on:

digitalWrite(ledPins[0], HIGH); //Turns on LED #0 (pin 4)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[1], HIGH); //Turns on LED #1 (pin 5)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[2], HIGH); //Turns on LED #2 (pin 6)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[3], HIGH); //Turns on LED #3 (pin 7)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[4], HIGH); //Turns on LED #4 (pin 8)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[5], HIGH); //Turns on LED #5 (pin 9)
delay(delayTime); //wait delayTime millisecon

ds

Page 24 of 63

// turn all the LEDs off:

digitalWrite(ledPins[5], LOW); //Turn off LED #5 (pin 9)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[4], LOW); //Turn off LED #4 (pin 8)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[3], LOW); //Turn off LED #3 (pin 7)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[2], LOW); //Turn off LED #2 (pin 6)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[1], LOW); //Turn off LED #1 (pin 5)
delay(delayTime); //wait delayTime millisecon

ds
digitalWrite(ledPins[0], LOW); //Turn off LED #0 (pin 4)
delay(delayTime); //wait delayTime millisecon

ds
}

/*
oneAfterAnotherLoop()

This function does exactly the same thing as oneAfterAnotherNo
Loop(),
but it takes advantage of for() loops and the array to do it w
ith
much less typing.
*/

void oneAfterAnotherLoop()
{
int index;
int delayTime = 100; // milliseconds to pause between LEDs

// make this smaller for faster switchi
ng

// Turn all the LEDs on:

// This for() loop will step index from 0 to 5
// (putting "++" after a variable means add one to it)
// and will then use digitalWrite() to turn that LED on.

for(index = 0; index <= 5; index++)
 {

digitalWrite(ledPins[index], HIGH);
delay(delayTime);

 }

// Turn all the LEDs off:

// This for() loop will step index from 5 to 0
// (putting "­­" after a variable means subtract one from i

t)
// and will then use digitalWrite() to turn that LED off.

for(index = 5; index >= 0; index­­)
 {

digitalWrite(ledPins[index], LOW);
delay(delayTime);

 }
}

Page 25 of 63

/*
oneOnAtATime()

This function will step through the LEDs,
lighting only one at at time.
*/

void oneOnAtATime()
{
int index;
int delayTime = 100; // milliseconds to pause between LEDs

// make this smaller for faster switchi
ng

// step through the LEDs, from 0 to 5

for(index = 0; index <= 5; index++)
 {

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); // pause to slow down
digitalWrite(ledPins[index], LOW); // turn LED off

 }
}

/*
pingPong()

This function will step through the LEDs,
lighting one at at time in both directions.
*/

void pingPong()
{
int index;
int delayTime = 100; // milliseconds to pause between LEDs

// make this smaller for faster switchi
ng

// step through the LEDs, from 0 to 5

for(index = 0; index <= 5; index++)
 {

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); // pause to slow down
digitalWrite(ledPins[index], LOW); // turn LED off

 }

// step through the LEDs, from 5 to 0

for(index = 5; index >= 0; index­­)
 {

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); // pause to slow down
digitalWrite(ledPins[index], LOW); // turn LED off

 }
}

/*
marquee()

This function will mimic "chase lights" like those around sign

Page 26 of 63

s.
*/

void marquee()
{
int index;
int delayTime = 200; // milliseconds to pause between LEDs

// Make this smaller for faster switchi
ng

// Step through the first four LEDs
// (We'll light up one in the lower 3 and one in the upper

3)

for(index = 0; index <= 2; index++) // Step from 0 to 3
 {

digitalWrite(ledPins[index], HIGH); // Turn a LED on
digitalWrite(ledPins[index+3], HIGH); // Skip four, and t

urn that LED on
delay(delayTime); // Pause to slow do

wn the sequence
digitalWrite(ledPins[index], LOW); // Turn the LED off
digitalWrite(ledPins[index+3], LOW); // Skip four, and t

urn that LED off
 }
}

/*
randomLED()

This function will turn on random LEDs. Can you modify it so i
t
also lights them for random times?
*/

void randomLED()
{
int index;
int delayTime;

// The random() function will return a semi­random number ea
ch
// time it is called. See http://arduino.cc/en/Reference/Ran

dom
// for tips on how to make random() even more random.

 index = random(5); // pick a random number between 0 and
5
 delayTime = 100;

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); // pause to slow down
digitalWrite(ledPins[index], LOW); // turn LED off

}

Code to Note
int ledPins[] = {4,5,6,7,8,9};

When you have to manage a lot of variables, an “array” is a handy way to
group them together. Here we’re creating an array of integers, called
ledPins, with six elements. Each element is referenced by its index. The
first element is the index of [0].

Page 27 of 63

digitalWrite(ledPins[0], HIGH);

You refer to the elements in an array by their position. The first element is
at position 0, the second is at position 1, etc. You refer to an element using
“ledPins[x]” where x is the position. Here we’re making digital pin 4 HIGH,
since the array element at position 0 is “4.”

index = random(5);

Computers like to do the same things each time they run. But sometimes
you want to do things randomly, such as simulating the roll of a dice. The
random() function is a great way to do this. See
http://arduino.cc/en/reference/random for more information.

