

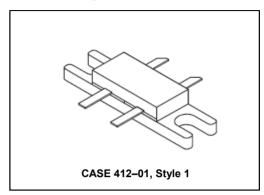
Rev. V1

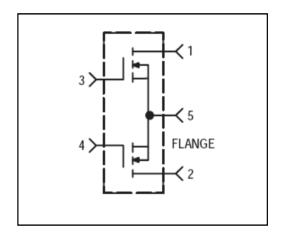
Designed primarily for wideband large–signal output and driver stages to $30-500\ \text{MHz}.$

N-Channel enhancement mode MOSFET

- Push-pull configuration reduces even numbered harmonics
- Guaranteed performance at 500 MHz, 28 Vdc

Output power = 40 W Gain = 14 dB


Efficiency = 50%


Typical performance at 175 MHz, 28 Vdc

Output power = 40 W Gain = 17 dB Efficiency = 60%

- Excellent thermal stability, ideally suited for Class A operation
- Facilitates manual gain control, ALC and modulation techniques
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Low Crss 4.0 pF @ VDS = 28 V

Product Image

MAXIMUM RATINGS (T.j = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Gate Voltage	VDSS	65	Vdc
Drain-Gate Voltage (R _{GS} = 1.0 MΩ)	V _{DGR}	65	Vdc
Gate-Source Voltage	V _{GS}	± 20	Adc
Drain Current — Continuous	ID	8.0	ADC
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	175 1.0	Watts °C/W
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case	R _{eJC}	1.0	°C/W
---------------------------------------	------------------	-----	------

NOTE — <u>CAUTION</u> — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

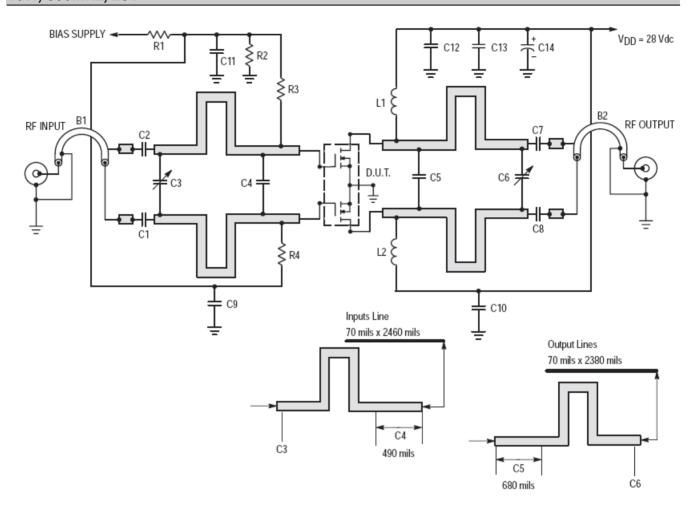
1

MRF166W

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)					
Drain–Source Breakdown Voltage (VGS = 0 Vdc, I _D = 5.0 mA)	V(BR)DSS	65	_	_	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	IDSS	_	_	0.5	mA
Gate-Source Leakage Current (VGS = 20 Vdc, VDS = 0 Vdc)	IGSS	_	_	1.0	μА
ON CHARACTERISTICS (1)					
Gate Threshold Voltage (VDS= 10 Vdc, ID = 25 mA)	V _{GS(th)}	1.5	3.0	4.5	Vdc
Forward Transconductance (VDS= 10 Vdc, ID = 1.5 A)	9fs	0.9	1.1	_	mS
DYNAMIC CHARACTERISTICS (1)					
Input Capacitance (VDS = 28 Vdc, VGS = 0 Vdc, f = 1.0 MHz)	Ciss	_	28	_	pF
Output Capacitance (VDS = 28 Vdc, VGS = 0 Vdc, f = 1.0 MHz)	C _{oss}	_	30	_	pF
Reverse Transfer Capacitance (VDS = 28 Vdc, VGS = 0 Vdc, f = 1.0 MHz)	C _{rss}	_	4.0	_	pF
FUNCTIONAL CHARACTERISTICS (2)					
Common Source Power Gain (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	G _{ps}	14	16	_	dB
Drain Efficiency (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	η	50	55	_	%
Electrical Ruggedness (VDD = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA) Load VSWR = 30:1, All phase angles at frequency of test	Ψ No Degradation in Output Power				
Series Equivalent Input Impedance (V _{DD} = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	Z _{in}	_	2.88 –j7.96	_	Ohms
Series Equivalent Output Impedance (VDD = 28 Vdc, P _{out} = 40 W, f = 500 MHz, I _{DQ} = 100 mA)	Z _{out}	_	6.12 –j9.43	_	Ohms