What You Should See
This is similar to Experiment 1, but instead of one LED, you should see all
the LEDs blink. If they don’t, make sure you have assembled the circuit
correctly and verified and uploaded the code to your board, or see the
Troubleshooting section.

Troubleshooting
Some LEDs Fail to Light

It is easy to insert an LED backward. Check the LEDs that aren’t working
and ensure they are in the correct orientation.

Operating out of Sequence

With eight wires it’s easy to cross a couple. Double check that the first LED
is plugged into pin 4 and each pin thereafter.

Starting Fresh

It’s easy to accidentally misplace a wire without noticing. Pulling everything
out and starting with a fresh slate is often easier than trying to track down
the problem.

Experiment 5: Reading a Button Press

Introduction
Up until now, we’ve focused mostly on outputs. Now we’re going to go to
the other end of the spectrum and play around with inputs. In Experiment 2,
we used an analog input to read the potentiometer. In this experiment, we’ll
be reading one of the most common and simple inputs – a push button – by
using a digital input. We will use it to cycle through different colors on the
RGB.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 1x RGB LED

Page 28 of 63

• 3x 330Ω Resistor
• 8x Jumper Wires
• 1x Push Button
• 1x 10K Resistors

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

Momentary Pushbutton
Switch - 12mm Square
 COM-09190

LED - RGB Clear Common
Cathode
 COM-00105

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Resistor 330 Ohm 1/6 Watt
PTH - 20 pack
 COM-11507

Page 29 of 63

Suggested Reading

Before continuing with this experiment, we recommend you be somewhat
familiar with the concepts in these tutorials:

• Switch Basics
• Analog vs. Digital

Introducing the Push Button

A momentary push button closes or completes the circuit only while it is
being pressed. The button has four pins, which are broken out into two sets
of two pins. When you press down on the button and get a nice “click,” the
button bridges the two sets of pins and allows current to flow through the
circuit.

How do you know which pins are paired up? The buttons included in this kit
will only fit across the breadboard ditch in one direction. Once you get the
button pressed firmly into the breadboard (across the ditch), the pins are
horizontally paired. The pins toward the top of the breadboard are
connected, and the pins toward the button of the breadboard are
connected.

Note: Not all buttons share this pin format. Please refer to the data
sheet of your specific button to determine which pins are paired up.

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Resistor 10K Ohm 1/6th Watt
PTH - 20 pack
 COM-11508



Page 30 of 63

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Digital Input

Previously we’ve used the analog pins for input; now we’ll use the digital
pins for input as well. Because digital pins only know about HIGH and LOW
signals, they’re perfect for interfacing to pushbuttons and switches that also
only have “on” and “off” states.

We’ll connect one side of the pushbutton to ground, and the other side to a
digital pin. When we press down on the pushbutton, the pin will be
connected to ground, and therefore will be read as “LOW” by the
RedBoard.

But wait – what happens when you’re not pushing the button? In this state,
the pin is disconnected from everything, which we call “floating.” What will
the pin read as, then – HIGH or LOW? It’s hard to say, because there’s no
solid connection to either 5V or ground. The pin could read as either one.

To deal with this issue, we’ll connect a small (10K, or 10,000 Ohm)
resistance between the signal pin and 5V. This “pull-up” resistor will ensure
that when you’re NOT pushing the button, the pin will still have a weak
connection to 5 volts, and therefore read as HIGH.

Advanced: When you get used to pull-up resistors and know when
they’re required, you can activate internal pull-up resistors on the
ATmega processor in Arduino. See
http://arduino.cc/en/Tutorial/DigitalPins for information.

Open the Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 5 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > Tinker Kit Guide Code >
Circuit_05

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 31 of 63

/*
SparkFun Tinker Kit
Example sketch 05

PUSH BUTTONS

 Use pushbuttons for digital input

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about Arduino.

*/

// First we'll set up constants for the pin numbers.
// This will make it easier to follow the code below.

// pushbutton pin
const int buttonPin = 3;

//RGB LED pins
const int redPin = 11;
const int greenPin = 10;
const int bluePin = 9;

//create a variable to store a counter and set it to 0
int counter = 0;
void setup()
{
// Set up the pushbutton pins to be an input:
pinMode(buttonPin, INPUT);

// Set up the RGB pins to be an outputs:
pinMode(redPin, OUTPUT);
pinMode(greenPin,OUTPUT);
pinMode(bluePin,OUTPUT);

}

void loop()
{
// local variable to hold the pushbutton states
int buttonState;

//read the digital state of buttonPin with digitalRead() fun
ction and store the //value in buttonState variable
 buttonState = digitalRead(buttonPin);

//if the button is pressed increment counter and wait a tin
y bit to give us some //time to release the button
if (buttonState == LOW) // light the LED

 {
 counter++;

delay(150);
 }

//use the if satement to check the value of counter. If coun
ter is equal to 0 all //pins are off
if(counter == 0)

Page 32 of 63

 {
digitalWrite(redPin,LOW);
digitalWrite(greenPin,LOW);
digitalWrite(bluePin,LOW);

 }

//else if counter is equal to 1, redPin is HIGH
else if(counter == 1)

 {
digitalWrite(redPin,HIGH);
digitalWrite(greenPin,LOW);
digitalWrite(bluePin,LOW);

 }

//else if counter is equal to 2 greenPin is HIGH
else if(counter ==2)

 {
digitalWrite(redPin,LOW);
digitalWrite(greenPin,HIGH);
digitalWrite(bluePin,LOW);

 }

//else if counter is equal to 3 bluePin is HIGH
else if(counter ==3)

 {
digitalWrite(redPin,LOW);
digitalWrite(greenPin,LOW);
digitalWrite(bluePin,HIGH);

 }

//else reset the counter to 0 (which turns all pins off)
else

 {
 counter =0;
 }
}

Code to Note
pinMode(buttonPin, INPUT);

The digital pins can be used as inputs as well as outputs. Before you do
either, you need to tell the Arduino which direction you’re going.

buttonState = digitalRead(buttonPin);

To read a digital input, you use the digitalRead() function. It will return
HIGH if there’s 3.3V present at the pin, or LOW if there’s 0V present at the
pin.

if (button1State == LOW)

Because we’ve connected the button to GND, it will read LOW when it’s
being pressed. Here we’re using the “equivalence” operator (“==”) to see if
the button is being pressed.

What You Should See
You should see the LED turn on if you press either button, and off if you
press both buttons. (See the code to find out why!) If it isn’t working, make
sure you have assembled the circuit correctly and verified and uploaded the
code to your board, or see the Troubleshooting section.

Page 33 of 63

Troubleshooting
Light Not Turning On

The pushbutton is square, and because of this it is easy to put it in the
wrong way. Give it a 90 degree twist and see if it starts working.

Underwhelmed

No worries; these circuits are all super stripped-down to make playing with
the components easy, but once you throw them together the sky is the limit.

Experiment 6: Reading a Photoresistor

Introduction
In Experiment 2, you got to use a potentiometer, which varies resistance
based on the twisting of a knob and, in turn, changes the voltage being
read by the analog input pin. In this circuit you’ll be using a photoresistor,
which changes resistance based on how much light the sensor receives.
You will read the light value of the room and have an LED turn on if it is
dark and turn off if it is bright. That’s right; you are going to build a night
light!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 1x LED
• 1x 330Ω Resistor
• 7x Jumper Wires
• 1x Photoresistor
• 1x 10K Resistor

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

Page 34 of 63

Introducing the Photoresistor

Mini Photocell
 SEN-09088

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

LED - Basic Red 5mm
 COM-09590

Resistor 330 Ohm 1/6 Watt
PTH - 20 pack
 COM-11507

Resistor 10K Ohm 1/6th Watt
PTH - 20 pack
 COM-11508

Page 35 of 63

The photoresistor changes its resistance based on the light to which it is
exposed. To use this with the RedBoard, you will need to build a voltage
divider with a 10K Ohm resistor as shown in the wiring diagram for this
experiment. The 101 board cannot read a change in resistance, only a
change in voltage. A voltage divider allows you to translate a change in
resistance to a corresponding voltage value.

The voltage divider enables the use of resistance-based sensors like the
photoresistor in a voltage-based system. As you explore different sensors,
you will find more resistance-based sensors that only have two pins like the
photoresistor. To use them with your RedBoard you will need to build a
voltage divider like the one in this experiment. To learn more about
resistors in general, check out our tutorial on resistors and also our tutorial
on voltage dividers.

Note: Make sure you are using the 10K Ohm resistor in your voltage
divider with the sensors in this kit. Otherwise you will get odd and
inconsistent results.

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 6 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > Tinker Kit Guide Code >
Circuit_06

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 36 of 63

/*
SparkFun Tinker Kit
Example sketch 06

PHOTORESISTOR

 Read a photoresistor (light sensor) to detect "darkness" an
d turn on an LED when it is "dark" and turn back off again whe
n it is "bright."

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

// As usual, we'll create constants to name the pins we're usi
ng.
// This will make it easier to follow the code below.

const int sensorPin = 0;
const int ledPin = 9;

// We'll also set up some global variables for the light leve
l a calibration value and //and a raw light value
int lightCal;
int lightVal;

void setup()
{
// We'll set up the LED pin to be an output.
pinMode(ledPin, OUTPUT);

 lightCal = analogRead(sensorPin);
//we will take a single reading from the light sensor and st

ore it in the lightCal //variable. This will give us a
prelinary value to compare against in the loop
}

void loop()
{
//Take a reading using analogRead() on sensor pin and store

it in lightVal
 lightVal = analogRead(sensorPin);

//if lightVal is less than our initial reading (lightCal) mi
nus 50 it is dark and //turn pin 9 HIGH. The (­50) par
t of the statement sets the sensitivity. The smaller //t
he number the more sensitive the circuit will be to variances
in light.
if(lightVal < lightCal ­ 50)

 {
digitalWrite(9,HIGH);

 }

//else, it is bright, turn pin 9 LOW
else

 {
digitalWrite(9,LOW);

Page 37 of 63

 }

}

Code to Note
lightCal = analogRead(sensorPin); lightCal is a calibration variable.