⁽¹⁾ Each transistor chip measured separately.

⁽²⁾ Both transistor chips operating in a push-pull amplifier.

Rev. V1

C1, C2, C7, C8 220 pF, 100 mil Chip Capacitor, ATC C3, C6 0 - 10 pF, Johanson C4 27 pF, 100 mil Chip Capacitor, ATC C5 22 pF, 100 mil Chip Capacitor, ATC C9, C10, C11, C12 0.01 µF Blue Capacitor C13 470 pF, 100 mil Chip Capacitor, ATC C14 50 μF, 50 V Electrolytic Capacitor L1, L2 8 Turns #20 AWG, 0.100 mils ID B1, B2 6" long, ID = 550 mils, 50 Ω Semi-Rigid Coax

R1 1.0 k Ω 1/2 Watt R2 10 k Ω 1/2 Watt R3, R4 45 Ω 1/2 Watt Board Material – Teflon® Fiberglass

Dielectric Thickness = 0.30", ε_r = 2.55 Copper Clad, 2.0 oz. Copper

Figure 1. MRF166W 500 MHz Test Circuit Schematic

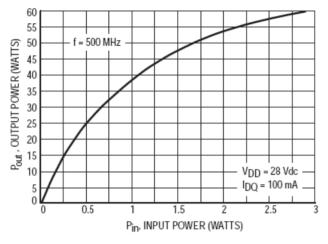


Figure 2. Output Power versus Input Power, 28 Vdc

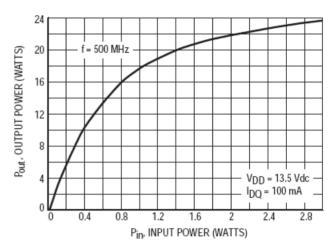


Figure 3. Output Power versus Input Power, 13.5 Vdc

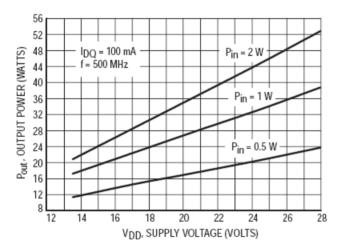


Figure 4. Output Power versus Supply Voltage

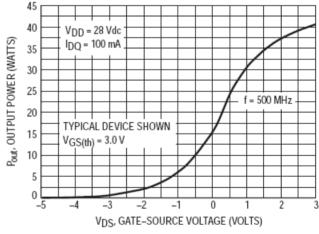


Figure 5. Output Power versus Gate Voltage

Rev. V1

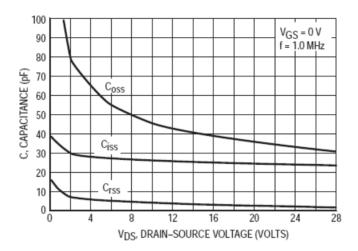
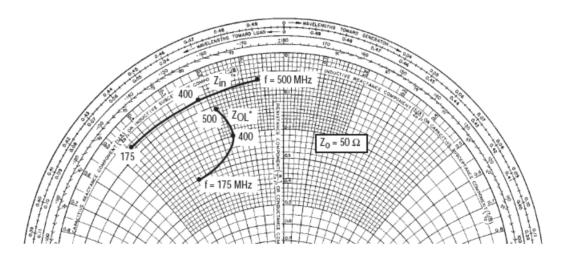
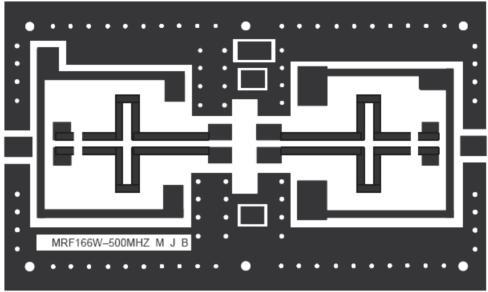