Your RedBoard takes a single reading of the light sensor in the setup and
uses this value to compare against the lightVal in the loop. This value
doesn’t change in the loop, as it is set in the setup function. To update this
value you can press the RESET button or power cycle the board.

if(lightVal < lightCal ­50) If the light value variable that is constantly
being updated in the loop is less than the calibration value set in the setup
minus 50, it is dark and the LED should turn on. The (-50) portion of this
statement is a sensitivity value. The higher the value, the less sensitive the
circuit will be; the lower the value, the more sensitive it will be to lighting
conditions.

What You Should See
You should see the LED turn on when it is darker and turn off when it is
brighter. Try putting your hand over the sensor and then removing it. If it
isn’t working, make sure you have assembled the circuit correctly and
verified and uploaded the code to your board, or see the Troubleshooting
section.

Troubleshooting
LED Remains Dark

You may have been casting a shadow over the sensor when you uploaded
your code. Make sure the sensor is exposed to the ambient light of the
room and press the MASTER RESET button or re-upload your code. This
will reset the calibration value in the setup.

Still Not Quite Working

You may have your logical statement wrong. Double check your code and
try adjusting the sensitivity level a little lower or higher. Make sure there is
no semicolon after the if() statement. This is a common error and a tricky
one to find!

Experiment 7: Reading a Temperature Sensor

Introduction
A temperature sensor is exactly what it sounds like – a sensor used to
measure ambient temperature. In this experiment you will read the raw 0
–1023 value from the temperature sensor, calculate the actual temperature,
and then print it out over the serial monitor. Don’t know what the serial
monitor is? Go through this experiment to find out!

Page 38 of 63

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 3x Jumper Wires
• 1x TMP36 Temperature Sensor

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

Introducing the TMP36 Temperature Sensor

The TMP36 is a low-voltage, precision centigrade temperature sensor. It
provides a voltage output that is linearly proportional to the Celsius
temperature. It also doesn’t require any external calibration to provide

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

Temperature Sensor -
TMP36
 SEN-10988

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Page 39 of 63

typical accuracies of ±1°C at +25°C and ±2°C over the −40°C to +125°C
temperature range. The output voltage can easily convert to temperature
using the scale factor of 10 mV/°C.

If you are looking at the flat face with text on it, the center pin is your signal
pin; the left-hand pin is supply voltage (5V in this tutorial), and the right-
hand pin connects to ground.

Pro Tip: The TMP36 looks a lot like a transistor. Put a dot of fingernail
polish on the top of your TMP36 so it’s easy to find.

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Please note: The temperature sensor can only be connected to a
circuit in one direction. See below for the pin outs of the temperature
sensor – TMP36.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 7 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > Tinker Kit Guide Code >
Circuit_07

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 40 of 63

/*
SparkFun Tinker Kit
Example sketch 07

TEMPERATURE SENSOR

 Use the "serial monitor" window to read a temperature senso
r.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.

*/

//analog input pin constant
const int tempPin = 0;

//raw reading variable
int tempVal;

//voltage variable
float volts;

//final temperature variables
float tempC;
float tempF;

void setup()
{
// start the serial port at 9600 baud

 Serial.begin(9600);
}

void loop()
{
//read the temp sensor and store it in tempVal
 tempVal = analogRead(tempPin);

//print out the 10 value from analogRead
 Serial.print("TempVal = ");
 Serial.print(tempVal);

//print a spacer
 Serial.print(" **** ");

//converting that reading to voltage by multiplying the readi
ng by 5V (voltage of //the RedBoard)
 volts = tempVal * 5;
 volts /= 1023.0;

//print out the raw voltage over the serial port
 Serial.print("volts: ");
 Serial.print(volts, 3);

//print out divider
 Serial.print(" **** ");

//calculate temperature celsius from voltage
//equation found on the sensor spec.

Page 41 of 63

 tempC = (volts ­ 0.5) * 100 ;

// print the celcius temperature over the serial port
Serial.print(" degrees C: ");
Serial.print(tempC);

//print spacer
 Serial.print(" **** ");

// Convert from celcius to fahrenheit
tempF = (tempC * 9.0 / 5.0) + 32.0;

//print the fahrenheit temperature over the serial port
Serial.print(" degrees F: ");
Serial.println(tempF);

//wait a bit before taking another reading
delay(1000);
}

Code to Note
Serial.begin(9600);

Before using the serial monitor, you must call Serial.begin() to initialize
it. 9600 is the “baud rate,” or communications speed. When two devices are
communicating with each other, both must be set to the same speed.

Serial.print(tempC);

The Serial.print() command is very smart. It can print out almost anything
you can throw at it, including variables of all types, quoted text (AKA
“strings”), etc. See http://arduino.cc/en/serial/print for more info.

Serial.println(tempF);

Serial.print() will print everything on the same line.

Serial.println() will move to the next line. By using both of these
commands together, you can create easy-to-read printouts of text and data.

What You Should See
You should be able to read the temperature your temperature sensor is
detecting on the serial monitor in the Arduino IDE. If it isn’t working, make
sure you have assembled the circuit correctly and verified and uploaded the
code to your board, or see the Troubleshooting section.

Example of what you should see in the Arduino IDE’s serial monitor:

TempVal = 223 volts: 0.719 degrees C: 21.94 **** degrees F: 71.48

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 224 volts: 0.723 degrees C: 22.26 **** degrees F: 72.06

TempVal = 223 volts: 0.719 degrees C: 21.94 **** degrees F: 71.48

TempVal = 223 volts: 0.719 degrees C: 21.94 **** degrees F: 71.48

Page 42 of 63

Troubleshooting
Nothing Seems to Happen

This program has no outward indication it is working. To see the results you
must open the Arduino IDE’s serial monitor (instructions on previous page).

Gibberish is Displayed

This happens because the serial monitor is receiving data at a different
speed than expected. To fix this, click the pull-down box that reads “***
baud” and change it to “9600 baud”.

Temperature Value is Unchanging

Try pinching the sensor with your fingers to heat it up or pressing a bag of
ice against it to cool it down.

Temperature Sensor is Really Hot!

You have wired it backward! Unplug your Arduino immediately, let the
sensor cool down, and double check your wiring. If you catch it soon
enough your sensor may not have been damaged and may still work.

Experiment 8: Using a Servo Motor

Introduction
This experiment is your introduction to the servo motor, which is a smart
motor that you can tell to rotate to a specific angular location. You will
program it to rotate to a series of locations, then sweep across its full range
of motion, and then repeat.

Parts Needed
You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 1x Servo
• 3x Jumper Wires

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

Page 43 of 63

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorial:

• Pulse Width Modulation

Introducing the Servo Motor

Unlike the action of most motors that continuously rotate, a servo motor can
rotate to and hold a specific angle until it is told to rotate to a different angle.
You can control the angle of the servo by sending it a PWM (Pulse Width
Modulation) pulse train; the PWM signal is mapped to a specific angle from
0 to 180 degrees.

Inside of the servo there is a gearbox connected to a motor that drives the
shaft. There is also a potentiometer that gives feedback on the rotational
position of the servo, which is then compared to the incoming PWM signal.
The servo adjusts accordingly to match the two signals.

In this experiment, the servo is powered through 5 volts on the red wire,
ground on the black wire, and the white wire is connected to a digital GPIO
(General Purpose Input/Output) pin on which you can use PWM (11, 10, 9,
6, 5 and 3 on the RedBoard).

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

Servo - Generic (Sub-Micro
Size)
 ROB-09065

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Page 44 of 63

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Connect 3x jumper wires to the female 3-pin header on the servo. This will
make it easier to breadboard the servo.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 8 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > Tinker Kit Guide Code >
Circuit_08

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 45 of 63

/*
SparkFun Tinker Kit
Example sketch 08

SINGLE SERVO

 Sweep a servo back and forth through its full range of motio
n.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

//include the servo library
#include <Servo.h>

//create a servo object called servo1
Servo servo1;

void setup()
{
//attach servo1 to pin 9 on the Arduino 101

 servo1.attach(9);
}

void loop()
{
//create a local variable to store the servo's position.
int position;

// To control a servo, you give it the angle you'd like it
// to turn to. Servos cannot turn a full 360 degrees, but yo

u
// can tell it to move anywhere between 0 and 180 degrees.

// Change position at full speed:

// Tell servo to go to 90 degrees
 servo1.write(90);

// Pause to get it time to move
delay(1000);

// Tell servo to go to 180 degrees
 servo1.write(180);

// Pause to get it time to move
delay(1000);

// Tell servo to go to 0 degrees
 servo1.write(0);

// Pause to get it time to move
delay(1000);

// Tell servo to go to 180 degrees, stepping by two degrees
for(position = 0; position < 180; position += 2)

Page 46 of 63

 {
// Move to next position

 servo1.write(position);
// Short pause to allow it to move
delay(20);

 }

// Tell servo to go to 0 degrees, stepping by one degree
for(position = 180; position >= 0; position ­= 1)

 {
// Move to next position

 servo1.write(position);
// Short pause to allow it to move
delay(20);

 }
}

Code to Note
#include <Servo.h>

#include is a special “preprocessor” command that inserts a library (or
any other file) into your sketch. You can type this command yourself, or
choose an installed library from the “sketch / import library” menu.

Servo servo1;

When you use a library, you create what is called an object of that library
and name it. This object is a Servo library object, and it is named servo1. If
you were using multiple servos you would name each one in this way.

servo1.attach(9);

The Servo library adds new commands that let you control a servo. To
prepare the RedBoard to control a servo, you must first create a Servo
“object” for each servo (here we’ve named it “servo1”), and then “attach” it
to a digital pin (here we’re using pin 9). Think of this as the servo’s way of
calling a pinMode() function.

servo1.write(180);

The servos in this kit don’t spin all the way around, but they can be
commanded to move to a specific position. We use the Servo library’s
write() command to move a servo a specified number of degrees (0 to

180). Remember that the servo requires time to move, so give it a short
delay() if necessary.

What You Should See
You should see your servo motor move to various locations at several
speeds. If the motor doesn’t move, check your connections and make sure
you have verified and uploaded the code, or see the Troubleshooting
section.

Page 47 of 63

Troubleshooting
Servo Not Twisting

Even with colored wires it is still shockingly easy to plug a servo in
backward. This might be the case.

Still Not Working

A mistake we made a time or two was simply forgetting to connect the
power (red and black wires) to 5 volts and ground (GND).

Fits and Starts

If the servo begins moving, then twitches, and there’s a flashing light on
your RedBoard, the power supply you are using is not quite up to the
challenge. Using a wall adapter instead of USB should solve this problem.