Figure 6. Capacitance versus Voltage

 V_{DD} = 28 Vdc, I_{DQ} = 100 mA, P_{out} = 40 W

f MHz	Z _{in} Ohms	Z _{OL} * Ohms
175	3.7 – j 22.4	15.2 – j 16.6
400	3.6 – j 10.99	10.3 – j 7.99
500	2.88 – j 7.96	6.12 – j 9.43

Table 1. Input and Output Impedances


Z_{OL}* = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively.

Figure 7. Series Equivalent Input/Output Impedance

Rev. V1

NOTES: 1) 3 X 5 inch Glass Teflon® 32 Mil Board, Copper Both Sides

(Scale 1:1)

- 2) Small Holes are 40 Mils ID and Plated Through
- 3) Large Holes are 140 Mils ID and Plated Through

Figure 8. MRF166W Circuit Board Photomaster

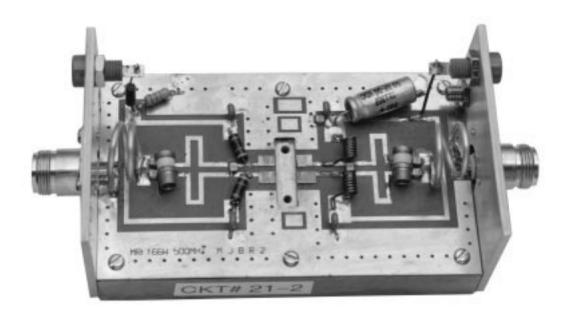


Figure 9. MRF166W Test Fixture

Table 1. Common Source S-Parameters (VDS = 24 V, ID = 230 mA)

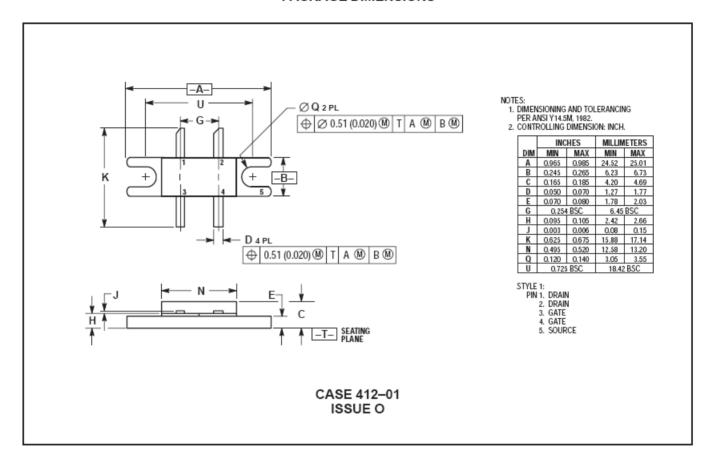
f	T .	11 11 11 11 11 11 11 11 11 11 11 11 11	S			12	S	22
MHz	S ₁₁	ф	S ₂₁	ф	S ₁₂	ф	S ₂₂	ф
30	0.554	-85	20.30	128	0.044	28	0.628	-121
40	0.775	-113	20.00	113	0.040	26	0.632	-123
50	0.758	-124	17.50	107	0.041	20	0.652	-135
60	0.711	-132	14.60	100	0.050	20	0.570	-135
70	0.751	-139	12.70	100	0.042	11	0.666	-145
80	0.742	-143	11.30	95	0.043	9	0.666	-149
90	0.724	-146	10.00	92	0.042	8	0.657	-151
100	0.730	-149	8.97	90	0.042	6	0.663	-154
110	0.735	-151	8.29	87	0.043	3	0.683	-156
120	0.732	-153	7.53	84	0.042	2	0.666	-158
130	0.734	-155	7.01	83	0.042	1	0.688	-159
140	0.740	-156	6.57	81	0.043	0	0.701	-160
150	0.747	-157	6.01	78	0.042	-2	0.688	-162
160	0.748	-159	5.66	76	0.041	-4	0.715	-162
170	0.741	-160	5.22	76	0.040	-4	0.690	-161
180	0.746	-160	4.94	74	0.041	-4	0.719	-164
190	0.753	-161	4.67	73	0.041	-6	0.725	-165
200	0.756	-162	4.51	70	0.040	-7	0.729	-166
210	0.755	-162	4.15	69	0.039	-8	0.727	-165
220	0.759	-163	3.91	68	0.039	-8	0.724	-166
230	0.767	-163	3.75	65	0.039	-10	0.751	-169
240	0.769	-164	3.56	64	0.038	-12	0.733	-167
250	0.766	-164	3.41	63	0.037	-12	0.726	-167
260	0.767	-165	3.26	63	0.035	-10	0.725	-167
270	0.773	-165	3.07	61	0.035	-10	0.725	-167
280	0.777	-165	3.03	61	0.035	-11	0.753	-167
290	0.777	-166	2.89	58	0.034	-13	0.732	-169
300	0.782	-166	2.80	57	0.034	-11	0.744	-169
310	0.788	-166	2.66	57	0.034	-12	0.764	-169
320	0.794	-167	2.54	55	0.033	-12	0.760	-167
330	0.796	-167	2.47	54	0.032	-13	0.787	-169
340	0.795	-168	2.38	54	0.031	-13	0.753	-170
350	0.799	-168	2.27	52	0.030	-11	0.772	-168
360	0.804	-168	2.17	51	0.030	-11	0.782	-169
370	0.805	-168	2.15	50	0.030	-11	0.796	-169
380	0.807	-169	2.06	48	0.029	-12	0.782	-170
390	0.812	-169	2.00	48	0.028	-12	0.796	-170
400	0.818	-170	1.91	47	0.027	-10	0.784	-168
410	0.821	-170	1.86	46	0.029	-11	0.830	-170
420	0.821	-170	1.83	44	0.028	-11	0.823	-171
430	0.822	-171	1.74	44	0.026	-9	0.791	-170
440	0.826	-171	1.67	43	0.025	-7	0.788	-170

Table 1. Common Source S-Parameters (VDS = 24 V, ID = 230 mA) (continued)

f	S.	11	S	s ₂₁ s ₁₂		s ₁₂		22
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	\$ ₂₂	ф
450	0.830	-171	1.68	42	0.025	-7	0.820	-170
460	0.831	-172	1.64	41	0.026	-10	0.843	-174
470	0.832	-172	1.54	41	0.025	-7	0.827	-173
480	0.835	-173	1.50	39	0.024	-3	0.836	-172
490	0.835	-173	1.43	38	0.024	1	0.835	-171
500	0.823	-174	1.43	37	0.025	3	0.849	-172
600	0.874	-176	1.12	29	0.003	-171	0.873	-176
700	0.910	-179	0.86	23	0.013	89	0.867	-177
800	0.932	179	0.74	18	0.035	61	0.904	178
900	0.966	176	0.63	12	0.029	68	0.897	179
1000	0.975	172	0.54	5	0.042	49	0.953	174