Experiment 9: Driving a Motor with an
H-Bridge

Introduction
How could you make a motor spin in different directions? With an H-Bridge!
In this experiment you will use the H-Bridge to control the motor’s direction
and speed.

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 1x SN754410 H-Bridge IC
• 1x 48:1 Geared Motor
• 12x Jumper Wires

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Hobby Gearmotor - 200
RPM (Pair)
 ROB-13302

Page 48 of 63

Suggested Reading

Before continuing with this experiment, we recommend you be familiar with
the concepts in the following tutorial:

• Bildr Tutorial

Introducing the H-Bridge

The SN754410 is an Integrated Circuit (IC), called an H-Bridge, that makes
controlling motors easier. An H-Bridge allows you to control both the
direction and the amount of an electrical current being supplied to a motor.
You can think of it as a smart valve that allows you to change the direction
of the current passing through the motor.

To switch the direction of the current, you use two pins to toggle pins on the
board either HIGH or LOW. If the two direction pins are both HIGH or LOW
at the same time, that causes the board to brake the motors. If one pin is
HIGH and the other is LOW, the motor spins in one direction. If you flip-flop
the states, the motor spins in the opposite direction. The IC is also powered
separately with 5V supplied to pin 16 on the IC, and up to 36V for the motor
voltage on pin 8 of the IC.

WARNING: You will be using voltage that may be higher than the limit
of the circuitry on your RedBoard allows! Make sure you keep motor
voltage (MV) isolated from other circuitry! Accidentally using MV to
power other circuitry may cause irreparable damage to your
RedBoard!

H-Bridge Motor Driver 1A
 COM-00315

Page 49 of 63

You can control up to two motors with a single IC. You can use this diagram
as a reference for pin numbers in conjunction with the table below.

Image courtesy of ITP at NYU

Hookup Table

1 PWM signal for controlling the speed of motor A

2 Direction pin 1 for motor A

3 Motor A connection 1

4 Ground / Heat Sink

5 Ground / Heat Sink

6 Motor A connection 2

7 Direction pin 2 for motor A

8 Motor supply voltage

9 PWM signal for controlling the speed of motor B

10 Direction pin 1 for motor B

11 Motor B connection 1

12 Ground / Heat Sink

13 Ground / Heat Sink

14 Motor B connection 2

15 Direction pin 2 for motor B

16 Chip voltage (5V)

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Note: It is possible that you may need to bend the legs of your
H-Bridge in slightly for it to line up with the breadboard. You can do



Page 50 of 63

this by using a table top as a flat surface and gently "roll" the IC using
the table to bend the pins until they are vertical.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 9 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > Tinker Kit Guide Code >
Circuit_09

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 51 of 63

/*
SparkFun Tinker Kit
Example sketch 9

SparkFun Motor Driver

Use the SparkFun Motor Driver to control the speed and directi
on of a motor

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/

//define the two direction logic pins and the speed / PWM pin
const int DIR_A = 5;
const int DIR_B = 4;
const int PWM = 6;

void setup()
{
//set all pins as output
pinMode(DIR_A, OUTPUT);
pinMode(DIR_B, OUTPUT);
pinMode(PWM, OUTPUT);
}

void loop()
{
//drive forward at full speed by pulling DIR_A High
//and DIR_B low, while writing a full 255 to PWM to
//control speed
digitalWrite(DIR_A, HIGH);
digitalWrite(DIR_B, LOW);
analogWrite(PWM, 255);

//wait 1 second
delay(1000);

//Brake the motor by pulling both direction pins to
//the same state (in this case LOW). PWM doesn't matter
//in a brake situation, but set as 0.
digitalWrite(DIR_A, LOW);
digitalWrite(DIR_B, LOW);
analogWrite(PWM, 0);

//wait 1 second
delay(1000);

//change direction to reverse by flipping the states
//of the direction pins from their forward state
digitalWrite(DIR_A, LOW);
digitalWrite(DIR_B, HIGH);
analogWrite(PWM, 150);

//wait 1 second
delay(1000);

//Brake again
digitalWrite(DIR_A, LOW);
digitalWrite(DIR_B, LOW);

Page 52 of 63

analogWrite(PWM, 0);

//wait 1 second
delay(1000);
 }

Code to Note

 language:cpp
 digitalWrite(DIR_A, HIGH);
 digitalWrite(DIR_B, LOW);
 analogWrite(PWM, 255);

The Motor Driver uses a control logic that works by pulling certain pins
HIGH or LOW (pins 4 and 5 in this case) to change the direction of the
motor’s rotation and then send a PWM signal to pin 6 to control the speed.
This chunk of code runs to motor in one direction at full speed.

digitalWrite(DIR_A, LOW);
digitalWrite(DIR_B, HIGH);
analogWrite(PWM, 150);

This chunk of code is similar, but changes the direction by flipping the
direction pin’s state and setting the PWM pin at a slower speed.

digitalWrite(DIR_A, LOW);
digitalWrite(DIR_B, LOW);
analogWrite(PWM, 0);

This final chunk of code demonstrates the logic for stopping or “braking” the
motor by pulling both direction pins to the same state. In this case we used
LOW, but both set to HIGH would produce the same results. In a brake, the
PWM level doesn’t matter. We set it to 0 as more of a formality than
anything. If not, see the Troubleshooting section below.