Table 2. Common Source S-Parameters (VDS = 28 V, ID = 250 mA)

f	s ₁₁		s ₂₁		S	12	s ₂₂		
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	S ₂₂	ф	
30	0.601	-86	22.20	128	0.040	29	0.796	-119	
40	0.783	-112	21.20	114	0.037	27	0.616	-122	
50	0.764	-122	18.50	108	0.038	21	0.637	-133	
60	0.727	-131	15.50	101	0.045	21	0.574	-135	
70	0.759	-138	13.50	100	0.039	12	0.648	-143	
80	0.751	-142	12.10	95	0.040	9	0.649	-148	
90	0.732	-146	10.70	93	0.040	8	0.641	-150	
100	0.737	-149	9.55	90	0.040	6	0.648	-153	
110	0.741	-150	8.81	88	0.040	4	0.670	-155	
120	0.738	-153	8.01	85	0.040	3	0.654	-156	
130	0.740	-154	7.47	83	0.040	2	0.675	-157	
140	0.747	-156	7.01	82	0.040	1	0.684	-158	
150	0.754	-157	6.43	79	0.040	-2	0.669	-161	
160	0.757	-159	6.07	77	0.039	-3	0.693	-161	
170	0.749	-159	5.59	76	0.038	-3	0.670	-161	
180	0.753	-160	5.28	75	0.039	-4	0.701	-163	
190	0.759	-161	4.99	73	0.039	-5	0.712	-164	
200	0.761	-161	4.81	70	0.038	-7	0.719	-165	
210	0.759	-162	4.44	70	0.037	-6	0.713	-163	
220	0.762	-163	4.18	69	0.037	-7	0.709	-164	
230	0.771	-164	4.03	66	0.037	-9	0.733	-167	
240	0.775	-164	3.83	65	0.036	-10	0.715	-165	
250	0.774	-165	3.69	64	0.035	-10	0.713	-166	
260	0.775	-165	3.52	63	0.034	-10	0.715	-168	
270	0.780	-165	3.29	61	0.034	-10	0.712	-168	
280	0.782	-165	3.24	61	0.034	-11	0.741	-168	
290	0.781	-166	3.10	59	0.032	-12	0.722	-168	
300	0.785	-166	3.01	58	0.033	-11	0.733	-168	


Table 2. Common Source S-Parameters (VDS = 28 V, ID = 250 mA) (continued)

f	f S ₁₁		S	21	s	12	s	22
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	S ₂₂	ф
310	0.792	-167	2.87	57	0.032	-12	0.750	-167
320	0.798	-167	2.75	56	0.032	-12	0.739	-166
330	0.801	-168	2.68	53	0.031	-13	0.760	-170
340	0.800	-168	2.58	53	0.030	-14	0.727	-172
350	0.803	-169	2.44	52	0.029	-12	0.755	-170
360	0.807	-169	2.33	50	0.029	-12	0.772	-171
370	0.808	-169	2.30	50	0.029	-12	0.787	-169
380	0.809	-169	2.19	48	0.028	-13	0.768	-170
390	0.813	-170	2.14	49	0.027	-13	0.775	-169
400	0.820	-170	2.06	47	0.026	-11	0.765	-167
410	0.823	-170	2.02	45	0.027	-12	0.805	-170
420	0.823	-171	1.98	44	0.026	-13	0.794	-173
430	0.824	-171	1.89	44	0.025	-12	0.778	-174
440	0.828	-172	1.83	43	0.024	-11	0.785	-173
450	0.832	-172	1.81	41	0.024	-10	0.812	-172
460	0.833	-172	1.75	41	0.025	-13	0.838	-175
470	0.835	-172	1.65	41	0.023	-11	0.817	-173
480	0.840	-172	1.60	40	0.022	-10	0.818	-172
490	0.844	-173	1.55	38	0.022	-10	0.819	-172
500	0.845	-173	1.56	37	0.022	-10	0.833	-173
600	0.879	-176	1.21	29	0.002	138	0.870	-176
700	0.912	-179	0.92	23	0.017	77	0.862	-176
800	0.935	179	0.79	18	0.039	58	0.887	179
900	0.966	176	0.67	11	0.030	69	0.892	179
1000	0.974	172	0.57	5	0.043	49	0.945	175

Rev. V1

PACKAGE DIMENSIONS

MRF166W

The RF MOSFET Line 40W, 500MHz, 28V

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.