What You Should See
You should see the motor spin in one direction at full speed for one second,
then brake (stop) for one second, and run at a slower speed for a second in
the opposite direction and and then repeat.

Troubleshooting
Motor Not Spinning

Make sure that you have the enable pin as well as the logic and PWM pins
wired correctly. It’s easy to make a wiring error, as the names of the pins of
the board are on the bottom.

Double check that you have wired the standby pin to 3.3V! Without it, the IC
is in standby mode.

Page 53 of 63

Motor Spinning in Only One Direction

Double check your code. You may not have inverted the logic pin’s state to
reverse the motor.

Experiment 10: Controlling a Motor with Inputs

Introduction
In Experiment 9 you used the H-Bridge to control a motor’s direction and
speed. The issue is that you had to hard code the direction and speed of
your motor. Most applications that make use of a motor allow the user to
control the speed and direction of the motor, much as you would your own
car. In this experiment we will add two inputs and use them to control the
direction and speed of your motor.

Are you ready to get your motor running? Let’s go!

Parts Needed
You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 1x Push Button
• 1x 10K potentiometer
• 1x H-Bridge IC
• 1x 48:1 ratio Gearmotor
• 20x Jumper Wires

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

Trimpot 10K with Knob
 COM-09806

Tactile Button Assortment
 COM-10302

Page 54 of 63

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram below
to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

CAUTION: You will be using voltage that may be higher than the limit
of the circuitry on your RedBoard allows! Make sure you keep motor
voltage (MV) isolated from other circuitry! Accidentally using MV to
power other circuitry may cause irreparable damage to your
RedBoard!

Open the Sketch

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Hobby Gearmotor - 200
RPM (Pair)
 ROB-13302

H-Bridge Motor Driver 1A
 COM-00315



Page 55 of 63

Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 10 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples > Tinker Kit Guide Code >
Circuit_10

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!

Page 56 of 63

/*
SparkFun Tinker Kit
Example sketch 10

H­Bridge Motor Controller with Inputs

 Use the inputs to manually set the direction and speed of a
motor.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
This code is completely free for any use.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn more about Arduino.
*/
//define the two direction logic pins and the speed / PWM pin
const int DIR_A = 5;
const int DIR_B = 4;
const int PWM = 6;

//define the input pins
const int switchPin = 3;
const int potPin = 0;

void setup()
 {
//set all pins as output
pinMode(DIR_A, OUTPUT);
pinMode(DIR_B, OUTPUT);
pinMode(PWM, OUTPUT);
//set the switchPin as INPUT
pinMode(switchPin, INPUT);

 }

void loop()
{
//read the value from the potentiometer and divide
//it by 4 to get a 0­255 range. Store the value in
//the speed variable
int speed = analogRead(potPin) / 4;

//read the value of the switch and store it in the
//direction variable.

//if the value of direction is HIGH drive forward at
//a speed set by the speed variable, else drive reverse
//at a speed set by the speed variable.
if (digitalRead(switchPin) == HIGH)
{
forward(speed);

}
else
 {
reverse(speed);
 }
}

//create a custom function that defines moving forward
//the forward() function accepts one parameter and that is
//the speed at which you want to drive forward (0­255)
void forward(int spd)

Page 57 of 63

 {
//motor contoller direction pins set to forward
digitalWrite(DIR_A, HIGH);
digitalWrite(DIR_B, LOW);

//write the speed by using the parameter of spd
analogWrite(PWM, spd);
 }

//create a custom function that defines moving in reverse
//the reverse() function accepts one parameter and that is
//the speed at which you want to drive in reverse (0­255)
void reverse(int spd)
{
//set motor controller pins to reverse
digitalWrite(DIR_A, LOW);
digitalWrite(DIR_B, HIGH);

//write the speed by using the parameter of spd
analogWrite(PWM, spd);
 }

These big, scary functions take a single value as a parameter: speed. Each
function then accepts that value and applies it to the analogWrite() function
inside of the custom function. Custom functions are a great way to clean up
your code and also make it more modular and useful in other applications.
Watch out! You are halfway to writing your own library.

What You Should See
You should be able to control the motor’s direction by flipping the SPDT
switch and then the speed through the potentiometer. Go ahead and play
with both inputs to make sure they both work and the motor is responding
to those inputs.

Troubleshooting
Motor Only Spins in One Direction

Double check the wiring of your switch, but also double check your if()
statement to make sure there isn’t a semicolon after the statement.

Also, double check to make sure that you have the standby pin wired
correctly (to 3.3V).

Experiment 11: Reading Serial Data

Introduction
In Experiment 3 you used an RGB LED to create a rainbow of fun. The
problem is that, to define colors, you had to change your Arduino code. You
have also used the Serial object in Arduino to print out data to your
computer using Serial.print(); and Serial.println() . In this

Page 58 of 63

experiment you will send serial data the other direction – to the RedBoard!
What data will you be sending? Comma-separated RGB values to change
the color of your RGB, of course!

Let’s see what pot of gold lies on the other end of this data rainbow!

Parts Needed

You will need the following parts:

• 1x Breadboard
• 1x SparkFun RedBoard
• 1x Common Cathode RGB LED
• 3x 330Ω Resistors
• 6x Jumper Wires

Didn’t Get the Tinker Kit?

If you are conducting this experiment and didn’t get the Tinker Kit, we
suggest using these parts:

SparkFun RedBoard -
Programmed with Arduino
 DEV-12757

Breadboard - Self-Adhesive
(White)
 PRT-12002

LED - RGB Clear Common
Cathode
 COM-00105

Jumper Wires - Connected
6" (M/M, 20 pack)
 PRT-12795

Resistor 330 Ohm 1/6 Watt
PTH - 20 pack
 COM-11507

Page 59 of 63

Hardware Hookup
Ready to start hooking everything up? Check out the wiring diagram and
hookup table below to see how everything is connected.

Polarized
Components

Pay special attention to the component’s markings
indicating how to place it on the breadboard.
Polarized components can only be connected to a
circuit in one direction.

Wiring Diagram for the Experiment

Having a hard time seeing the circuit? Click on the wiring diagram for a
closer look.

Open the Sketch
Open the Arduino IDE software on your computer. Coding in the Arduino
language will control your circuit. Open the code for Circuit 3 by accessing
the “Tinker Kit Guide Code” you downloaded and placed into your
“Examples” folder earlier.

To open the code go to: File > Examples >Tinker Kit Guide Code >
Circuit_03

You can also copy and paste the following code into the Arduino IDE. Hit
upload, and see what happens!



Page 60 of 63

/*
SparkFun Tinker Kit
Example sketch 11

Serial Color Mixing

Read Serial data from your computer and use it to set
the RGB values of the RGB LED.

This sketch was written by SparkFun Electronics,
with lots of help from the Arduino community.
Visit http://learn.sparkfun.com/products/2 for SIK informatio
n.
Visit http://www.arduino.cc to learn about Arduino.
*/

//create variables for pin numbers. We are making them constan
ts here, because they //never change.
const int RED_PIN = 5;
const int GREEN_PIN = 6;
const int BLUE_PIN = 9;

// How fast we plan to cycle through colors in milliseconds
int redVal = 0;
int greenVal= 0;
int blueVal = 0;

void setup()
{
//set the three pin variables as outputs
pinMode(RED_PIN, OUTPUT);
pinMode(GREEN_PIN, OUTPUT);
pinMode(BLUE_PIN, OUTPUT);

//Start the Serial port at 9600 baud rate
Serial.begin(9600);
Serial.println("Please enter your RGB in CSV format(Example: 2
55,100,0)");
}

void loop()
{
analogWrite(RED_PIN, redVal);
analogWrite(GREEN_PIN, greenVal);
analogWrite(BLUE_PIN, blueVal);

if(Serial.available()>0)
 {
 redVal = Serial.parseInt();
 greenVal = Serial.parseInt();
 blueVal = Serial.parseInt();
 }
}

Code to Note

Serial.begin(9600);

Page 61 of 63

Whether you are using serial communication as an input or an output, you
need to use the begin() method to start your serial port. The baud rate
can vary, but 9600 is the standard for most applications.

Serial.parseInt();

There are a number of ways to read and parse data coming in from the
serial port. The simplest way is to format your data coming in as a Comma-
Separated Value (CSV) string. In this format the parseInt() method
captures the data as it comes in. Once the there is a non alpha-numeric
character (a character that is not a letter or a number) parseInt() will stop
capturing the value as an integer. As an example if we were to send the
string 123,456,789 through parseInt() it would return the value of 123
because it would stop capturing at the comma (,).

In this experiment we use the parseInt() method three times, one right
after the other, to capture the three comma-separated RGB values and
place them in the three color variables.

What You Should See
You should see nothing at first when your upload is complete. Open up the
Serial Monitor (The magnifying glass icon in the upper right-hand corner of
the Arduino IDE). You should see the text “Please enter your RGB in CSV
format(Example: 255,100,0)” print out in the serial monitor.

Enter an RGB value, (we are using 255,100,0 as an example) in the text
entry area as shown below and click ‘Send’. Once you click the send button
your RGB should turn a purple color. Congrats! You just sent data to your
RedBoard from your computer!

Troubleshooting
LED Remains Dark or Shows Incorrect Color

With the four pins of the LED so close together, it’s sometimes easy to
misplace one. Double check each pin is where it should be.

You are Sending Data but Nothing Happens

Make sure you are sending your data as integers between 0 and 255 in a
comma-separated format.

Resources and Going Further
There are tons of sensors and shields that you can hook up to your Arduino
101 board to help take your projects to the next level. Here is some further
reading that may help you along in learning more about the world of
electronics.

For more info on Arduino, check out these tutorials:

• Arduino Resources and Curriculum
• Arduino Comparison Guide
• Arduino Shields

Page 62 of 63

• Installing Arduino
• Installing an Arduino Library
• Arduino Data Types

For more hardware-related tutorials, give these a read:

• Breadboards
• Working with Wire
• Sewing with Conductive Thread

Page 63 of 63

6/14/2016https://learn.sparkfun.com/tutorials/experiment-guide-for-the-sparkfun-tinker-kit/all

